首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Amino acid composition (quality) and abundance (quantity) of organic matter (OM) in an intermittent Mediterranean stream were followed during transitions from wet to dry and dry to wet conditions. Amino acids were analyzed in benthic material (epilithic biofilms, sand sediments, leaf material) as well as in the flowing water (dissolved organic matter, DOM). A principal component analysis and the estimation of the amino acid degradation index (DI) elucidated differences in amino acid composition and quality among the wet–drought–wet cycle. Amino acid content and composition were dependent on the source of OM as well as on its diagenetic state. The highest-quality OM (high DI and high N content) occurred on epilithic biofilms and the most degraded and lowest-quality OM occurred in sandy sediments. Differences between the pre- and post-drought periods were evident in DOM quality; autochthonous-derived material was predominant during the pre-drought (wet period preceding drying), while allochthonous inputs dominated during the post-drought period (wet period following drying). In contrast, benthic OM compartments were more stable, but benthic OM quality decreased continuously throughout the drought period. This study revealed that wet–drought–wet cycles resulted in subtle changes in benthic OM quality, and degradation of DOM was related to flow intermittency.  相似文献   

3.
In small streams, the majority of carbon turnover is due to microbial activity in biofilms. Flow velocity is a key factor influencing biofilm function, and nascent biofilms with high energy need for growth might be especially sensitive to hydrodynamics. The major part of carbon supply is allochthonous but algae can provide easily available exudates for biofilm bacteria. In this study, epilithic biofilms were grown for 2 weeks in a third order stream in Thuringia, Germany, and then incubated in replicate flow channels in climate-controlled chambers. Glucose and arbinose were added immediately to all channels, and the effects of flow velocity and light availability on rates of sugar removal were examined. Phosphate addition did not influence sugar decrease rates. Flow velocities of either 0.3 m s−1 or 0.7 m s−1 resulted in 1.3 to 3.1 times higher decrease rates under the higher flow velocity. Light exclusion resulted in a 2.2 to 2.6 times faster sugar decrease but only a 0.5 times dissolved organic carbon increase compared to channels with light input, suggesting a strong internal coupling of primary producers and heterotrophs. Our results indicate that carbon uptake from the water column is fostered at higher flow velocities and that primary production is an important internal carbon source in nascent epilithic biofilms.  相似文献   

4.
1. A light and scanning electron microscopic study of the structure of epilithic diatom communities was carried out at two sites on the River Taff, South Wales, an upstream unpolluted site (Site 1) and a downstream polluted site (Site 2). 2. Community structure at the micro-scale revealed that, although communities at both sites were similar in terms of species present (similarity indices ranging between 0.44 and 0.96), they were very different with respect to their physical structure. 3. The traditional approach in studying epilithic diatom communities ignores information relating to community structure. The combination of light and scanning electron microscopy proved to be most useful for studying the epilithic diatom communities. 4. The examination of community succession on stone substrata showed that communities were highly dynamic on a weekly time scale, which suggests that the “age” of a substratum is a very important determinant of the attaching communities. A change from a prostate, two-dimensional community structure to an erect, three-dimensional community structure, and a shift from the dominance of epilithic diatoms to the dominance of epiphytic diatoms were noted. Such a change was more noticed at the polluted downstream site, possibly due to a higher rate of surface pre-conditioning and biofilm production at this site than at the unpolluted upstream site.  相似文献   

5.
Among the environmental factors affecting benthic algae and cyanobacteria in streams, the one often producing the largest effects is flow intermittency. This study aimed to characterize the responses of algal assemblages to flow intermittency in a Mediterranean intermittent stream during the drying, non-flow (112 days), and rewetting phases. Algae growing in the epilithic, epipsammic and hyporheic streambed compartments were analyzed for pigment composition, and for the existence of structural changes in cells. Chlorophyll-a concentrations decreased between 60 to 90 % during the non-flow phase, indicating low resistance of algal assemblages to desiccation. In contrast, fast recoveries of Chlorophyll-a when flow resumed indicated high resilience. Pigment composition revealed that the epilithic algal assemblage was considerably different than the epipsammic and hyporheic ones. These differences were mainly attributed to the physical conditions prevailing on each streambed compartment that allowed the growth of different algal assemblages. During the non-flow phase, the synthesis of protective carotenoids (i.e. echinenone and scytonemin) and the occurrence of cell resistance structures (i.e. enlarged membrane thickness and resistant spores) enhanced resistance of the epilithic biofilm. The resistance observed in the epilithic biofilm might also be related to the tightly adhered growth-form of algae on this substratum. Main results suggest that algal assemblages in the epilithic compartment, which were the most exposed to desiccation, were structurally and functionally better adapted to flow interruption than those colonizing other streambed compartments, and that this compartment plays a crucial role in maintaining ecosystem functions under varying flow periods.  相似文献   

6.
226Ra and210Pb were measured in sections and profiles collected in the Weddell Sea during the International Weddell Sea Oceanographic Expedition in 1973. The results can be correlated with the circulation and mixing schemes deduced from hydrographic observations. Along the surface cyclonic gyre the Ra activities are fairly uniform at about 17 dpm/100 kg, quite similar to those of the Circumpolar surface water south of the Antarctic Convergence. The210Pb activities in the northern flank of the gyre, probably influenced by the high210Pb-bearing Circumpolar Deep Water in the north, are as high as 12 dpm/100 kg. At the central gyre and its southern flank, the surface water210Pb activities are about 7 dpm/100 kg. The warmer surface water at the central gyre has a Ra activity of about 19 dpm/100 kg, slightly higher than the colder surface water at the flanks. Thus lower210Pb/226Ra activity ratios are observed in the central gyre, and higher ratios in its flanks. Similar relationships between Ra and Pb are noted in the Weddell Sea Bottom Water (WSBW): lower Pb associated with higher Ra in the center; higher Pb with slightly lower Ra in the flanks.Vertical profiles along the cyclonic gyre show lower Ra and Pb activities in the southwestern Weddell Basin where lower temperature and lower silicate are observed. Similar to Ba, both Ra and Si are non-conservative in the Weddell Sea, with significant input from the bottom sediments and particulate dissolution during subsurface mixing.Each water mass or type in the Weddell Sea is well characterized by its Ra content, but not well by its Pb content. Ra and Si are crudely correlated with a slope of about 7 × 10?4 dpm Ra per μmole of Si. The fact that the WSBW values fall on the slope suggests that the net input rate for Ra (corrected for the decay rate) is proportional to that of Si. The linear extrapolation to zero Si gives a Ra value of 13 dpm/100 kg. These relationships are quite similar to those observed in the Circumpolar waters.  相似文献   

7.
The Ter Vell (NE Iberian Peninsula) is a eutrophic coastal lagoon which has been flooded by the excess irrigation water and the agricultural runoff during the last decades. Between 1999 and 2003, restoration measures were applied to improve its water quality. At the same time, but independently, agricultural water management drastically reduced the freshwater inflow. The short-term effects of these management actions on the limnological characteristics of the lagoon were analysed by comparing two hydrological cycles, one before (1999/2000) and the other one after (2002/2003) the actions. The two cycles are illustrative of opposite situations in the hydrological functioning of coastal wetlands. In the first, the lagoon was exorheic, with prolonged flooding periods and a low residence time; in the second, it had a more endorheic character, with scarce water inputs and prolonged periods of confinement. Consequently, nitrogen inputs diminished and organic load and salinity increased as the internal loading and the accumulation effects became more relevant. These effects were actually caused by the drastic reduction in the freshwater inflow which prevented, in turn, the success of the restoration measures. The zooplankton community of the Ter Vell lagoon was not significantly altered by the hydrological change, at least in the short-term, and rotifers and cladocerans, mainly those species indicative of eutrophy, dominated the community.  相似文献   

8.
《Marine pollution bulletin》2014,78(1-2):341-348
Sources and transport processes of As, Cu, Cd and Pb were studied in different environmental compartments of Deception Island, an active volcano in the South Shetland Islands, Antarctica. Element concentrations in fresh water samples are consistent with the lowest values reported elsewhere in Antarctica. Interestingly, higher concentration values of As were found in samples collected in or near spring water courses and its transport may be related with processes of lixiviation in underground waters. While in saline waters Cu and Pb had important punctual sources, concentration values for Cd were consistently high pointing to the existence of a natural and diffuse source possibly related with the hydrothermal activity. The high Si/Al ratio, low carbon content, and a non-significant anthropogenic heavy metal input may explain the surprisingly homogeneous heavy metal content found in sediment samples.  相似文献   

9.
Understanding the impacts of climate change and human activity on the hydrological processes in river basins is important for maintaining ecosystem integrity and sustaining local economic development. The objective of this study was to evaluate the impact of climate variability and human activity on mean annual flow in the Wei River, the largest tributary of the Yellow River. The nonparametric Mann–Kendall test and wavelet transform were applied to detect the variations of hydrometeorological variables in the semiarid Wei River basin in the northwestern China. The identifications were based on streamflow records from 1958 to 2008 at four hydrological stations as well as precipitation and potential evapotranspiration (PET) data from 21 climate stations. A simple method based on Budyko curve was used to evaluate potential impacts of climate change and human activities on mean annual flow. The results show that annual streamflow decreased because of the reduced precipitation and increased PET at most stations. Both annual and seasonal precipitation and PET demonstrated mixed trends of decreasing and increasing, although significant trends (P < 0.05) were consistently detected in spring and autumn at most stations. Significant periodicities of 0.5 and 1 year (P < 0.05) were examined in all the time series. The spectrum of streamflow at the Huaxian station shows insignificant annual cycle during 1971–1975, 1986–1993 and 1996–2008, which is probably resulted from human activities. Climate variability greatly affected water resources in the Beiluo River, whereas human activities (including soil and water conservation, irrigation, reservoirs construction, etc.) accounted more for the changes of streamflow in the area near the Huaxian station during different periods. The results from this article can be used as a reference for water resources planning and management in the semiarid Wei River basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Barbula fallax Hedw., Erythrodontium julaceum(Schwaegr.) Par., and Bryum argenteum Hedw. are typical rock mosses growing on rocks in different terrestrial habitats. In this study, B. fallax and E. julaceum, which are epilithic mosses growing in rock desertification in Guizhou, China, were used as ecophysiological mosses in a combination of field investigations and laboratory experiments. We also investigated the reference moss B. argenteum, which is a widely distributed moss in habitats with soil as substrate. Our research focused on the response of the antioxidant defense system of epilithic mosses to drought stress. Most antioxidant defense indicators increased initially, then declined at later stages of drought stress. In contrast, the carotenoid content increased constantly. In addition, there was an initial increase(albeit variable) in relative membrane permeability, with this parameter showing a parabolic trend in all of the epilithic mosses. Among the three species, E. julaceum demonstrated the strongest resistance followed by B. fallax and then by B. argenteum. The epilithic mosses displayed stronger resistance compared to the native mosses; the increase in O_2 content and other reactive oxygen species(ROS) at the early stage of drought stress induced the enzymatic and non-enzymatic scavenging systems tosequester ROS. Moreover, the radical scavenging ability and strong drought tolerance was maintained. The longterm growth of bryophyte under drought conditions in a karst environment can help eliminate the intense response of mosses to drought stress as they adapt.  相似文献   

11.
We examined nutrient flux, uptake, and transformation along a spring-fed stream in the Ozark region of Missouri, USA, over the year 2006. Water in Mill Creek originates from several springs, with a single spring contributing over 90% of the stream discharge during much of the year of study. Soluble reactive phosphate concentrations were usually low (<10 μg L−1) along Mill Creek, but peaked during high discharge. Concentrations of dissolved inorganic nitrogen (DIN) were relatively high in the spring water, mainly as nitrate, but usually declined across a small pond and the 10-km length of Mill Creek. During low flows in summer and early autumn, the stream removed over 300 μg L−1 of DIN over its 10-km length, or about 80% of the initial amount. DIN retention along the stream, as a percentage of the DIN upstream, was related mainly to discharge, with higher flows having much higher DIN concentrations. The net uptake rate of DIN uptake was 0.91 μg m−2 s−1 in the stream during summer baseflow. The uptake rate declined downstream for different reaches and was closely related to DIN concentration. In experimental channels, uptake by epilithic algae was one significant sink for nitrate-N in Mill Creek. In 2006, inorganic nutrient export during a single day after a spring storm was similar to export during 40–100 days of low flow conditions in summer and early autumn. Our results suggest that significant nutrient retention can occur during baseflow periods via biological uptake, whereas substantial export occurs during high flow conditions.  相似文献   

12.
李秀美  侯居峙  王明达  徐磊 《湖泊科学》2021,33(4):1276-1288
在全球变化的背景下,厘清湖泊生态系统对气候环境以及人类活动的响应机制对制定社会的适应政策非常重要.目前的研究手段如现场观测和围隔实验等可以很好地揭示湖泊生态系统在有观测记录以来的演替和变化过程,但是不能提供历史时期湖泊生态系统的变化及其对气候环境变化和人类活动的响应.古湖沼学可以为探讨湖泊生态系统的长期变化及其对气候环境变化的响应提供重要信息.本文以青藏高原中部无鱼湖泊达则错为研究对象,利用沉积物岩芯西藏拟溞(Daphnia tibetana)残体丰度和总烯酮含量重建该区过去1000年的浮游生物记录;利用总氮、总磷以及总有机碳含量重建过去1000年湖泊营养盐以及有机质变化记录;结合烯酮不饱和度重建的古温度记录,探讨达则错过去1000年生态系统变化及其对气候环境演变的响应机制.研究发现达则错湖泊生态系统尤其是生产力在自然状况和人类活动影响下存在显著变化.在自然状况下,较高的湖泊初级和次级生产力发生在温度较低和湖水营养盐浓度较高时;而在过去150年,达则错湖泊环境受到人类活动影响显著,湖泊生产力发生相应变化,较高的湖泊生产力发生在温度较高时期,其主要受由人类活动带来的营养盐元素浓度控制.研究结果表明达则错湖泊生态系统在人类活动影响下发生了显著的改变.  相似文献   

13.
We studied zooplankton contribution to the total particulate phosphatase activity, the kinetics of this activity, the relation to the different taxonomic groups and the role of particle-bound bacteria. The activity of total particulate material collected from a liter of seawater was more elevated in May, June and August than during the rest of the year. These high activities resulted from a high contribution of the >90 microm fraction which account then for more than 60% of the total particulate activity. Two Michaelian processes with high and low V(max) were disclosed on this fraction. The high V(max) component was responsible for the high summer activities. During these periods, high densities of cirriped Cypris were found which were statistically correlated with this high V(max) component as with its specific activity. Moreover, the contribution of attached bacteria to these high activities was low. In return, this contribution was predominant during the periods of low activity. A simple method was developed to characterise this bacterial activity.  相似文献   

14.
Abstract

This study focuses on the calibration and validation of a dual-permeability soil water flow model for simulating soil water dynamics during the growing period in an irrigated corn field and during the rainy winter period in an uncropped field in northern Greece. The 1D numerical transient dual-permeability model MACRO 5.0 was used to describe the soil water dynamics, the water balance and deep percolation considering both macropore (two-domain) flow and non-macropore (one-domain) flow. The simulated results were compared with measurements of total soil water content at different depths in the soils. The values of the statistical criteria RMSE, E and CRM were better when macroporosity flow was considered; the soil water content showed better redistribution in the soil profile. The limited irrigation of the corn field during the growing period and the irrigation rates did not create conditions for deep percolation of water. In the uncropped field (bare soil), the wet conditions and the high rainfall during the simulation period created conditions for significant deep percolation, whether macropore flow was included in the model or not. The two-domain approach significantly affects the actual evaporation and the deep percolation. The difference between these two approaches is in the amount of deep percolation and the flow path of drainage flow. In the two-domain approach, most deep percolation follows the macropore domain (79.8%). The errors due to macropore parameter uncertainty and to the difficulties of measuring the macropore water content and flow were estimated by a sensitivity analysis for the more important parameters of the model.

Editor Z.W. Kundzewicz

Citation Antonopoulos, V.Z., Georgiou, P.E., and Kolotouros, C.A., 2013. Soil water dynamics in cropped and uncropped fields in northern Greece using a dual-permeability model. Hydrological Sciences Journal, 58 (8), 1748–1759.  相似文献   

15.
This paper focuses on the importance of biophysical interactions on short-term and long-term sediment dynamics. Therefore, various biological (macrobenthos, photopigments, colloidal EPS) and physical parameters (grain size, water content, sediment stability, bed level) were determined (bi)monthly in nine sampling plots on the IJzermonding tidal flat (Belgium, 51°08′N, 2°44′E) during three consecutive years (July 2005–June 2008). Results showed that sediment stability varied on the short timescale and was directly influenced by biota, while bed level varied mainly on the long-term due to interannual variability. The short-term dynamic relationships between mud content, water content, fucoxanthin and macrobenthos density resulted in a seasonal mud deposition and erosion cycle, and directly influenced sediment stability. Moreover, macrobenthos was proven to be the most important parameter determining sediment stability. On the long-term, a shift was observed from high fucoxanthin/chla concentration, high mud content and zero to moderate densities of Corophium volutator towards low fucoxanthin/chl a and mud content and high Corophium densities, which resulted in a transition from net accretion to net erosion. However, most measured variables proved to be poor predictors for these long-term bed level changes, indicating that external physical forces, such as waves and storminess, probably were the most important factors triggering long-term sediment dynamics. Nevertheless, biota indirectly influenced bed level changes by mediating short-term changes in sediment stability, thereby influencing the erodability of the sediment. The macrobenthos, and especially the mud shrimp Corophium, was suggested as the (indirect) driving destabilising factor for the sampling plots in the IIzermonding when considering the long-term evolution.  相似文献   

16.
浙江湖南镇水库的诱发地震   总被引:5,自引:7,他引:5       下载免费PDF全文
1982年和1983年汛期在水库地震区设立密集地震台网。观测表明,地震群集在水库近岸,深度仅几百米。地震与库水位的急剧升降几乎同时出现。几百次单个地震的震源机制解显示出以逆断层和正断层机制为主。地震是库水渗入后在库岸局部应力和岩体重力作用下沿小断层、节理错动的结果,发生破坏性地震的可能性很小  相似文献   

17.
Mercury, with its reactive forms being the most deleterious for the trophic chains, has been identified as a major pollutant in a few confined bodies of the coastal zone. Due to feeding, burrowing, and bioirrigation activities, infauna are known to play a crucial role in the biogeochemical processes of contaminants. The main goal of the present study is to evaluate the effects of Hediste diversicolor bioturbation on mercury fluxes from estuarine sediments in a mesocosms laboratory experiment. Additionally, an attempt was made to establish a relationship between the amount of remobilised mercury to the water column and the degree of contamination of the sediments using a mercury contamination gradient. The present experiment demonstrated that the bioturbation activity caused by the gallery-diffuser H. diversicolor did not influence the remobilisation of mercury (in dissolved reactive forms) from the sediment to the water column. The concentration of dissolved reactive mercury in the water column also did not reflect the degree of contamination in the sediments. The results obtained were in accordance with the sediment characteristics of the Mondego Estuary and Ria de Aveiro (Portugal), since they are very rich in organic matter content, iron/manganese total and hydrous oxides. These physicochemical characteristics of the sediments may partially justify the retention of mercury by these systems, even when they are subjected to bioturbation. In conclusion, sediments with high organic matter content and a high concentration of iron/manganese hydrous oxides allowed for efficient retention of mercury, and the bioturbation process did not seem to affect the system. Another conclusion from this study is that the remobilisation of mercury by bioturbation to the water column is not a fast process, requiring more than 24h. This study constitutes an important work in the area of the effects of bioturbation on mercury remobilisation. Considering the toxicity of mercury for the biota, it is essential to evaluate the real magnitude of mercury processes occurring in estuarine systems in order to obtain essential information on metal behaviour.  相似文献   

18.
Evaporation from porous rock plays an important role in weathering processes. In the case of salt weathering, the evaporation rate controls supersaturation of salt solutions within pores and the amount of precipitated aggressive salts, therefore weathering occurs mostly in places with intense evaporation. Evaporation also strongly affects frost, hydric and biogenic weathering, as these are influenced by water content and its temporal changes. Despite its importance, evaporation from porous rocks has seen little scientific focus. We present a study on evaporation from bare sandstone, one of the most common rocks affected by weathering. A new method that measures the evaporation rate from the surfaces of sandstone samples under field microclimate was developed and tested. Also, a simple calculation of 1D evaporation rate from bare sandstone surfaces based on Fick's law of diffusion is presented. The measurement was performed using sandstone cores (with a set depth of the vaporization plane) in a humid continental climate and measured on a roughly monthly interval for about 1 year. For the calculations, a laboratory-measured water-vapour diffusion coefficient of the sandstone, in-situ seasonally measured vaporization plane depth, and values of air humidity and temperature were used. The sensitivity analyses showed that the most important factor controlling the evaporation rate was the vaporization plane depth, while seasonal and spatial changes of air humidity and temperature were of lesser importance. The calculated evaporation rate reasonably follows measured values. For its simplicity and the small number of parameters required, the proposed method has the potential to improve knowledge of weathering and living conditions of endolithic and epilithic organisms. Further research should focus on factors affecting the evaporation rate (wind, hygroscopicity, hydrophobicity, etc.) to improve the accuracy of the calculations, as well as to test the applicability of the method for other lithologies and climates. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
A role of lithobionts in geomorphological processes is increasingly argued, but the spatio‐temporal scale of their impact is largely unexplored in many ecosystems. This study first characterizes in the temperate zone (northwest Italy) the relationships between lithobiontic communities including endolithic lichens and the hardness of their siliceous rock substrate (Villarfocchiardo Gneiss). The communities are characterized, on humid and xeric quarry surfaces exposed for decades and natural outcrops exposed for centuries, in terms of lichen and microbial constituents, using a combined morphological and molecular approach, and with regard to their development on and within the gneiss. A lichen species belonging to Acarosporaceae (Polysporina‐Sarcogyne‐Acarospora group, needing taxonomic revision) chasmoendolithically colonizes both the humid and xeric quarry surfaces, on which epilithic cyanobacterial biofilms and epilithic pioneer lichens respectively occur. Light and electron microscopic observations show the development of the endolithic thalli within rock microcracks and the hyphal penetration along crystal boundaries down to depths of 1 to 3 mm, more pronounced within the humid surfaces. Such colonization patterns are likely related to biogeophysical deterioration, while no chemical alteration characterizes minerals contacted by the endolithic lichen. By contrast, on natural outcrops, where the endolithic colonization is negligible, a reddish rind below epilithic lichens indicates chemical weathering processes. Schmidt Hammer measurements highlight that the endolithic lichens deeply affect the hardness of the gneiss (down to ?60% with respect to fresh controls and surfaces only colonized by cyanobacteria), exerting a significantly higher weakening effect with respect to the associated epilithic lithobionts. The phenomenon is more remarkable on humid than on xeric quarry surfaces and natural outcrops, where epilithic lichens are likely involved in long‐term hardening processes supporting surface stabilization. Endolithic lichens are thus active biogeomorphological agents at the upper millimetric layer of siliceous rocks in temperate areas, exerting their weakening action during the early decade‐scaled stages of surface exposure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this research was to assess the impact caused by a long‐term pollution by fluoride and heavy metals in two soils (PS1 and PS2) near an aluminium smelter in Slovakia, on soil microbial biomass C (MBC), basal respiration, metabolic quotient (qCO2) water‐soluble organic C (WSOC) and enzymes activities involved in the C, N and P biogeochemical cycles. An unpolluted soil was used as control (C0). Results obtained for soil fluoride content reflected a gradient of fluoride exposure in topsoils of contaminated sites. Decreases in microbial and enzymatic activities and in MBC to organic C ratio were found in PS2 site, which is closer to the smelter and exhibited the highest fluoride content. PS1‐soil showed an extreme alkaline pH caused by leaching of waste effluents from the smelter dumping site, higher contents of Zn, Cu, Pb and Cd, significantly larger MBC, qCO2 and catalase and urease activities, and much larger basal respiration and dehydrogenase activity than PS2 and C0‐soil. Phosphatase, β‐glucosidase and BAA‐protease were negatively correlated with WSOC, basal respiration and dehydrogenase activity, and showed some degree of inhibition in polluted sites. These results may indicate different responses of microbial communities to ecosystem disturbances, caused by the drastic changes in soil's physicochemical properties as result of the long‐term emissions of fly ash with high levels of contaminants that are still affecting soil microbial and enzymatic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号