首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
利用甘肃和青海两省固定宽频带地震台记录的远震波形资料,挑选高质量SKS震相,联合使用最小切向能量方法和旋转互相关方法获得230对高信噪比分裂参数;同时对接收函数中Pms震相随方位角的变化进行拟合,得到了24个台站的地壳各向异性分裂参数.整个区域SKS分裂快波方向均值为123°,Pms分裂快波方向均值为132°,且大部分区域SKS、Pms快波方向与地表构造走向相一致,说明青藏高原东北缘以岩石圈垂直连贯变形为主,地壳上地幔相互耦合.SKS、Pms分裂时差均值分别为1.0s和0.6s,显示地壳各向异性对于SKS分裂时差有较大贡献.昆仑断裂附近Pms、SKS分裂快波方向与昆仑断裂走向基本一致,说明昆仑断裂可能是岩石圈尺度深大断裂;而阿尔金断裂东缘二者快波方向显著差异意味着阿尔金断裂在东缘可能仅为地壳尺度的断裂.  相似文献   

2.
青藏高原东缘地壳上地幔电性结构研究进展   总被引:6,自引:2,他引:4       下载免费PDF全文
经过数十年的努力,中国学者针对青藏高原东缘地壳上地幔探测,累积完成超过20000 km的大地电磁测深剖面,取得了一系列重要科学数据和认识,为青藏高原东缘构造格局、地壳上地幔电性结构、地震机制和动力学研究奠定了基础.根据青藏高原东缘的主要构造和断裂分布特征,本文重点对龙门山构造带、川滇构造带和三江构造带三个构造带分区进行研究,主要依据大地电磁探测工作成果和壳幔电性结构特征,系统地对青藏高原东缘地壳上地幔电性结构、与扬子西缘接触关系、汶川地震和芦山地震的电性孕震环境及弱物质流通道等几个方面进行了梳理和分析.一是青藏高原东缘地壳表层岩块和物质沿壳内高导层向龙门山造山带仰冲推覆,表现为逆冲推覆特征的薄皮构造;二是高原东部地壳中下部及上地幔顶部向龙门山造山带和上扬子地块西缘岩石圈深部俯冲,呈现刚性的上扬子地块西缘高阻楔形体向西插入柔性青藏块体的楔形构造;三是将汶川地震和芦山地震的震源投影到大地电磁剖面上,发现震源位于剖面下方的高阻块体与低阻体之间靠近高阻体的一侧,龙门山构造带岩石圈表现出高阻、高密度和高速的"三高"特征,这种非均匀电性结构可能构成地震孕育发生条件;四是川滇和三江地区的多条大地电磁剖面探测结果表明,在青藏高原东缘中下地壳存在下地壳流和局部管道流,大地电磁结果对其空间分布形态、位置及大小进行了较好的刻画.根据研究区壳幔电性结构特征的构造解析和综合实例分析,总结了青藏高原东缘六类壳幔电性结构模型,提出了下一步重点研究领域和目标.总之,青藏高原东缘壳幔电性结构的研究对揭示研究区岩石圈结构和构造格局提供了重要依据,对油气及矿产资源远景评价提供了背景资料,对"Y"型多地震区的构造关系和发震机理研究具有重要指导意义.  相似文献   

3.
青藏高原东北缘由于受到多个构造块体的共同约束,表现出复杂的地球物理特性和地质特性,本文利用甘肃数字地震台网(2001-2008年)的观测资料,采用系统分析方法(SAM),进行地壳剪切波分裂分析,获得研究区内18个台站共1005条记录的剪切波分裂参数.研究结果表明,青藏高原东北缘介质各向异性在空间上存在差异,慢剪切波延迟时间表明了地壳介质各向异性的强弱变化特征,快剪切波平均偏振方向则反映了本区区域构造应力的空间变化特征.分析认为,祁连山-河西走廊活动构造区直接受青藏地块与阿拉善地块间相互作用,与青藏地块构造应力一致;甘东南活动构造区的应力环境主要受到内部活动断裂的共同作用,具有局部构造应力的特征.  相似文献   

4.
青藏高原东北缘地壳各向异性及其动力学意义   总被引:2,自引:2,他引:0       下载免费PDF全文
利用中国地震科学探测台阵项目二期(ChinaArrayⅡ)81个台站的地震数据,使用时间域反褶积方法提取接收函数,挑选满足要求的高质量Ps震相,通过改进的剪切波分裂计算方法获取了53个台站共130对高质量各向异性参数对.地壳各向异性分析指出,研究区东南部地区地壳各向异性方向为NWW向,与XKS各向异性方向、GPS速度场三者近平行关系,说明该地区在青藏高原向欧亚大陆增生的过程中是一个耦合的连贯变形过程;位于研究区中、北部地区的地壳各向异性方向表现为NEE-SWW或E-W方向,与GPS速度场方向一致,而与XKS结果的偏振方向大角度相交,说明该地区受到青藏高原下地壳塑性管道流的影响,可能存在壳幔解耦作用.  相似文献   

5.
利用四川地震台网区域地震台站和布设于该地区的流动地震台站的宽频带地震资料,采用接收函数反演等方法,对四川及邻区地壳流动与动力作用特征进行研究。结果表明,四川盆地地壳及上地幔速度显著高于青藏高原东缘。盆地中地壳vS值达3.6~3.8km/s,上地幔vS值为4.5~4.8 km/s,且地壳内无低速层,岩性上显示为刚强的地块。青藏高原东缘各台站的vS断面最显著的特征是速度值很小,中地壳vS平均值为3.0~3.4 km/s,上地幔vS值为4.0~4.5km/s。地壳内普遍存在低速层,大部份低速层位于深度20~40km的中地壳,在深度为10~20km的上地壳及40~60km的下地壳中,也出现少量的低速层。受印度板块向北推移的影响,青藏高原东缘在向东运动的过程中受到坚硬的四川盆地的阻挡,产生向南及南东运动。这些运动过程的产生是由于研究区受到较为复杂的力的作用。正是在这些力的作用下,青藏高原东缘成为地质构造复杂、地震活动强烈的地区。低速的地壳流受到刚强的四川盆地的阻挡出现拆层现象,并拆分为向上及向下的2或3支分流。向上的分流侵入上地壳引起地表隆升,形成陡峭的高峰。向下的分流侵入下地壳以至上地幔,使地壳加厚莫霍界面下沉。青藏高原东缘地壳流主要沿活动断裂带上分布。它从青藏高原东缘中部羌塘地块流出,主流沿北西南东的鲜水河断裂带流动,然后转向南北沿安宁河及小江断裂向南。在研究区域的北部,还有1支北东向及东西向到龙门山的地壳流。  相似文献   

6.
正作为青藏高原的东边界,巴颜喀拉块体与四川盆地的接触带,龙门山自中新世以来发生了强烈隆升,形成了世界上最陡峻的地形梯度带。从四川盆地西边界到青藏高原仅50 km范围内高差达4.5 km,龙门山因此成为研究青藏高原物质向东运动及青藏高原东缘隆升机制的重要场所。关于青藏高原东缘的变形机制主要有两种端元模型:一种是以地壳缩短为主的大陆逃逸模式,认为青藏高原东缘的变形主要集中在重要的活动边界断裂上;另一种是下地壳流模  相似文献   

7.
基于深部地球物理探测结果建立的青藏高原东缘-江南造山带的地壳结构,发现扬子块体在NW向受到来自青藏高原东缘物质的逆冲推覆,在SE向受到来自江南造山带物质的逆冲推覆.这些推覆作用控制了川西-江南雪峰造山带西部地壳构造.青藏高原向东挤出的物质,在龙门山断裂带附近遇到坚硬四川盆地的阻挡,以上、中地壳的向上逆冲推覆,下地壳插入到四川盆地之下和扬子块体内地壳的褶皱、缩短、增厚方式被吸收,形成熊坡、龙泉山构造带,造成浦江-成都-德阳断裂、龙泉山西坡断裂的NW向逆冲.这些结果回答了青藏高原东向挤出物质的去向问题.总之,扬子块体两侧受到造山带地壳逆冲推覆的发现,为研究华南地区的陆内造山机制,恢复构造演化历史和青藏高原侧向挤出的运动学过程开阔了视野.  相似文献   

8.
青藏高原东缘的地壳结构是两种主流青藏高原隆升模式争辩的焦点之一.中下地壳流曾经被认为是高原东缘隆升的主要构造驱动力,但是中上地壳之间低阻低速层的发现及其与2008 MS8.0汶川地震良好的对应关系表明,高原东缘具有向东刚性挤出的可能性.然而大部分关于龙门山断裂的数值模拟仍建立在下地壳流的基础上,仅将低阻低速层作为断裂的延续或是弱化地壳物性参数的软弱层,而非能够控制块体滑动的"解耦层",也没有考虑到刚性块体变形中的断裂相互作用.本文建立了包含相互平行的龙门山断裂与龙日坝断裂的刚性上地壳模型,用极薄的低阻低速层作为块体滑动的解耦带,采用速率相关的非线性摩擦接触有限元方法,基于R最小策略控制时间步长,计算了在仅有侧向挤压力作用下,低阻低速层对青藏高原东缘的刚性块体变形和断裂活动的作用.计算结果显示,低阻低速层控制了刚性块体的垂直变形和水平变形分布特征.在侧向挤压力的持续作用下,在低阻低速层控制下的巴颜喀拉块体能够快速隆升,而缺乏低阻低速层的四川盆地隆升速度和隆升量均极小,隆升差异集中在龙门山断裂附近,使其发生应力积累乃至破裂.龙日坝断裂被两侧的刚性次级块体挟持着一起向南东方向运动,但该断裂的走滑运动分解了绝大部分施加在块体边界上的走滑量,使得相邻的龙门山次级块体的走滑分量遽然减少,也使得龙门山断裂表现出以逆冲为主,兼有少量走滑的运动性质.本文所得的这些计算结果显示了在缺乏中下地壳流,仅在低阻低速层解耦下刚性块体隆升过程及相关断裂活动,提供了青藏高原东缘刚性块体挤出的可行性,为青藏高原东缘隆升机制的研究讨论提供了重要依据.  相似文献   

9.
青藏高原东缘的地壳结构是两种主流青藏高原隆升模式争辩的焦点之一.中下地壳流曾经被认为是高原东缘隆升的主要构造驱动力,但是中上地壳之间低阻低速层的发现及其与2008 Ms8.0汶川地震良好的对应关系表明,高原东缘具有向东刚性挤出的可能性.然而大部分关于龙门山断裂的数值模拟仍建立在下地壳流的基础上,仅将低阻低速层作为断裂的延续或是弱化地壳物性参数的软弱层,而非能够控制块体滑动的“解耦层”,也没有考虑到刚性块体变形中的断裂相互作用.本文建立了包含相互平行的龙门山断裂与龙日坝断裂的刚性上地壳模型,用极薄的低阻低速层作为块体滑动的解耦带,采用速率相关的非线性摩擦接触有限元方法,基于R最小策略控制时间步长,计算了在仅有侧向挤压力作用下,低阻低速层对青藏高原东缘的刚性块体变形和断裂活动的作用.计算结果显示,低阻低速层控制了刚性块体的垂直变形和水平变形分布特征.在侧向挤压力的持续作用下,在低阻低速层控制下的巴颜喀拉块体能够快速隆升,而缺乏低阻低速层的四川盆地隆升速度和隆升量均极小,隆升差异集中在龙门山断裂附近,使其发生应力积累乃至破裂.龙日坝断裂被两侧的刚性次级块体挟持着一起向南东方向运动,但该断裂的走滑运动分解了绝大部分施加在块体边界上的走滑量,使得相邻的龙门山次级块体的走滑分量遽然减少,也使得龙门山断裂表现出以逆冲为主,兼有少量走滑的运动性质.本文所得的这些计算结果显示了在缺乏中下地壳流,仅在低阻低速层解耦下刚性块体隆升过程及相关断裂活动,提供了青藏高原东缘刚性块体挤出的可行性,为青藏高原东缘隆升机制的研究讨论提供了重要依据.  相似文献   

10.
鄂尔多斯及邻区一直是研究活动地块间相互作用和物质运移的热点区域.青藏高原的扩展与鄂尔多斯地块内部及周缘的变形之间的耦合关系仍有待厘定.基于“中国地震科学台阵探测”项目的密集台阵和固定台网数据,本文利用区域地震全波形层析成像方法获得了研究区三维S波速度和径向各向异性结构,结果表明:鄂尔多斯地块存在以37°N为界的南北速度结构差异,南部的相对低速反映了较厚的地壳,与地形地貌相对应;鄂尔多斯西南缘在中、上地壳表现为负径向各向异性结构特征,S波速度扰动在中地壳呈显著的低速异常,延伸到鄂尔多斯西南部,该区域作为青藏高原扩展的前缘,速度结构特征反映了中地壳滑脱,上地壳缩短变形的地壳增厚模式;具有扩展早期构造变形特征的阿拉善地块南部呈相对低速,在上地壳表现为明显的负径向各向异性;鄂尔多斯东缘的山西断陷带存在南北速度结构差异,断陷带北部下地壳为低速异常,反映受地幔热物质改造的软弱物质堆积,断陷带中部则呈相对高速结构特征,推测其深部构造应力、应变环境比较稳定;负径向各向异性结构在南北地震带北段和山西断陷带浅部均有分布,为深入研究地震活动性与地壳速度结构的关系提供了波形成像证据.  相似文献   

11.
基于四川盆地及周边的245个宽频带台站2010年9月—2014年9月期间的远震记录,提取双台路径瑞利面波相速度频散资料,反演得到四川盆地20~120s的高分辨率瑞利面波相速度及各向异性空间分布.在丰富区域地球物理基础数据的同时,结合已有研究成果对地壳上地幔变形耦合进行探讨,结果表明短周期(20~30s)的相速度分布与四川盆地的地质构造特征相吻合,作为川滇地块、松潘—甘孜地块和四川盆地之间的边界——龙门山断裂带和鲜水河断裂带对上述三个地块上地壳的速度结构具有明显的控制作用;松潘—甘孜地块,特别是川滇地块中下地壳普遍表现为明显的低速异常,表明中下地壳相对软弱;而四川盆地的中下地壳整体呈现相对高速,表明四川盆地具有相对坚硬的中下地壳.研究区域东南角接近北扬子地块与南扬子地块的缝合部位,呈现高速异常.四川盆地南部和东南邻区不同周期均具有较强的各向异性,且快波方向较为一致,反映这些地区不同深度变形耦合较好.四川盆地西部、北部及东北部邻区,不同周期的各向异性快波方向变化较大,不同深度变形耦合较差.这些特征与绕喜马拉雅东构造结的物质流动被扬子地块的高速地壳阻挡的宏观认识基本一致.  相似文献   

12.
江苏及邻区(116°E~123°E,30°N~36°N)跨中国大陆3个地质构造单元(华北地台、扬子地台、华南褶皱系),本文采用江苏区域数字地震台网(1999~2008年)共10年的观测资料,使用地壳介质剪切波分裂系统分析方法(SAM),获取研究区域内共11个台站的剪切波分裂参数.研究结果表明,江苏及邻区背景应力环境并非来自单一的某个一级构造单元,而是受到3个地质构造单元的共同约束.研究区域西南部的应力环境主要受到板桥-南渡断裂、茅山东侧断裂、幕府山-焦山断裂共同作用,具有局部构造应力特征.研究区域东南部应力环境空间分布特征以长江为界,长江以北地区主压应力场方向为NW方向,而长江以南地区的主压应力场方向为近E-W方向.据此推断,长江以南可能存在近E-W方向的活动构造,长江可能是两个具有不同应力特征活动构造的边界.  相似文献   

13.
本文使用川西密集地震台阵记录的面波资料,利用程函方程面波成像方法获得了周期为14—60 s的瑞雷波相速度及方位各向异性分布。结果显示:川滇菱形地块的川西北地块内部的低速异常明显,其下地壳各向异性快波方向以NS向为主,松潘—甘孜地块内部的低速异常稍弱,下地壳各向异性快波方向以NW?SESE向为主,表明川西北地块可能存在下地壳通道流,松潘—甘孜地块内部存在的通道流相对较弱;龙门山断裂带和丽江—小金河断裂两侧的速度结构和方位各向异性均有明显差异,可推测青藏高原内部的地壳流在东部和南部分别受高速、高强度的四川盆地和滇中地块阻挡,沿高原边界带发生了侧向流动;周期大于25 s的面波方位各向异性方向为NW?SE;与SKS分裂优势方向相近,说明四川盆地的剪切波各向异性可能主要源于上地幔;而龙门山断裂带附近壳幔各向异性较为复杂,面波方位各向异性与SKS分裂的NW?SE向弱各向异性存在差异,表明该处的剪切波各向异性可能来自地幔更深处,有待进一步研究。   相似文献   

14.
龙门山断裂带北段南坝地区上地壳S波分裂特征   总被引:1,自引:1,他引:0       下载免费PDF全文
基于汶川科钻4号井孔(WFSD-4)附近的较小尺度的南坝微震台阵以及较大尺度的川西流动台站和区域台网的固定台站记录到的近震波形资料,通过横波窗内的S波分裂计算,分析了龙门山断裂带北段南坝地区的上地壳介质各向异性特征,并对区域应力场及构造特征展开讨论.S波分裂计算的结果显示研究区快波偏振方向主要表现为NE-NEE向,与北川断裂的走向一致,也与区域主压应力方向一致.小尺度密集分布的南坝微震台阵的计算结果进一步显示,靠近北川断裂的台站,其快波偏振方向与断裂走向一致,而距北川断裂较远的西北部台站的快波偏振方向与断裂走向不一致,反映了上地壳各向异性特征与地表的活动断裂结构密切相关.从南坝微震台阵的归一化时间延迟随时间的变化情况可以发现,在一个震中位于台阵布设范围内的地震事件发生前后,时间延迟有明显的变化,表明时间延迟随时间变化较为敏感,地震的能量影响了介质的性质.对比龙门山断裂带中段的科钻3号井孔周边地区的S波分裂计算结果,归一化时间延迟与本文结果一致,表明龙门山断裂带中段和北段的上地壳介质各向异性强度基本相同.  相似文献   

15.
龙门山断裂带地壳密度结构   总被引:3,自引:1,他引:2       下载免费PDF全文
研究龙门山及邻区地壳密度结构对于认识该地区地震活动性具有重要意义.根据龙门山及邻区( 100°~105°E,28°~33°N)的布格重力异常资料,选取了跨越龙门山断裂带的6条重力测线,在深地震测深资料约束下,使用Geosoft软件分别反演出了龙门山地区地下的沉积层、康拉德界面和莫霍面的深度分布.研究结果表明:龙门山断裂带两侧的地壳结构明显不同,西面高原地区沉积层较薄,大部分为基岩出露;而东边盆地沉积层明显较厚,多在6km以上.莫霍面和康拉德面在两侧均相对平缓,康拉德面从东部的大约24km增加到青藏高原山区的35km左右;莫霍面深度从东部盆地的大约42km增加到西部青藏高原的67km左右.龙门山断裂带整体表现为一条近SN向的陡变重力梯度带,并在其地壳内各界面均发生错断,莫霍面和康拉德面错断距离分别达6 ~ 7km和3~ 5km.该区地壳的这种陡变和不均匀性是导致地震活动性强烈的主要原因之一.  相似文献   

16.
在各向异性地壳中,来自Moho的P-to-S转换波(Pms)的到时不仅取决于入射角和地壳厚度,而且还随地震事件方位角而变化.地处青藏高原东南缘的川滇地区,地壳变形十分强烈.本文利用川滇地区的108个固定台站记录的远震三分量地震波形数据提取台站下方的P波接收函数,并把接收函数被校正到了同一参考震中距处(例如67°).然后按后方位角10°为间隔将接收函数叠加成一道信号以增强信噪比,并从叠加信号里拾取不同后方位角对应的Pms相的观测到时.在快波极化方向和分裂时间构成的解的平面上,能使观测到时与理论到时之差最小的点即为所求的分裂参数的位置.合成地震图和实际观测数据的实验表明,这个方法不但稳定性较好,而且误差估计也较小.我们从108个台中获得了96个Pms相的分裂参数,结果表明,川滇地区地壳各向异性十分强烈,Pms相分裂时间在0.05s±0.06s到1.27s±0.10s之间,平均值为0.54s±0.12s.地壳各向异性的快波极化方向与地表GPS速度场的差异性表明,印支块体的上下地壳之间是解耦的,而川滇菱形块体北部、松藩—甘孜和四川盆地的上下地壳之间是耦合的.然而,川滇菱形块体南部,地壳变形主要受控于小江断裂和金沙江—红河断裂.  相似文献   

17.
The receiver function which carries the information of crustal materials is often used to study the shear-wave velocity of the crust as well as the crustal anisotropy. However, because of the low signal-to-noise ratio in Pms(P-to-S converted phase from the Moho), the crustal anisotropy obtained by shear-wave splitting technique for a single receiver function usually has large errors in general. Recent advance in the analysis method based on Pms arrival time varying with the back-azimuth change can effectively overcome the above defects. Thus in this paper, we utilize the azimuth variations of the Pms to study the crustal anisotropy in Chongqing region for the first time. According to the earthquake catalogue provided by USGS, seismic waveform of earthquakes with magnitude larger than 5.5 and epicenter distance range of 30°~90° between January 2015 and December 2016 are collected from 14 broadband seismic stations of Chongqing seismic network. We carry out the bootstrap resampling to test the reliability of the radial maximum energy method for the observation data. In addition, we also applied the receiver function H-Kappa analysis in this paper to study the crustal thickness and Poisson's ratio. Our results show the crustal thickness ranges from 40~50km, and there is a thin and thick crust in the southern and northern Chongqing, respectively. The crustal average Poisson's ratio ranges from 0.23~0.31, the Poisson's ratio reaches the maximum value in the central part of Chongqing, while the Poisson's ratio in the northern and southern parts of Chongqing is obviously low. We obtain the crustal anisotropy from 9 stations in total. The delay time of crustal anisotropy distributes between 0.08s and 0.48s, with the average value of 0.22s. Among them, the CHS, QIJ and WAZ stations in central Chongqing have relatively large crustal delay time(>0.3s), followed by ROC station in the western Chongqing(0.25s), while the delay time in CHK station in northern Chongqing and WAS station in southern Chongqing are 0.08s, showing relatively weak crustal anisotropy. The fast polarization directions(FPDs)also change obviously from south to north. In southern Chongqing, FPDs are dominant in NNE-SSW and NEE-SWW, while the FPDs in WAZ station change to NWW-SEE, and the FPDs appear to be NW-SE in CHK in the northern Chongqing. In general, the FPDs are sub-parallel to the strikes of faults in most areas of Chongqing areas. Combined with other results from GPS observations, tectonic stress field and XKS splitting measurements, the main conclusions can be suggested as following:The cracks preferred orientation in the upper crust is not the main source of crustal anisotropy in Chongqing area. The crust and lithospheric upper mantle in the eastern Sichuan fold belt(ESFB)and Sichuan-Guizhou fault fold belt(SGFFB)are decoupled, and the deformation characteristics in the north and south parts of ESFB and SGFFB is different. The complex tectonic deformation may exist beneath the mountain-basin boundary, causing the fast directions of crustal anisotropy different from that in other areas of ESFB and SGFFB. The faults with different strikes may weaken the strength of average crustal anisotropy in some areas. The crustal deformation in southern Dabashan nappe belt(DNB)may be mainly controlled by the fault structure.  相似文献   

18.
In 2010, a 500-km-long wide-angle reflection/refraction seismic profile was completed, running northwest from the central Sichuan Basin. This profile orthogonally crosses the meizoseismal area of great Wenchuan earthquake of 12 May 2008, which occurred in the central part of the Longmenshan. The profile also passes through the northwestern Sichuan Plateau, along which a new deep seismic sounding observation system was set up that was much improved over previous datasets and enabled abundant observations to be recorded. Seismic wave phase records that reflect the structural characteristics of different tectonic blocks, especially the complicated phase features associated with the Wenchuan earthquake, were calculated and analyzed in detail. A 2D crustal P-wave velocity model for the orogenic belt in the central Longmenshan and its margins was determined, and crustal structure differences between the stable Sichuan Basin and the thickened northwestern Sichuan Plateau were characterized. Lithological variations within the upper and lower crust in the interior of the plateau, especially a great velocity decrease and plastic rheological properties associated with strong lithologic weakening in lower crust, were detected. From west to east in the lower crust beneath the orogenic belt lying between the Sichuan Basin and the northwestern Sichuan Plateau, a giant shovel-like upwelling is observed that dips gently in the lower part and at higher angles in the upper part; this is inferred to be related to the fault systems in the central Longmenshan. An upwelling in the upper-middle crust along the eastern margin of the orogenic belt is associated with steeply dipping thrusts that strongly uplift the upper crust and crystalline basement beneath a central fault system in the Longmenshan. The data, combined with an understanding of the regional tectonic stress field and previous geological results, enable a discussion of basin-and-range coupling, orogenic tectonics, the crustal fault system, and the seismogenic tectonic environment of the central Longmenshan along the eastern margin of the Qinghai-Tibet Plateau.  相似文献   

19.
为了研究与总结2008年5月12日汶川8.0级地震前GPS与跨断层资料反映的龙门山断裂带及其周边地区的运动、构造变形、应变积累演化过程,以及汶川地震临震阶段可能的物理机制,本文综合1999~2007期GPS速度场、1999~2008年大尺度GPS基线时间序列、1985~2008年跨断层短水准等资料进行了相关分析与讨论。结果表明:(1)GPS速度剖面结果显示,宽达500km的川西高原在震前有明显的连续变形,而四川盆地一侧和跨龙门山断裂带基本没有变形趋势,表明震前川西高原在持续不断地为已经处于闭锁状态的龙门山断裂带提供能量积累。(2)GPS应变率结果显示,震前龙门山断裂带中北段的NW侧EW向挤压变形明显,变形幅度从远离断裂带较大到靠近断裂带逐渐减小,而断裂带变形微弱;龙门山断裂带西南段周边形成了显著的EW向挤压应变集中区,应变积累速率明显大于中北段。(3)断层闭锁程度反演结果显示,除了汶川地震的震源位置闭锁相对较弱,且西南段有大概20km宽度断层在12~22.5km深度为蠕滑状态以外,震前整条龙门山断裂基本处于强闭锁状态。(4)大尺度GPS基线结果显示,跨南北地震带区域的NE向基线从2005年开始普遍出现压缩转折,反映NE向地壳缩短的相对运动增强。(5)跨断层短水准场地结果显示,震前年均垂直变化速率和形变累积率很低,表明断层近场垂向活动很弱、闭锁较强。通过以上分析认为,在相对小尺度的地壳变形中,震前龙门山断裂带深浅部均处于强闭锁状态,断裂带水平与垂直变形都很微弱,这可能经历了一个缓慢的过程,而且越是临近地震的发生,微弱变形的范围可能越大;在相对大尺度的地壳变形中,震前龙门山断裂带西侧的巴颜喀拉块体东部地区经历了地壳缓慢且持续的缩短挤压变形,为龙门山断裂带应变积累持续提供了动力支持。  相似文献   

20.
2013年4月20日发生在龙门山南段的芦山MS7.0地震是继发生在龙门山中北段的汶川MS8.0地震之后的又一次强震。本文通过震后地表变形特征、余震分布、震源机制解、石油地震勘探剖面、历史地震数据等资料,结合前人对龙门山南段主干断裂、褶皱构造特征的研究以及野外实地考察,应用活动褶皱及"褶皱地震"的相关理论,初步分析芦山地震的发震构造模式。认为芦山地震为典型的褶皱地震,发震断裂为前山或山前带一隐伏断裂。构造挤压产生的地壳缩短大部分被褶皱构造吸收。认为龙门山南段前缘地区具有活褶皱-逆断层的运动学特征,表明龙门山逆冲作用正向四川盆地内部扩展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号