首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sub-Balkan graben system of central Bulgaria   总被引:2,自引:0,他引:2  
The Sub-Balkan graben system in central Bulgaria forms the present northern boundary of the Aegean extensional region. This east-trending graben system lies along the southern flank of the Stara Planina range and consists mainly of half-grabens. The sedimentary fill in the grabens ranges in age from late Miocene to Recent and records the initiation and evolution of the graben system. The sedimentary fill in the grabens is oldest in the central graben and becomes progressively younger to the west and east, indicating a diachronous development of the grabens. Grabens are formed in the hangingwalls of south-dipping low-angle normal faults which have been displaced by younger higher angle normal faults along the foot of the Stara Planina. Hangingwall rocks have been complexly faulted and rotated such that some graben fill has been rotated down-to-the-north. The Sredna Gora range south of the grabens is part of a complexly faulted and rotated hangingwall block bounded on the south by south-dipping normal faults forming the northern boundary of the Thracian Basin. The Stara Planina range has been formed by uplift and rotation due to footwall unloading along the low-angle normal faults and forms the northern margin of the graben system. Most of the topography of Bulgaria south of the Sub-Balkan graben system is the result of late Miocene to Recent extensional processes linked to the Aegean region that have been superposed on convergent features and earlier extensional features that extend back to late Eocene time.  相似文献   

2.
Field exposures of Lower Cretaceous strata in the Oliete sub-basin (eastern Spain) allow identification of syn-rift features such as listric and planar normal faults, rotated fault blocks, fault-related folds, sharp thickness variations and wedge-shaped sedimentary geometries, as well as intra-rift angular unconformities defined by the erosive truncation of rotated fault blocks and the onlap of upper units. The combined use of both stratigraphic and extensional tectonic features at the outcrop scale has allowed us to characterise different syn-sedimentary tectonic events and their correlation between the footwall and the hangingwall block of the major extensional Gargallo fault. Such events have been interpreted as induced by the major Gargallo fault activity, and they are the basis for proposing a polyphase evolutionary model for this master fault. Data indicate that the deformation tends not to be concentrated on the major fault; instead, it is distributed over a wide area. We interpret that both the interlayered detachment levels in the pre-rift (especially the Late Triassic Keuper Facies) and syn-rift series, together with the rheology of the sedimentary pile, play an important role in transmitting deformation from master faults to hangingwall and footwall blocks.  相似文献   

3.
This article focuses on the reinterpretation of well, seismic reflection, magnetic, gravimetric, surface wave and geological surface data, together with the acquisition of seismic noise data to study the Lower Tagus Cenozoic Basin tectono‐sedimentary evolution. For the first time, the structure of the base of the basin in its distal and intermediate sectors is unravelled, which was previously only known in the areas covered by seismic reflection data (distal and small part of intermediate sectors). A complex geometry was found, with three subbasins delimited by NNE‐SSW faults and separated by WNW‐ESE to NW‐SE oriented horsts. In the area covered by seismic reflection data, four horizons were studied: top of the Upper Miocene, Lower to Middle Miocene top, the top of the Palaeogene and the base of Cenozoic. Seismic data show that the major filling of the basin occurred during Upper Miocene. The fault pattern affecting Neogene and Palaeogene units derived here points to that of a polyphasic basin. In the Palaeogene, the Vila Franca de Xira (VFX) and a NNE‐SSW trending previously unknown structure (ABC fault zone) probably acted as the major strike‐slip fault zones of the releasing bend of a pull‐apart basin, which produced a WNW‐ESE to NW‐SE fault system with transtensional kinematic. During the Neogene, as the stress regime rotated anticlockwise to the present NW‐SE to WNW‐ESE orientation, the VFX and Azambuja fault zones acted as the major transpressive fault zones and Mesozoic rocks overthrusted Miocene sediments. The reactivation of WNW‐ESE to NW‐SE fault systems with a dextral strike‐slip component generated a series of horsts and grabens and the partitioning of the basin into several subbasins. Therefore, we propose a polyphasic model for the area, with the formation of an early pull‐apart basin during the Palaeogene caused by an Iberia–Eurasia plates collision that later evolved into an incipient foreland basin along the Neogene due to a NW‐SE to WNE‐ESE oriented Iberia–Nubia convergence. This convergence is producing uplift in the area since the Quaternary except for the Tagus estuary subbasin around the VFX fault, where subsidence is observed. This may be due to the locking or the development of a larger component of strike‐slip movement of the NNE‐SSW to N‐S thrust fault system with the exception of the VFX fault, which is more favourably oriented to the maximum compressive stress.  相似文献   

4.
The Middle Devonian Kvamshesten Basin in western Norway is a late-orogenic basin situated in the hangingwall of the regional extensional Nordfjord–Sogn Detachment Zone. The basin is folded into a syncline with the axis subparallel to the ductile lineations in the detachment zone. The structural and stratigraphic development of the Kvamshesten Basin indicates that the basin history is more complex than hitherto recognized. The parallelism stated by previous workers between mylonitic lineation below the basin and intrabasinal fold axes is only partly reflected in the configuration of sedimentary units and in the time-relations between deposits on opposing basin margins. The basin shows a pronounced asymmetry in the organization and timing of sedimentary facies units. The present northern basin margin was characterized by bypass or erosion at the earliest stage of basin formation, but was subsequently onlapped and eventually overlain by fanglomerates and sandstones organized in well-defined coarsening-upwards successions. The oldest and thickest depositional units are situated along the present southern basin margin. This as well as onlap relations towards basement at low stratigraphic level indicates a significant component of southwards tilt of the basin floor during the earliest stages of deposition. The inferred south-eastwards tilt was most likely produced by north-westwards extension during early stages of basin formation. Synsedimentary intrabasinal faults show that at high stratigraphic levels, the basin was extending in an E–W as well as a N–S direction. Thus, the basin records an anticlockwise rotation of the syndepositional strain field. In addition, our observations indicate that shortening normal to the extension direction cannot have been both syndepositional and continuous, as suggested by previous authors. Through most of its history, the basin was controlled by a listric, ramp-flat low-angle fault that developed into a scoop shape or was flanked by transfer faults. The basin-controlling fault was rooted in the extensional mylonite zone. Sedimentation was accompanied by formation of a NE- to N-trending extensional rollover fold pair, evidenced by thickness variations in the marginal fan complexes, onlap relations towards basement and the fanning wedge geometry displayed by the Devonian strata. Further E–W extension was accompanied by N–S shortening, resulting in extension-parallel folds and thrusts that mainly post-date the preserved basin stratigraphy. During shortening, conjugate extensional faults were rotated to steeper dips on the flanks of a basin-wide syncline and re-activated as strike-slip faults. The present scoop-shaped, low-angle Dalsfjord fault cross-cut the folded basin and juxtaposed it against the extensional mylonites in the footwall of the Nordfjord–Sogn detachment. Much of this juxtaposition may post-date sedimentation in the preserved parts of the basin. Basinal asymmetry as well as variations in this asymmetry on a regional scale may be explained by the Kvamshesten and other Devonian basins in western Norway developing in a strain regime affected by large-scale sinistral strike-slip subparallel to the Caledonian orogen.  相似文献   

5.
The Northern Death Valley fault zone is a major right-lateral structure that has accommodated 70 km or more of regional transtensional deformation in Tertiary to Recent time. Extension parallel to its north-west transport direction in the Death Valley region of California has produced ‘pull-apart’ structures that are responsible for opening the central Death Valley rhombochasm. In several ranges along the length of the Northern Death Valley fault zone, there is also evidence for extension directed to the south-west, normal to strike-slip movement. Evidence from the Funeral, Grapevine and Cottonwood Mountains suggests that a significant amount of down-dip slip has occurred on the Northern Death Valley fault zone and parallel structures (together referred to as the Northern Death Valley fault system) coeval with the majority of right-lateral slip and transform-parallel extension. As a result of both these components of extension, a separate basin opened in northern Death Valley with an orientation and architecture very different from that of central Death Valley. In addition, the Northern Death Valley fault system may be responsible for the present topography of the Funeral and Grapevine Mountains. Transform-normal extension appears to be the result of a misorientation of the Northern Death Valley fault zone within the regional stress field over the past 6 Myr, as suggested by simple geometric calculations.  相似文献   

6.
In this work, we explore by means of analogue models how different basin-bounding fault geometries and thickness of a viscous layer within the otherwise brittle pre-rift sequence influence the deformation and sedimentary patterns of basins related to extension. The experimental device consists of a rigid wooden basement in the footwall to simulate a listric fault. The hangingwall consists of a sequence of pre-rift deposits, including the shallow interlayered viscous layer, and a syn-rift sequence deposited at constant intervals during extension. Two different geometries exist of listric normal faults, dip at 30 and 60° at surface. This imposes different geometries in the hangingwall anticlines and their associated sedimentary basins. A strong contrast exists between models with and without a viscous layer. With a viscous décollement, areas near the main basement fault show a wide normal drag and the hangingwall basin is gently synclinal, with dips in the fault side progressively shallowing upwards. A secondary roll-over structure appears in some of the models. Other structures are: (1) reverse faults dipping steeply towards the main fault, (2) antithetic faults in the footwall, appearing only in models with the 30° dipping fault and silicone-level thicknesses of 1 and 1.5 cm and (3) listric normal faults linked to the termination of the detachment level opposite to the main fault, with significant thickness changes in the syn-tectonic units. The experiments demonstrate the importance of detachment level in conditioning the geometry of extensional sedimentary basins and the possibility of syncline basin geometries associated with a main basement fault. Comparison with several basins with half-graben geometries containing a mid-level décollement supports the experimental results and constrains their interpretation.  相似文献   

7.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

8.
《Basin Research》2018,30(Z1):363-381
Inversion of pre‐existing extensional fault systems is common in rift systems, back‐arc basins and passive margins. It can significantly influence the development of structural traps in hydrocarbon basins. The analogue models of domino‐style basement fault systems shown in this paper produced, on extension, characteristic hangingwall growth stratal wedges that, when contracted and inverted, formed classic inversion harpoon geometries and asymmetric hangingwall contractional fault‐propagation folds. Segmented footwall shortcut faults formed as the basement faults were progressively back‐rotated and steepened. The pre‐existing extensional fault architectures, basement fault geometries and the relative hangingwall and footwall block rotations exerted fundamental controls on the inversion styles. Digital image correlation (DIC) strain monitoring illustrated complex vertical fault segmentation and linkage during inversion as the major faults were reactivated and strain was progressively transferred onto footwall shortcut faults. Hangingwall deformation during inversion was dominated by significant back‐rotation as the inversion progressed. The mechanical stratigraphy of the cover sequences strongly influenced the fold and fault evolution of the reactivated fault systems. The implications of the experimental results for the interpretation and analysis of inversion structures are discussed and are compared with natural examples of inverted basement‐involved extensional faults observed in seismic datasets.  相似文献   

9.
The Sagaing Fault zone is the largest active fault in SE Asia, whose current displacement rate of around 1.8 cm year?1 is well‐established from GPS data. Yet determining the timing of initiation and total displacement on the fault zone has proven controversial. The timing problem can potentially be resolved through a newly identified syn‐kinematic sedimentary section directly related to displacement on the Sagaing Fault in the northern Minwun Ranges. The northern part of the western strand of the Sagaing Fault has a releasing splay geometry that sets up a syn‐kinematic oblique‐extensional basin in its hangingwall, here called the North Minwun Basin. A series of thick ridges probably composed of alluvial fan and fluvial sandstones dipping between 20 and 70° to the north, and younging northwards comprise the basin fill over a distance of 40 km. Total stratigraphic thickness (not vertical thickness) is estimated at 25 km. The basin in terms of depositional geometries, large displacements, and large stratigraphic thickness and appearance on satellite images has parallels with the extensional Hornelen basin, Norway and the strike‐slip Ridge Basin, California. Minimum likely displacement on the fault strand is 40 km, and may possibly be in excess of 100 km. The remote and inaccessible basin has yet to be properly dated, likely ages range between Eocene and Miocene. When dated the basin will provide an important constraint on the timing of deformation. The potential for this basin to constrain the timing and displacement along the northern part of the Sagaing Fault has not been previously recognised.  相似文献   

10.
Reflection seismic data show that the late Cenozoic Safford Basin in the Basin and Range of south-eastern Arizona, is a 4.5-km-deep, NW-trending, SW-dipping half graben composed of middle Miocene to upper Pliocene sediments, separated by a late Miocene sequence boundary into lower and upper basin-fill sequences. Extension during lower basin-fill deposition was accommodated along an E-dipping range-bounding fault comprising a secondary breakaway zone along the north-east flank of the Pinaleño Mountains core complex. This fault was a listric detachment fault, active throughout the mid-Tertiary and late Cenozoic, or a younger fault splay that cut or merged with the detachment fault. Most extension in the basin was accommodated by slip on the range-bounding fault, although episodic movement along antithetic faults temporarily created a symmetric graben. Upper-plate movement over bends in the range-bounding fault created rollover structures in the basin fill and affected deposition within the half graben. Rapid periods of subsidence relative to sedimentation during lower basin-fill deposition created thick, laterally extensive lacustrine or alluvial plain deposits, and restricted proximal alluvian-fan deposits to the basin margins. A period of rapid extension and subsidence relative to sediment influx, or steepening of the upper segment of the range-bounding fault at the start of upper basin-fill deposition resulted in a large downwarp over a major fault bend. Sedimentation was restricted to this downwarp until filled. Episodic subsidence during upper basin-fill deposition caused widespread interbedding of lacustrine and fluvial deposits. Northeastward tilting along the south-western flank of the basin and north-eastward migration of the depocentre during later periods of upper basin-fill deposition suggest decreased extension rates relative to late-stage core complex uplift.  相似文献   

11.
Quantifying the Cenozoic growth of high topography in the Indo‐Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present‐day north‐eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE‐vergent thrust faults and are now exposed in the high ranges of the north‐eastern corner of the Tibetan Plateau. We focus on a particularly well‐exposed basin, located ~20 km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900 m of alluvial sediments that become finer‐grained away from the basin‐bounding fault. Additionally, beds in the proximal footwall of the basin‐bounding fault exhibit progressive, up‐section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K–Ar dating of volcanic rocks that floor and cross‐cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW–SE contractional deformation similar to that documented throughout the Qinling–Dabie orogen to the east. The Songpan‐Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming inboard of the east Asian margin.  相似文献   

12.
Exceptional 3‐D exposures of fault blocks forming a 5 km × 10 km clastic sediment‐starved, marine basin (Carboneras subbasin, southeast Spain) allow a test of the response of carbonate sequence stratigraphic architectures to climatic and tectonic forcing. Temperate and tropical climatic periods recorded in biofacies serve as a chronostratigraphic framework to reconstruct the status of the basin within three time‐slices (late Tortonian–early Messinian, late Messinian, Pliocene). Structural maps and isopach maps trace out the distribution of fault blocks, faults, and over time, their relative motions, propagational patterns and life times, which demonstrate a changing layout of the basin because of a rotation of the regional transtensional stress field. Progradation of early Messinian reefal systems was perpendicular to the master faults of the blocks, which were draped by condensed fore‐slope sediments. The hangingwall basins coincided with the toe‐of‐slope of the reef systems. The main phase of block faulting during the late Tortonian and earliest Messinian influenced the palaeogeography until the late Pliocene (cumulative throw < 150–240 m), whereas displacements along block bounding faults, which moved into the hangingwall, died out over time. An associated shift of the depocentres of calciturbidites, slump masses and fault scarp degradation breccias reflects 500–700 m of fault propagation into the hangingwall. The shallow‐water systems of the footwall areas were repeatedly subject to emergence and deep peripheral erosion, which imply slow net relative uplift of the footwall. In the dip‐slope settings, erosional truncations of tilted proximal deposits prevail, which indicate rotational relative uplift. Block movements were on the order of magnitude of third order sea‐level fluctuations during the late Tortonian and earliest Messinian. We suggest that this might be the reason for the common presence of offlapping geometries in early Messinian reef systems of the Betic Cordilleras. During the late Pliocene, uplift rates fell below third order rates of sea‐level variations. However, at this stage, the basin was uplifted too far to be inundated by the sea again. The evolution of the basin may serve as a model for many other extensional basins around the world.  相似文献   

13.
Faulting exerts an important control upon drainage development in active extensional basins and thus helps determine the architecture of the sedimentary infill to a synrift basin. Examples of the interaction between faulting and drainage from the western United States and central Greece may be grouped into a relatively small number of classes based upon the structural position of a drainage catchment: footwall, hangingwall, fault offset and axial. Our examples illustrate the diversity of erosional effects that might arise because of variations in the spacing, orientation and segmentation of faults and their interactions. Where basement lithology is similar, footwall catchments are generally smaller, shorter and steeper than those of the hangingwall. Footwall-sourced alluvial fans and fan deltas are: generally smaller in area than those sourced from similar lithologies in the hangingwall. Wide fault offsets often give rise to large drainage catchments in the footwall. The development of axial drainage depends upon the breaching of transverse bedrock ridges by headward stream erosion or by lake overflow. Once breaching has occurred the direction of axial stream flow is controlled by the potential developed between basins of contrasting widths. Fault migration and propagation leads to the uplift, erosion and resedimentation of the sedimentary infill to formerly active basins, leading to the cutting of footwall unconformities. The outward sediment flux from structurally controlled catchments is modulated in an important way by lithology and runoff. The greatest contrasts in basement lithology arise when fault migration and propagation have occurred, such that the sedimentary fill to previously active basins is uplifted, incised and eroded by the establishment of large new drainage systems in the footwalls of younger faults. Drainage patterns in areas where faults interact can shed light on the relative timing of activity and therefore the occurrence of fault migration and propagation. Facies and palaeocurrent trends in ancient grabens may only be correctly interpreted when observations are made on a length scale of 10–20 km, comparable to that of the largest fault segments.  相似文献   

14.
The base of the Late Devonian–Early Carboniferous Drummond Basin, a major backarc extensional feature in eastern Australia which formed in response to detachment faulting, is extensively exposed in central Queensland. Here a crystalline basin floor is overlain by the Silver Hills Volcanics, a synrift sequence of predominantly silicic ash flow tuffs and lavas ranging to over 2 km in thickness. Detailed mapping of faults and stratigraphic logging of thickness changes within the Silver Hills Volcanics have allowed the rift-phase structural architecture that accompanied initial subsidence near the basin margin to be resolved. A complex mosaic of block faults with throws of up to 1 km is indicated. Locally developed mosaics may conform to, or depart from, the configuration predicted by the detachment faulting model. Structural fabric of the basement was a critical determinant of the extensional geometry. Distributed shear along pre-existing penetrative planar fabrics is considered to have accommodated hangingwall extension at lower strain rates whereas the propagation of tension fractures and the development of block faults by failure on pre-existing, brittle, basement dislocations facilitated extension at higher strain rates. The detachment fault inferred to lie beneath the extended hangingwall carapace has not been mapped at the surface and is thought to dissipate into a broad zone of distributed shear within basement to the east of the basin. Volcanism coincided with the initiation of extensional movements at which time deep crustal repositories for evolved magma were tapped by extensional fractures. The main extensional faults cutting the basinal succession were not used as conduits for magmatic products which were sourced from the basin margin and from extended hinterland to the east.  相似文献   

15.
ABSTRACT
Panamint Valley, in eastern California, is an extensional basin currently bounded by active, dextral-normal oblique-slip faults. There is considerable debate over the tectonic and topographic evolution of the valley. The least-studied structure, the Ash Hill fault, runs for some 50 km along the valley's western edge, and active strands of the fault continue south into the neighbouring Slate Range. Vertical displacement on the fault is valley-side up, creating topography that conflicts with the gross morphology of the valley itself. We use this topography, along with kinematic and geological markers, to constrain the Quaternary slip rate and orientation of the Ash Hill fault. The fault offsets all but the active channel deposits in the valley, and slickenlines indicate a strike-slip to dip-slip ratio of 3.5:1. An offset volcanic unit dated at 4 Ma provides a minimum slip rate of 0.3±0.1 mm yr−1, and a long-term strike-slip to dip-slip ratio of 5.2:1. Slip on the fault has warped a palaeolake shoreline within the valley. Simple elastic dislocation modelling of the vertical deformation of the shoreline suggests total fault slip of ≈60 m, valley-side up. The shoreline probably dates to 120–150 ka, implying a late Quaternary slip rate of 0.4–0.5 mm yr−1. We suggest two possible mechanisms for the apparently anomalous slip behaviour of the Ash Hill fault. The fault may be a listric structure related to the proposed low-angle fault underlying Panamint Valley. Alternatively, the Ash Hill fault is a high-angle fault, implying that the valley is currently bounded by high-angle dextral-slip faults. Lack of detailed subsurface information precludes any knowledge of the true relationships between the presently active faults.  相似文献   

16.
Three‐dimensional (3D) numerical modelling of fault displacement enables the building of geological models to represent the complex 3D geometry and geological properties of faulted sedimentary basins. Using these models, cross‐fault juxtaposition relationships are predicted in 3D space and through time, based on the geometries of strata that are cut by faults. Forward modelling of fault development allows a 3D prediction of fault‐zone argillaceous smear using a 3D application of the Shale Gouge Ratio. Numerical models of the Artemis Field, Southern North Sea, UK and the Moab Fault, Utah, USA are used to demonstrate the developed techniques and compare them to traditional one‐ and two‐dimensional solutions. These examples demonstrate that a 3D analysis leads to significant improvements in the prediction of fault seal, the analysis of the interaction of the sealing properties of multiple faults, and the interpretation of fault seal within the context of sedimentary basin geometry.  相似文献   

17.
In areas of broadly distributed extensional strain, the back‐tilted edges of a wider than normal horst block may create a synclinal‐horst basin. Three Neogene synclinal‐horst basins are described from the southern Rio Grande rift and southern Transition Zone of southwestern New Mexico, USA. The late Miocene–Quaternary Uvas Valley basin developed between two fault blocks that dip 6–8° toward one another. Containing a maximum of 200 m of sediment, the Uvas Valley basin has a nearly symmetrical distribution of sediment thickness and appears to have been hydrologically closed throughout its history. The Miocene Gila Wilderness synclinal‐horst basin is bordered on three sides by gently tilted (10°, 15°, 20°) fault blocks. Despite evidence of an axial drainage that may have exited the northern edge of the basin, 200–300 m of sediment accumulated in the basin, probably as a result of high sediment yields from the large, high‐relief catchments. The Jornada del Muerto synclinal‐horst basin is positioned between the east‐tilted Caballo and west‐tilted San Andres fault blocks. Despite uplift and probable tilting of the adjacent fault blocks in the latest Oligocene and Miocene time, sediment was transported off the horst and deposited in an adjacent basin to the south. Sediment only began to accumulate in the Jornada del Muerto basin in Pliocene and Quaternary time, when an east‐dipping normal fault along the axis of the syncline created a small half graben. Overall, synclinal‐horst basins are rare, because horsts wide enough to develop broad synclines are uncommon in extensional terrains. Synclinal‐horst basins may be most common along the margins of extensional terrains, where thicker, colder crust results in wider fault spacing.  相似文献   

18.
《Geomorphology》2002,42(3-4):255-278
The Hunter Mountain fault zone strikes northwesterly, is right-lateral strike-slip, and kinematically links the northern Panamint Valley fault zone to the southern Saline Valley fault zone. The most recent displacement of the fault is recorded in the offset of Holocene deposits along the entire length of the fault zone. Right-lateral offsets of drainage channels within Grapevine Canyon reach up to 50 to 60 m. Initial incision of the offset channels is interpreted on the basis of geomorphic and climatic considerations to have occurred approximately 15 ka. The 50 to 60 m of offset during 15 ka corresponds to a right-lateral fault slip rate of 3.3–4.0 mm/year within Grapevine Canyon. Further to the north along the Nelson Range front, the fault is composed of two sub-parallel fault strands and the fault begins to show an increased normal component of motion. A channel margin that is incised into a Holocene surface that is between 10 and 128 ka in age is offset 16–20 m, which yields a broad minimum bound on the lateral slip rate of 0.125–2.0 mm/year. The best preserved single-event displacements recorded in Holocene deposits range from 1.5 to 2.5 m. In addition to faulting within Grapevine Canyon and the main rangefront fault along the southwest edge of Saline Valley, there also exist normal fault strands within the Valley that strike northeasterly and towards Eureka Valley. The northeasterly striking normal faults in the Valley appear to be actively transferring dextral slip from the Hunter Mountain fault zone north and east onto the Furnace Creek fault zone. Separations on northerly trending, normal faults within Saline Valley yield estimates of slip rates in the hundredths of millimeters per year.  相似文献   

19.
The Hanaupah-Fan Shoreline Deposit (HSD) is an as yet undescribed occurrence of shoreline sediments of late Pleistocene Lake Manly in Death Valley, California. It is located in the southern part of Death Valley, at the northeastern periphery of Hanaupah Fan. The HSD is a gently sloping, WSW-ENE elongated ridge, about 600 m long, 165 m wide and 8 m high. Its surface extends from -12 to +28 m in elevation, i.e. it has a vertical range of 40 m. We interpret the deposit as a sediment body that extended from the Hanaupah Fan east into the lake. Rising lake level, and waves approaching both from the north and south eroded fan materials, and produced a sediment body with a complex architecture. Fetch for waves approaching from either direction was about 40 km. The sedimentary inventory consists of cross-stratified gravel beds of various size ranges, dipping towards the north, south, and east, and of horizontal berm gravel beds, and horizontal silt layers. A discordant gravel layer covers the entire surface of the deposit, probably produced by wave action during the last phase of lake regression. This uniform gravel layer forms a surface that is distinctly different from the surrounding fan surfaces. It is relatively fine grained, much better sorted, and densely packed. Rock varnish is very well developed, and imparts a dark color to the surface, which makes it easily recognizable on aerial photographs. No absolute age date is available as yet, but circumstantial evidence places the formation of the deposit at the peak of marine isotope stage 2 (Wisconsinan/Weichsellian glacial maximum)  相似文献   

20.
ABSTRACT The Dehradun Valley, a synclinal intermontane valley piggyback basin within the Siwalik Group rocks in the NW Himalaya, is separated from the Lesser Himalayan formations in the north by a major intraplate thrust, the Main Boundary Thrust (MBT) and from the Indogangetic Plains in the south by the Himalayan Frontal Fault (HFF). Major parts of the Dehradun Valley are covered by three fans, from west to east the Donga, Dehradun and Bhogpur fans, deposited by streams following the topography produced by activity of the MBT and probable footwall imbricate thrusts, starting at about 50 ka. The Donga and Dehradun fans were fed by small streams and characterized mainly by sediment gravity‐flow deposits (debris flow and mudflow deposits) in the proximal zone, and mostly mudflow deposits and minor braided stream deposits in the middle zone during the period 50–10 ka. Palaeosols were weakly developed in the proximal zone and moderately to strongly developed in the middle zone. The degree of development of palaeosol was mainly a function of rate of sedimentation and to some extent entrenchment of streams into the fan surface. Since 10 ka, deposition has been typically by braided streams. The Bhogpur fan has been marked by deposition from relatively larger braided streams since 50 ka. The fan sequences in the Dehradun Valley are synorogenic and their deposition started due to activity of the southern footwall imbricate of the MBT, i.e. Bhauwala Thrust on the Donga and Dehradun fans. In these fans, major fan sequences show retrogradation (50–10 ka) related to a decrease in the activity of the MBT and related imbricates and activity of more hinterlandward imbricates with time. After 10 ka a thin prograding sequence was deposited due to uplift of the fans, which resulted from the activity on a thrust in the distal parts of the fans. It suggests an out‐of‐sequence activity of faults in the MBT imbricate system. Cross‐faults divide the Siwalik formations in the footwall of the MBT into three blocks, which were marked by decreasing subsidence or possibly uplift from east to west. Thrusting on the HFF was not piggyback type but synchronous with activity of the MBT and its imbricates. The development of the Mohand fault‐bend anticline above the HFF changed the nature of the basin from foreland to piggyback type, shed minor colluvial deposits prior to 10 ka, and folded the southernmost fan deposits in the western, narrow parts of the valley. A major change in climate from a cold, dry climate with strong seasonal variations prevailing since 50 ka to warm and humid climate at about 10 ka resulted in a change in depositional processes from sediment gravity‐flows to braided streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号