首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of studies of magnetised plasma turbulence invoke theories for the advection of a passive scalar by turbulent fluctuations. Examples include modelling the electron density fluctuations in the interstellar medium, understanding the chemical composition of galaxy clusters and the intergalactic medium, and testing the prevailing phenomenological theories of magnetohydrodynamic turbulence. While passive scalar turbulence has been extensively studied in the hydrodynamic case, its counterpart in MHD turbulence is significantly less well understood. Herein we conduct a series of high-resolution direct numerical simulations of incompressible, field-guided, MHD turbulence in order to establish the fundamental properties of passive scalar evolution. We study the scalar anisotropy, establish the scaling relation analogous to Yaglom’s law, and measure the intermittency of the passive scalar statistics. We also assess to what extent the pseudo Alfvén fluctuations in strong MHD turbulence can be modelled as a passive scalar. The results suggest that the dynamics of a passive scalar in MHD turbulence is considerably more complicated than in the hydrodynamic case.  相似文献   

2.
The motion of the MHD nonlinear shock in the Earth’s magnetosphere is considered in the scope of magnetic hydrodynamics. This wave comes from the solar wind and is refracted into the magnetosphere, generating a fast return rarefaction wave. It has been indicated that a wave refracted into the magnetosphere is a weak fast dissipative shock, propagating in magnetospheric plasma at a velocity higher than its propagation velocity in a solar wind stream. The wave motion near the Earth-Sun line with regard to the effect of the geomagnetic field transverse component is described. In this case, shock damping follows the generalized Crussard-Landau law and a wave retains its shock character up to the plasmapause, interacting with this region when an arbitrary MHD discontinuity is disintegrated. It is stated that an MHD shock loses its shock character when moving in a strongly inhomogeneous plasma within the plasmasphere and a weak shock reflected from the plasmapause can combine with a return secondary shock in the magnetosheath, promoting the experimentally observed backward motion of the bow shock front.  相似文献   

3.
Three-dimensional (3D) MHD numerical simulations have not been able to demonstrate convincingly the spontaneous formation of large vertical flux tubes. Two-dimensional (2D) magnetoconvection in axisymmetric cylinders forms a central magnetic flux tube surrounded by annular convection rings. To study the robustness of this type of solution in three dimensions, the nonlinear resistive MHD equations are solved numerically in a 3D cylindrical wedge from an initially uniform vertical magnetic field. It is shown that the 2D result is retrieved for small domain radii. However, for larger radii the central axis loses its importance and in this case many convection cells form in the numerical domain. Magnetic flux is captured between cells where flow converges and the reduced amount of flux that congregates at the central axis is eroded by the surrounding convection.  相似文献   

4.
Geomagnetism and Aeronomy - Properties of solutions for parallel magnetohydrodynamic (MHD) shock waves in collisionless plasma with heat fluxes obtained in the 8-moment MHD approximation are...  相似文献   

5.
High-performance computational models are required to make the real-time or faster than real-time numerical prediction of adverse space weather events and their influence on the geospace environment. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary solar wind. The global solar wind structures are obtained by the established GPU model with the magnetic field synoptic data as input. Meanwhile, the time-dependent solar surface boundary conditions derived from the method of characteristics and the mass flux limit are incorporated to couple the observation and the three-dimensional (3D) MHD model. The simulated evolution of the global structures for two Carrington rotations 2058 and 2062 is compared with solar observations and solar wind measurements from spacecraft near the Earth. The MHD model is also validated by comparison with the standard potential field source surface (PFSS) model. Comparisons show that the MHD results are in good overall agreement with coronal and interplanetary structures, including the size and distribution of coronal holes, the position and shape of the streamer belts, and the transition of the solar wind speeds and magnetic field polarities.  相似文献   

6.
地球磁尾中重联产生的磁流通管的运动   总被引:1,自引:1,他引:0       下载免费PDF全文
本文通过MHD理论研究了细磁流通管在二维静止平衡介质中的运动.用地球磁尾中的一维细丝来表示流通管,通过数值模拟可以得到细丝随时间变化的一些性质.重联产生的细丝磁场比周围磁场偶极性更强,运动时表现出了很强的地向流.结果还显示了阿尔芬波、慢激波等MHD波从磁层的赤道面传播到地球电离层上并部分地反射回来.细丝在电离层上的足点的赤道向运动滞后于赤道面上的地向运动.虽然在模拟中细丝的初始等离子体压强低于周围压强,但是当它开始迅速向地球方向运动时,它的等离子体压强很快上升到与周围压强相当,甚至有时候大于周围压强的值.  相似文献   

7.
The MHD simulations of preflare situation in the corona above the real active region (AR) are performed without any assumptions about the solar flare mechanism. All conditions for simulation are taken from observations. Such approach is directed to understand the flare mechanism. The observed SOHO MDI magnetic maps are used. The special numerical methods are developed and realized in the PERESVET code for numerical simulation in the real time scale. The first results of real time scale MHD simulation during several first minutes are presented. Initiation of current sheet (CS) creation in the vicinity of the magnetic field X-line is shown. The possibilities of real time scale MHD simulation of preflare situation on modern computers using the developed mathematical methods are discussed.  相似文献   

8.
We consider an unforced, incompressible, turbulent magnetofluid constrained by concentric inner and outer spherical surfaces. We define a model system in which normal components of the velocity, magnetic field, vorticity, and electric current are zero on the boundaries. This choice allows us to find a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity and current. The model dynamical system represents magnetohydrodynamic (MHD) turbulence in a spherical domain and is analyzed by the methods similar to those applied to homogeneous MHD turbulence. We find a statistical theory of ideal (i.e. no dissipation) MHD turbulence analogous to that found in the homogeneous case, including the prediction of coherent structure in the form of a large-scale quasistationary magnetic field. This MHD dynamo depends on broken ergodicity, an effect that is enhanced when total magnetic helicity is increased relative to total energy. When dissipation is added and large scales are only weakly damped, quasiequilibrium may occur for long periods of time, so that the ideal theory is still pertinent on a global scale. Over longer periods of time, the selective decay of energy over magnetic helicity further enhances the effects of broken ergodicity. Thus, broken ergodicity is an essential mechanism and relative magnetic helicity is a critical parameter in this model MHD dynamo theory.  相似文献   

9.
A short review of recent observations of solar wind fluctuations in the magnetohydrodynamic (MHD) range of scales is presented. In recent years, the use of high time-resolution data on an extended interval of heliocentric distance has allowed significant advances in our knowledge of MHD fluctuations. We first focus on the origin and evolution of the Alfvénic-type fluctuations. The role of interplanetary sources and the influence of interactions with structures convected by the solar wind are examined. Then compressive fluctuations are investigated, with special attention being given to their nature and origin. Observations are discussed in the light of recent theories and models. Finally, predictions for MHD turbulence in polar regions of the heliosphere are highlighted.  相似文献   

10.
Global magnetohydrodynamic (MHD) simulations of the Earths magnetosphere must be coupled with a dynamical ionospheric module in order to give realistic results. The usual approach is to compute the Reld-aligned current (FAC) from the magnetospheric MHD variables at the ionospheric boundary. The ionospheric potential is solved from an elliptic equation using the FAC as a source term. The plasma velocity at the boundary is the E × B velocity associated with the ionospheric potential. Contemporary global MHD simulations which include a serious ionospheric model use this method, which we call the electrostatic approach in this paper. We study the possibility of reversing the flow of information through the ionosphere: the magnetosphere gives the electric Reld to the ionosphere. The Reld is not necessarily electrostatic, thus we will call this scheme electromagnetic. The electric Reld determines the horizontal ionospheric current. The divergence of the horizontal current gives the FAC, which is used as a boundary condition for MHD equations. We derive the necessary formulas and discuss the validity of the approximations necessarily involved. It is concluded that the electromagnetic ionosphere-magnetosphere coupling scheme is a serious candidate for future global MHD simulators, although a few problem areas still remain. At minimum, it should be investigated further to discover whether there are any differences in the simulation using the electrostatic or the electromagnetic ionospheric coupling.  相似文献   

11.
The MHD nature of the origination, dynamics, geoeffectiveness, and disappearance of the four-sector structure of the solar magnetic field during the cycle 23 decline phase has been established. A prolonged ordered MHD process including the chain of the interrelated phenomena (unknown before this study), which begin and end in one of the main zones of active longitudes and are responsible for the above nature of the four-sector structure, has been detected as a result of the simulation of the large-scale open solar magnetic field and an analysis of the dynamics of this field fluxes. These phenomena are as follows: the extreme concentration of the photospheric field sources of the same sign in the zone of active longitudes; blocking of regular differential rotation by these sources; origination of a nonstationary MHD disturbance in the form of a four-sector structure, traveling in the direction of solar rotation at a nearly Alfvén velocity; upset of blocking, displacement of blocking sources from the zone, and their shearing motion relative to a traveling MHD disturbance; deceleration and dissipation of a four-sector MHD disturbance; and reconstruction of a bisector structure. The interactions during this process, which lasted from May 2004 to December 2005, were accompanied by the generation of an ordered succession of heliospheric and solar-terrestrial disturbances including the series of nine extrastorms that were observed from July 2004 to September 2005 and were the last storms in the finished cycle 23 of solar activity.  相似文献   

12.
以观测到的光球视向磁场、K-日冕亮度作为输入,以相应的统计结果为约束条件,利用磁流体力学方程组,给出了等离子体及磁场各参数在源表面上的二维分布.其结果与同期的卫星观测数据和已有的统计结果相比较,显示出相当程度的一致性.  相似文献   

13.
The results of the laboratory and numerical experiments in circular rotating trays with thin layers of a conductive fluid under the MHD generation of small-scale velocity fields are presented. The configurations of constant magnets for MHD generation were determined based on the numerical calculations with shallow water equations. Both the laboratory and numerical experiments with rotating trays demonstrate the emergence of nonaxisymmetric structures and large-scale near-circular vortices caused by the energy transfer from the system of the externally generated small-scale vortices to the large-scale velocity fields under the action of the Coriolis force. The near-circular vortex has areas with differential rotation when the angular velocity of rotation decreases with the radius. The single large-scale vortices and wide jet flows arise in the regimes of subrotation and superrotation relative to the external rotation depending on its angular velocity. The emergence of the flow structures with the azimuthal wave number m = 2 is demonstrated, and their probable relation to the anomalies of the geomagnetic field observed on the Earth’s surface is considered.  相似文献   

14.
The method of correlation functions of signal amplitude and phase fluctuations (CFAF) was used to process fluctuations that were numerically obtained for different standing MHD waves in a flat rectangular resonator. It has been established that the CFAF dependences on the average fluctuation phase shift (τ) always look like a periodic peak train. The interval between two adjacent peaks depends on the first harmonic frequency of one of the possible one-dimensional resonator standing waves and is determined using the universal formula. In the proposed method, processing results in measured values of this frequency. In addition, the CFAF method was for the first time used to process magnetic field variations in a range of periods from 0.5 to 6.0 s. The distribution functions of the first harmonic periods have been experimentally obtained for Borok (Φ = 53.9°, Λ = 114.3°) and Mondy (Φ = 46.7°, Λ = 173.6°) observation stations. It was established that all of the characteristic values of these periods completely correspond to the periods of known standing MHD waves in the plasmasphere and at its boundary.  相似文献   

15.
地球外核处于高温、高压、高密度的等离子体状态,可以支持多种磁流体波的激发和传播。在地核中存在强的环型磁场,沿磁力传播的MHD波受到地球旋转的影响,分成东行的惯性模和西行的磁模,这两种波模具有高度色散的特点。其中西行磁模波与地磁场长期变化和西漂有关。东行惯性模波具有数天到数百天的周期,其磁效应被导电地幔所屏蔽,传不到地表,但它与下地幔物质可能发生力学耦合,在地幔中产生周期变化的力学过程,这种影响可能达及地表并在地表的地球物理现象中表现出来,它可能是某些周期性或韵律性地球物理现象的原因之一。  相似文献   

16.
Turbulent magnetofluids appear in various geophysical and astrophysical contexts, in phenomena associated with planets, stars, galaxies and the universe itself. In many cases, large-scale magnetic fields are observed, though a better knowledge of magnetofluid turbulence is needed to more fully understand the dynamo processes that produce them. One approach is to develop the statistical mechanics of ideal (i.e. non-dissipative), incompressible, homogeneous magnetohydrodynamic (MHD) turbulence, known as “absolute equilibrium ensemble” theory, as far as possible by studying model systems with the goal of finding those aspects that survive the introduction of viscosity and resistivity. Here, we review the progress that has been made in this direction. We examine both three-dimensional (3-D) and two-dimensional (2-D) model systems based on discrete Fourier representations. The basic equations are those of incompressible MHD and may include the effects of rotation and/or a mean magnetic field B o. Statistical predictions are that Fourier coefficients of the velocity and magnetic field are zero-mean random variables. However, this is not the case, in general, for we observe non-ergodic behavior in very long time computer simulations of ideal turbulence: low wavenumber Fourier modes that have relatively large means and small standard deviations, i.e. coherent structure. In particular, ergodicity appears strongly broken when B o?=?0 and weakly broken when B o?≠?0. Broken ergodicity in MHD turbulence is explained by an eigenanalysis of modal covariance matrices. This produces a set of modal eigenvalues inversely proportional to the expected energy of their associated eigenvariables. A large disparity in eigenvalues within the same mode (identified by wavevector k ) can occur at low values of wavenumber k?=?| k |, especially when B o?=?0. This disparity breaks the ergodicity of eigenvariables with smallest eigenvalues (largest energies). This leads to coherent structure in models of ideal homogeneous MHD turbulence, which can occur at lowest values of wavenumber k for 3-D cases, and at either lowest or highest k for ideal 2-D magnetofluids. These ideal results appear relevant for unforced, decaying MHD turbulence, so that broken ergodicity effects in MHD turbulence survive dissipation. In comparison, we will also examine ideal hydrodynamic (HD) turbulence, which, in the 3-D case, will be seen to differ fundamentally from ideal MHD turbulence in that coherent structure due to broken ergodicity can only occur at maximum k in numerical simulations. However, a nonzero viscosity eliminates this ideal 3-D HD structure, so that unforced, decaying 3-D HD turbulence is expected to be ergodic. In summary, broken ergodicity in MHD turbulence leads to energetic, large-scale, quasistationary magnetic fields (coherent structures) in numerical models of bounded, turbulent magnetofluids. Thus, broken ergodicity provides a large-scale dynamo mechanism within computer models of homogeneous MHD turbulence. These results may help us to better understand the origin of global magnetic fields in astrophysical and geophysical objects.  相似文献   

17.
It is well known that most MHD shocks observed within 1 AU are MHD fast shocks. Only a very limited number of MHD slow shocks are observed within 1 AU. In order to understand why there are only a few MHD slow shocks observed within 1 AU, we use a one-dimensional, time-dependent MHD code with an adaptive grid to study the generation and evolution of interplanetary slow shocks (ISS) in the solar wind. Results show that a negative, nearly square-wave perturbation will generate a pair of slow shocks (a forward and a reverse slow shock). In addition, the forward and the reverse slow shocks can pass through each other without destroying their characteristics, but the propagating speeds for both shocks are decreased. A positive, square-wave perturbation will generate both slow and fast shocks. When a forward slow shock (FSS) propagates behind a forward fast shock (FFS), the former experiences a decreasing Mach number. In addition, the FSS always disappears within a distance of 150R (where R is one solar radius) from the Sun when there is a forward fast shock (with Mach number \geq1.7) propagating in front of the FSS. In all tests that we have performed, we have not discovered that the FSS (or reverse slow shock) evolves into a FFS (or reverse fast shock). Thus, we do not confirm the FSS-FFS evolution as suggested by Whang (1987).  相似文献   

18.
Rotational seismometers have many applications. Some require a low self noise with a lower clip specification. Others require many different bandpass specifications, from very low to higher frequencies. The principles of the eentec second-generation R-2 electrochemical triaxial rotational seismometer can achieve many features for various applications. Combining the use of the sophisticated magnetohydrodynamic (MHD) technology increases the current and future features. Principles of the MHD technology used and the many advantages it has in a rotational seismometers are described.  相似文献   

19.
We address mathematical issues raised by the so-called α?effect of dynamo theory, which is a dynamo mechanism arising in conducting flows with small scale fluctuations. Analytical results on the α?effect concern the linear induction equation, and are usually claimed to hold for the whole magnetohydrodynamics (MHD) system, as long as the amplitude of the perturbations is small. We discuss the justification of that claim, in the case of periodic fluctuations of the fields. We show a nonlinear instability result on the MHD system, that predicts dynamo action for a large class of high frequency periodic flows, up to the fully nonlinear regime.  相似文献   

20.
Cross helicity is not conserved in non-barotropic magnetohydro-dynamics (MHD) (as opposed to barotropic or incompressible MHD). Here we show that variational analysis suggests a new kind of local cross helicity which is conserved in the non-barotropic case. This local cross helicity can be integrated to a global non-barotropic cross helicity which was suggested in the work of Webb et al. (2014a,b). The non-barotropic cross helicity reduces to the standard cross helicity under barotropic assumptions. The new local cross helicity is conserved even for topologies for which the variational principle does not apply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号