首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple flux‐free fusion technique was developed to analyse major and trace element compositions of silicate rocks. The sample powders were melted in a molybdenum capsule sealed in a graphite tube to make a homogenous glass in a temperature‐controlled one‐atmosphere furnace. The glass was then measured for both major and trace element concentrations by LA‐ICP‐MS using a calibration strategy of total metal‐oxide normalisation. The optimum conditions (i.e., temperature and duration) to make homogeneous glasses were obtained by performing melting experiments using a series of USGS reference materials including BCR‐2, BIR‐1, BHVO‐2, AGV‐1, AGV‐2, RGM‐1, W‐2 and GSP‐2 with SiO2 contents from 47 to 73% m/m. Analytical results of the USGS reference materials using our method were generally consistent with the recommended values within a discrepancy of 5–10% for most elements. The routine precision of our method was generally better than 5–10% RSD. Compared with previous methods of LA‐ICP‐MS whole‐rock analyses, our flux‐free fusion method is convenient and efficient in making silicate powder into homogeneous glass. Furthermore, it limits contamination and loss of volatile elements during heating. Therefore, our new method has great potential to provide reliable and rapid determinations of major and trace element compositions for silicate rocks.  相似文献   

2.
Four silicate glasses were prepared by the fusion of about 1 kg powder each of a basalt, syenite, soil and andesite to provide reference materials of natural composition for microanalytical work. These glasses are referred to as ‘Chinese Geological Standard Glasses’ (CGSG) ‐1, ‐2, ‐4 and ‐5. Micro and bulk analyses indicated that the glasses are well homogenised with respect to major and trace elements. Some siderophile/chalcophile elements (e.g., Sn, Pt, Pb) may be heterogeneously distributed in CGSG‐5. This paper provides the first analytical data for the CGSG reference glasses using a variety of analytical techniques (wet chemistry, XRF, EPMA, ICP‐AES, ICP‐MS, LA‐ICP‐MS) performed in nine laboratories. Most data agree within uncertainty limits of the analytical techniques used. Discrepancies in the data for some siderophile/chalcophile elements exist, mainly because of possible heterogeneities of these elements in the glasses and/or analytical problems. From the analytical data, preliminary reference and information values for fifty‐five elements were calculated. The analytical uncertainties [2 relative standard error (RSE)] were estimated to be between about 1% and 20%.  相似文献   

3.
Three synthetic reference glasses were prepared by directly fusing and stirring 3.8 kg of high‐purity oxide powders to provide reference materials for microanalytical work. These glasses have andesitic major compositions and are doped with fifty‐four trace elements in nearly identical abundance (500, 50, 5 µg g?1) using oxide powders or element solutions, and are named ARM‐1, 2 and 3, respectively. We further document that sector‐field (SF) ICP‐MS (Element 2 or Element XR) is capable of sweeping seventy‐seven isotopes (from 7Li to 238U, a total of sixty‐eight elements) in 1 s and, thus, is able to quantify up to sixty‐eight elements by laser sampling. Micro‐ and bulk analyses indicate that the glasses are homogeneous with respect to major and trace elements. This paper provides preliminary data for the ARM glasses using a variety of analytical techniques (EPMA, XRF, ICP‐OES, ICP‐MS, LA‐Q‐ICP‐MS and LA‐SF‐ICP‐MS) performed in ten laboratories. Discrepancies in the data of V, Cr, Ni and Tl exist, mainly caused by analytical limitations. Preliminary reference and information values for fifty‐six elements were calculated with uncertainties [2 relative standard error (RSE)] estimated in the range of 1–20%.  相似文献   

4.
This study reports precise and accurate data for rare earth elements (REE) measured on eight geological reference materials, five enriched in REE (BE‐N, BHVO‐2, BR, BR‐24 and RGM‐1) and three very depleted in REE (BIR‐1, UB‐N and DTS‐2). Data were acquired by quadrupole ICP‐MS after isolation of the REE using an ion‐exchange chromatography procedure. All the measured REE abundances were similar within ≈ 5% (10% for the most REE‐depleted sample DTS‐2) to the high‐quality measurements previously published in the literature. We also show that by using an internal Tm spike, the reproducibility of the data was improved to ~ 1%. Applying this technique to the analysis of ultra‐depleted rock samples (sub ng g?1), we show that significant improvements were obtained relative to the routine trace element measurement method. The chondrite‐normalised patterns were smooth instead of displaying irregularities. Although the classical method gives excellent results on REE‐rich samples, we believe that our technique improves the precision and accuracy of measurements for highly REE‐depleted rocks.  相似文献   

5.
The low‐Sr content (generally < 100 μg g?1) in clinopyroxene from peridotite makes accurate Sr isotopic determination by LA‐MC‐ICP‐MS a challenge. The effects of adding N2 to the sample gas and using a guard electrode (GE) on instrumental sensitivity for Sr isotopic determination by LA‐MC‐ICP‐MS were investigated. Results revealed no significant sensitivity enhancement of Sr by adding N2 to the ICP. Although using a GE led to a two‐fold sensitivity enhancement, it significantly increased the yield of polyatomic ion interferences of Ca‐related ions and TiAr+ on Sr isotopes. Applying the method established in this work, 87Sr/86Sr ratios (Rb/Sr < 0.14) of natural clinopyroxene from mantle and silicate glasses were accurately measured with similar measurement repeatability (0.0009–0.00006, 2SE) to previous studies but using a smaller spot size of 120 μm and low‐to‐moderate Sr content (30–518 μg g?1). The measurement reproducibility was 0.0004 (2s, n = 33) for a sample with 100 μg g?1 Sr. Destruction of the crystal structure by sample fusion showed no effect on Sr isotopic determination. Synthesised glasses with major element compositions similar to natural clinopyroxene have the potential to be adopted as reference materials for Sr isotopic determination by LA‐MC‐ICP‐MS.  相似文献   

6.
A laser ablation multi‐collector inductively coupled plasma‐mass spectrometry (LA‐MC‐ICP‐MS) method was developed to obtain precise and accurate Pb isotopic ratio measurements in low‐Pb materials (< 10 μg g?1) using a combination of Faraday cups and ion counters (FC–IC). The low abundance 204Pb (~ 1.4%) was collected using an IC. A NBS 981 standard solution was used to cross‐calculate the FC–IC gain and to investigate the signal response characteristics of the IC. A significant, continuous and linear decrease in the FC–IC gain was observed within 1 hr, but this drift could be corrected using the calibrator‐sample‐calibrator bracketing method. In addition, a non‐linear response of the IC used in this study was observed and corrected by a non‐linear correction algorithm, which was established by measuring a series of gravimetrically prepared NBS 981 standard solutions (NIST SRM 981). Compared with the conventional arrangement, the use of the newly designed X skimmer cone and Jet sample cone improved the signal intensities from Pb isotopes by a factor of 1.9. Compared with only Faraday cups, using a combination FC–IC array was found to enhance the measurement repeatability (RSD) of 20xPb/204Pb by approximately one order of magnitude when the 204Pb intensity was < 8 mV. Eight natural glasses and the NIST SRM 612 reference material glass (as a calibration material) were measured to evaluate the new protocol for Pb isotope determination. The analytical results were in agreement with the reference values within 2s measurement uncertainties. For MPI‐DING ATHO‐G (5.67 μg g?1 total Pb), KL2‐G (2.07 μg g?1 total Pb) and ML3B‐G (1.38 μg g?1 total Pb), the typical accuracies of 20xPb/204Pb were 0.09% of preferred values with precisions of < 0.33% (2RSD). The Pb isotope ratios in feldspars from granodiorite and within mafic microgranular enclaves (MMEs) from the Fangshan pluton, North China, were measured using the present method. The Pb isotopic compositions of feldspars from the whole host granodiorite show that that are radiogenic in the margin zone and gradually become less radiogenic. For the MMEs, the Pb isotopic compositions of feldspars are highly variable and overlap with those of the whole host granodiorite. For single‐grain feldspar, the strong rim‐core‐rim variations of the Pb isotopic compositions and trace elements are interpreted to have been generated via magma mixing. These results suggest that the Fangshan pluton underwent magma mixing of mantle‐derived mafic magmas with felsic magmas, and the proportion of the mafic magma influx decreased over time.  相似文献   

7.
In this paper we describe a flux‐free fusion technique for the highly precise LA‐ICP‐MS bulk analysis of geological samples. For this purpose we have developed an automated iridium‐strip heater with temperature and melt time control. To optimise the homogeneity of the fused glasses and to reduce possible depletion of volatile elements during melting, we undertook experiments with basaltic rock and glass powders using different melting temperatures (1300–1700 °C) and melting times (5‐80 s). Major and trace element microanalysis was performed using EPMA and LA‐ICP‐MS. Homogeneous glasses were obtained for temperatures ≥ 1500 °C and melting times ≥ 10 s. High loss (20‐90%) of highly volatile elements (e.g., Cs, Ge, Sn, Pb) was observed for high melting temperatures (≥ 1600 °C) and long melting times (80 s). Standard melting conditions (1600 °C, 10 s) represent a compromise, as the glasses were homogeneous with respect to major and trace elements and, at the same time, were not depleted in elements with condensation temperatures (at a pressure of 10?4 bar) higher than about 900 K (e.g., Zr, Hf, Ba, Sr, REE, U, Mo, Ni, Rb, Ga). Several international geological reference materials with SiO2 ranging between 47% m/m and 59% m/m were prepared using our standard melting conditions (1600 °C, 10 s) and subsequently analysed by LA‐ICP‐MS. These samples also include the new Brazilian basaltic reference material BRP‐1. Matrix‐matched calibration of the LA‐ICP‐MS data was performed using the basaltic reference glasses KL2‐G, ML3B‐G, BCR‐2G and BHVO‐2G. Most analytical data agreed within uncertainty at the 95% confidence level with the GeoReM preferred values published in the GeoReM database for reference materials of geological and environmental interest. To demonstrate routine bulk LA‐ICP‐MS analyses of geochemical and cosmochemical samples using the whole rock fusion technique, we also present trace element data for ocean island basalts from Lanai (Hawaii) and of Martian meteorites.  相似文献   

8.
Previous laser ablation‐ICP‐MS bulk analyses have been confined to volcanic glasses and glass disks or powder pellets similar to those used for XRF analysis. This study proposes a method to determine twenty trace elements (fourteen rare earth elements, Sc, Y, Zr, Nb, Hf and Ta) by LA‐ICP‐MS directly from polished thick sections and rock slabs of six fine‐grained crystalline and aphanitic rocks (five volcanic rocks and one pelitic tillite). Laser scanning of eight to ten 20 mm long linear tracks using a spot size of 160 μm, with a total ablated area of 26–32 mm2, was performed. Quantification was carried out by (a) internal standardisation using Si and (b) without applying internal standardisation. In the latter method, external determination of one element in conventional LA‐ICP‐MS quantification is no longer needed. Although the fine‐grained rocks studied contained variable amounts of volatiles (up to 4%), this method gave results that agree within 10% relative with those obtained by internal standardisation using Si. Two USGS basalt glass reference materials (BCR‐2G and BHVO‐2G) were used for external calibration. The results and the associated trace element patterns and ratios of elemental pairs obtained from both methods of quantification showed good agreement with the results from solution nebulisation ICP‐MS within 20% (mostly within 10%) relative. Fine‐grained rocks are common and include volcanic, sedimentary and low‐grade metamorphic rocks (e.g., basalt, andesite, rhyolite, shale, mudstone, tillite, loess, pelite and slate) and their trace element contents and associated ratios are important geochemical tracers in studies focusing on the composition and evolution of the crust and mantle. Our method provides a simple and quantitative way to determine trace elements in fine‐grained rocks even with those displaying complex textures.  相似文献   

9.
To test whether the silicate reference glasses BAM‐S005‐A and BAM‐S005‐B from BAM (The Federal Institute for Materials Research and Testing, Germany) are suitable materials for microanalysis, we investigated the homogeneity of these reference glasses using the microanalytical techniques EPMA, LA‐ICP‐MS and SIMS. Our study indicated that all major and most trace elements are homogeneously distributed at micrometre sampling scale in both types of glass. However, some trace elements (e.g., Cs, Cl, Cr, Mo and Ni) seem to be inhomogeneously distributed. We also determined the composition of BAM‐S005‐A and BAM‐S005‐B. The EPMA data of major elements confirmed the information values specified by the certificate. With the exception of Sr, Ba, Ce and Pb, our trace element data by LA‐ICP‐MS were also in agreement with the certified values within the stated uncertainty limits. The reasons for the discrepancy in these four elements are still unclear. In addition, we report new data for twenty‐two further trace elements, for which the concentrations were not certified. Based on our investigation, we suggest that both of these materials are suitable for many microanalytical applications.  相似文献   

10.
Compared with solution ICP‐MS, LA‐ICP‐MS studies have thus far reported comparatively few external reference data for accuracy estimates of experiments. This is largely the result of a paucity of available reference materials of natural composition. Here, we report an evaluation of natural glass (obsidian) as an inexpensive and widely available external reference material. The homogeneity of over forty elements in six different obsidian samples was assessed by LA‐ICP‐MS. Accuracy was tested with two obsidian samples that were fully characterised by electron probe microanalysis and solution ICP‐MS. Laser ablation experiments were performed with a variety of ablation parameters (fluence, spot sizes, ablation repetition rates) and calibration approaches (natural vs. synthetic reference materials, and different internal standard elements) to determine the best practice for obsidian analysis. Furthermore, the samples were analysed using two different laser wavelengths (193 nm and 213 nm) to compare the effect of potential ablation‐related phenomena (e.g., fractionation). Our data indicate that ablation with fluences larger than 6 J cm?2 and repetition rates of 5 or 10 Hz resulted in the most accurate results. Furthermore, synthetic NIST SRM 611 and 612 glasses worked better as reference materials compared with lower SiO2 content reference materials (e.g., BHVO‐2G or GOR128‐G). The very similar SiO2 content of the NIST SRM glasses and obsidian (i.e., matrix and compositional match) seems to be the first‐order control on the ablation behaviour and, hence, the accuracy of the data. The use of different internal standard elements for the quantification of the obsidian data showed that Si and Na yielded accurate results for most elements. Nevertheless, for the analysis of samples with high SiO2 concentrations, it is recommended to use Si as the internal standard because it can be more precisely determined by electron probe microanalysis. At the scale of typical LA analyses, the six obsidian samples proved to be surprisingly homogenous. Analyses with a spot size of 80 μm resulted in relative standard deviations (% RSD) better than 8% for all but the most depleted elements (e.g., Sc, V, Ni, Cr, Cu, Cd) in these evolved glasses. The combined characteristics render obsidian a suitable, inexpensive and widely available, external quality‐control material in LA‐ICP‐MS analysis for many applications. Moreover, obsidian glass is suited for tuning purposes, and well‐characterised obsidian could even be used as a matrix‐matched reference material for a considerable number of elements in studies of samples with high SiO2 contents.  相似文献   

11.
This work presents an evaluation of various methods for in situ high‐precision Sr and Pb isotopic determination in archaeological glass (containing 100–500 μg g?1 target element) by nanosecond laser ablation multi‐collector‐inductively coupled plasma‐mass spectrometry (ns‐LA‐MC‐ICP‐MS). A set of four soda‐lime silicate glasses, Corning A–D, mimicking the composition of archaeological glass and produced by the Corning Museum of Glass (Corning, New York, USA), were investigated as candidates for matrix‐matched reference materials for use in the analysis of archaeological glass. Common geological reference materials with known isotopic compositions (USGS basalt glasses BHVO‐2G, GSE‐1G and NKT‐1G, soda‐lime silicate glass NIST SRM 610 and several archaeological glass samples with known Sr isotopic composition) were used to evaluate the ns‐LA‐MC‐ICP‐MS analytical procedures. When available, ns‐LA‐MC‐ICP‐MS results for the Corning glasses are reported. These were found to be in good agreement with results obtained via pneumatic nebulisation (pn) MC‐ICP‐MS after digestion of the glass matrix and target element isolation. The presence of potential spectral interference from doubly charged rare earth element (REE) ions affecting Sr isotopic determination was investigated by admixing Er and Yb aerosols by means of pneumatic nebulisation into the gas flow from the laser ablation system. It was shown that doubly charged REE ions affect the Sr isotope ratios, but that this could be circumvented by operating the instrument at higher mass resolution. Multiple strategies to correct for instrumental mass discrimination in ns‐LA‐MC‐ICP‐MS and the effects of relevant interferences were evaluated. Application of common glass reference materials with basaltic matrices for correction of ns‐LA‐MC‐ICP‐MS isotope data of archaeological glasses results in inaccurate Pb isotope ratios, rendering application of matrix‐matched reference materials indispensable. Correction for instrumental mass discrimination using the exponential law, with the application of Tl as an internal isotopic standard element introduced by pneumatic nebulisation and Corning D as bracketing isotopic calibrator, provided the most accurate results for Pb isotope ratio measurements in archaeological glass. Mass bias correction relying on the power law, combined with intra‐element internal correction, assuming a constant 88Sr/86Sr ratio, yielded the most accurate results for 87Sr/86Sr determination in archaeological glasses  相似文献   

12.
Sphalerite (ZnS) is an abundant ore mineral and an important carrier of elements such as Ge, Ga and In used in high‐technology applications. In situ measurements of trace elements in natural sphalerite samples using LA‐ICP‐MS are hampered by a lack of homogenous matrix‐matched sulfide reference materials available for calibration. The preparation of the MUL‐ZnS1 calibration material containing the trace elements V, Cr, Mn, Co, Ni, Cu, Ga, Ge, As, Se, Mo, Ag, Cd, In, Sn, Sb, Tl and Pb besides Zn, Fe and S is reported. Commercially available ZnS, FeS, CdS products were used as the major components, whereas the trace elements were added by doping with single‐element ICP‐MS standard solutions and natural mineral powders. The resulting powder mixture was pressed to pellets and sintered at 400 °C for 100 h using argon as an inert gas. To confirm the homogeneity of major and trace element distributions within the MUL‐ZnS1 calibration material, measurements were performed using EPMA, solution ICP‐MS, ICP‐OES and LA‐ICP‐MS. The results show that MUL‐ZnS‐1 is an appropriate material for calibrating trace element determination in sphalerite using LA‐ICP‐MS.  相似文献   

13.
To assess the homogeneity of and provide the first Sr‐Nd‐Hf‐Pb isotopic reference values for the Chinese Geological Standard Glasses CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5, we measured these isotopes in several measurement sessions over the course of nearly 3 years. The results were obtained by high‐precision MC‐ICP‐MS and TIMS. Our investigation indicates that these CGSG glass reference materials are homogenous with regard to Sr‐Nd‐Hf‐Pb isotopic distribution and are therefore suitable geochemical materials for Sr‐Nd‐Hf‐Pb isotope measurements. Clear differences in Sr‐Nd‐Hf‐Pb isotopic composition were observed between the glasses and the original powdered rock reference materials (CGSG‐2 and GSR‐7, and especially CGSG‐5 and GSR‐2) because of flux addition during preparation of the glasses. The new Sr‐Nd‐Hf‐Pb isotope data provided here might be useful to the geochemical community for in situ and bulk analysis.  相似文献   

14.
This paper contains the results of an extensive isotopic study of United States Geological Survey GSD‐1G and MPI‐DING reference glasses. Thirteen different laboratories were involved using high‐precision bulk (TIMS, MC‐ICP‐MS) and microanalytical (LA‐MC‐ICP‐MS, LA‐ICP‐MS) techniques. Detailed studies were performed to demonstrate the large‐scale and small‐scale homogeneity of the reference glasses. Together with previously published isotopic data from ten other laboratories, preliminary reference and information values as well as their uncertainties at the 95% confidence level were determined for H, O, Li, B, Si, Ca, Sr, Nd, Hf, Pb, Th and U isotopes using the recommendations of the International Association of Geoanalysts for certification of reference materials. Our results indicate that GSD‐1G and the MPI‐DING glasses are suitable reference materials for microanalytical and bulk analytical purposes.  相似文献   

15.
An efficient, clean procedure for the measurement of element mass fractions in bulk rock nanoparticulate pressed powder pellets (PPPs) by 193 nm laser ablation ICP‐MS is presented. Samples were pulverised by wet milling and pelletised with microcrystalline cellulose as a binder, allowing non‐cohesive materials such as quartz or ceramics to be processed. The LA‐ICP‐MS PPP analytical procedure was optimised and evaluated using six different geological reference materials (JP‐1, UB‐N, BCR‐2, GSP‐2, OKUM and MUH‐1), with rigorous procedural blank quantification employing synthetic quartz. Measurement trueness of the procedure was equivalent to that achieved by solution ICP‐MS and LA‐ICP‐MS analysis of glass. The measurement repeatability was as low as 0.5–2% (1s,= 6) and, accordingly, PPP homogeneity could be demonstrated. Calibration based on the reference glasses NIST SRM 610, NIST SRM 612, BCR‐2G and GSD‐1G revealed matrix effects for glass and PPP measurement with NIST SRM 61×; using basalt glasses eliminated this problem. Most significantly, trace elements not commonly measured (flux elements Li, B; chalcophile elements As, Sb, Tl, In, Bi) could be quantified. The PPP‐LA‐ICP‐MS method overcomes common problems and limitations in analytical geochemistry and thus represents an efficient and accurate alternative for bulk rock analysis.  相似文献   

16.
We present an open‐source algorithm in Mathematica application (Wolfram Research) with a transparent data reduction and Monte Carlo simulation of systematic and random uncertainties for U‐Th geochronometry by multi‐collector ICP‐MS. Uranium and thorium were quantitatively separated from matrix elements through a single U/TEVA extraction chromatography step. A rigorous calibrator‐sample bracketing routine was adopted using CRM‐112A and IRMM‐035 standard solutions, doped with an IRMM‐3636a 233U/236U ‘double‐spike’ to account for instrumental mass bias and deviations of measured isotope ratios from certified values. The mean of 234U/238U and 230Th/232Th in the standard solutions varied within 0.42 and 0.25‰ (permil) of certified ratios, respectively, and were consistent with literature values within uncertainties. Based on multiple dissolutions with lithium metaborate flux fusion, U and Th concentrations in USGS BCR‐2 CRM were updated to 1739 ± 2 and 5987 ± 50 ng g?1 (95% CI), respectively. The measurement reproducibility of our analytical technique was evaluated by analysing six aliquots of an in‐house reference material, prepared by homogenising a piece of speleothem (CC3A) from Cathedral Cave, Utah, which returned a mean age of 21483 ± 63 years (95% CI, 2.9‰). Replicate analysis of ten samples from CC3A was consistent with ages previously measured at the University of Minnesota by single‐collector ICP‐MS within uncertainties.  相似文献   

17.
To precisely determine the abundances of fifty‐two elements found within natural water samples, with mass fractions down to fg g?1 level, we have developed a method which combines freeze‐drying pre‐concentration (FDC) and isotope dilution internal standardisation (ID‐IS). By sublimation of H2O, the sample solution was reduced to < 1/50 of the original volume. To determine element abundance with accuracy better than 10%, we found that for solutions being analysed by mass spectrometry the HNO3 concentration should be > 0.3 mol l?1 to avoid hydrolysis. Matrix‐affected signal suppression was not significant for the solutions with NaCl concentrations lower than 0.2 and 0.1 cg g?1 for quadrupole ICP‐MS and sector field ICP‐MS, respectively. The recovery yields of elements after FDC were 97–105%. The detection limits for the sample solutions prepared by FDC were ≤ 10 pg g?1, except for Na, K and Ca. Blanks prepared using FDC were at pg‐levels, except for eleven elements (Na, Mg, Al, P, Ca, Mn, Fe, Co, Ni, Cu and Zn). The abundances of fifty‐two elements in bottled drinking water were determined from five different geological sources with mass fractions ranging from the fg g?1 to μg g?1 level with high accuracy.  相似文献   

18.
We report here an optimisation of the demountable direct injection high efficiency nebuliser (d‐DIHEN) for isotopic measurements with a Neptune (ThermoFisher Scientific, Bremen, Germany) multi‐collector inductively coupled plasma‐mass spectrometer (MC‐ICP‐MS) and describe a method for boron isotopic ratio determination. With direct injection nebulisation 100% of the analyte was introduced into the ICP‐MS plasma and wash times were drastically reduced for elements such as boron and thorium. Compared to the classical stable introduction system (SIS: double Scott/cyclonic spray chamber), sensitivity for boron was 2–5 times higher with d‐DIHEN and wash times up to ten times shorter. Repeatability of 11B/10B sample‐calibrator bracketing measurements reached 0.25‰ (2s) for seawater and coral samples. Method accuracy and reproducibility were tested on mixed reference solutions having δ11B values in the ranges ?90 to +40‰ and ?2 to +2.5‰, demonstrating our ability to distinguish δ11B values with differences of only 0.25‰. The international seawater reference material NRCC NASS‐5 (National Research Council, Ottawa, Canada), analysed in different sessions over a 10‐month period, yielded an average δ11B value of +39.89 ± 0.25‰, in the upper range of previously published seawater values. A comparison between δ11B determined by d‐DIHEN MC‐ICP‐MS and positive‐TIMS (P‐TIMS) for four modern corals showed an excellent agreement (with bias of less than 0.4‰).  相似文献   

19.
Fused glass prepared without the addition of a flux is generally more homogeneous than a pressed powder pellet and thus ideal for analysis of bulk samples by LA‐ICP‐MS. In this work, a new glass‐making method using a boron nitride crucible was developed to prepare homogenous glass samples from silicate rock powder. The apparatus consisted of a small boron nitride vessel with net volume of about 34 mm3 and two molybdenum strips. Applying the summed metal oxide normalisation technique, both major and trace element contents in the fused glass were measured by LA‐ICP‐MS. Analyses of five geochemical reference materials (spanning the compositional range basalt–andesite–rhyolite) indicated that the measured SiO2, Al2O3 and P2O5 contents matched the preferred values to within 5%, and the other major elements generally matched the preferred values to within 8%. Except for the transition metals, the measured trace element contents generally matched the preferred values to within 10%. Compared with the iridium heater method developed by Stoll et al. (2008), element volatilisation during high‐temperature melting was effectively suppressed in our method, but metal segregation caused by reduction of BN may cause loss of Cr, Ni and Cu. Although analysis with a large spot size has the advantage of improving counting statistics, matrix effects induced by mass loading of the ICP may hamper the accurate determination of some elements.  相似文献   

20.
We present a revised alkali fusion method for the determination of trace elements in geological samples. Our procedure is based on simple acid digestion of powdered low‐dilution (flux : sample ≈ 2 : 1) glass beads where large sample dilution demanded by high total dissolved solids, a main drawback of conventional alkali fusion, could be circumvented. Three geological reference materials (G‐3 granite, GSP‐2 granodiorite and SGD‐1a gabbro) decomposed by this technique and routine tabletop acid digestion were analysed for thirty trace elements using a quadrupole ICP‐MS. Results by conventional acid digestion distinctly showed poor recoveries of Zr, Hf and rare earth elements due to incomplete dissolution of resistant minerals. On the other hand, results obtained by our method were in reasonable agreement with reference data for most analytes, indicating that refractory minerals were efficiently dissolved and volatile loss was insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号