首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Martian meteorites record a wide diversity of environments, processes, and ages. Much work has been done to decipher potential mantle sources for Martian magmas and their interactions with crustal and surface environments. Chlorine isotopes provide a unique opportunity to assess interactions between Martian mantle‐derived magmas and the crust. We have measured the Cl‐isotopic composition of 17 samples that span the range of known ages, Martian environments, and mantle reservoirs. The 37Cl of the Martian mantle, as represented by the olivine‐phyric shergottites, NWA 2737 (chassignite), and Shergotty (basaltic shergottite), has a low value of approximately ?3.8‰. This value is lower than that of all other planetary bodies measured thus far. The Martian crust, as represented by regolith breccia NWA 7034, is variably enriched in the heavy isotope of Cl. This enrichment is reflective of preferential loss of 35Cl to space. Most basaltic shergottites (less Shergotty), nakhlites, Chassigny, and Allan Hills 84001 lie on a continuum between the Martian mantle and crust. This intermediate range is explained by mechanical mixing through impact, fluid interaction, and assimilation‐fractional crystallization.  相似文献   

2.
Abstract— We report the elemental and isotopic composition of the noble gases as well as the chemical abundances in pyroxene, maskelynite/mesostasis glass, and bulk material of Shergotty and of bulk samples from Chassigny and Yamato 793605. The 40K-40Ar isochron for the Shergotty minerals yields a gas retention age of 196 Ma, which is, within errors, in agreement with previously determined Rb-Sr internal isochron ages. Argon that was trapped at this time has a 40Ar/36Ar ratio of 1100. For Chassigny and Y-793605, we obtain trapped 40Ar/36Ar ratios of 1380 and 950, respectively. Using these results and literature data, we show that the three shergottites, Shergotty, Zagami, and QUE 94001; the lherzolites ALH 77005, LEW 88516, and Y-793605; as well as Chassigny and ALH 84001 contain a mixture of Martian mantle and atmospheric Ar; whereas, the trapped 40Ar/36Ar ratio of the nakhlites, Nakhla, Lafayette, and Governador Valadares cannot be determined with the present data. We show that Martian atmospheric trapped Ar in Martian meteorites is correlated with the shock pressure that they experienced. Hence, we conclude that the Martian atmospheric gases were introduced by shock into the meteoritic material. For the Shergotty minerals, we obtain 3He-, 21Ne-, and 38Ar-based cosmic-ray exposure ages of 3.0 Ma, and for the lherzolite Y-793605, 4.0 Ma, which confirms our earlier conclusion that the lherzolites were ejected from Mars ~1 Ma before the shergottites. Chassigny yields the previously known ejection age of 11.6 Ma.  相似文献   

3.
Abstract— This study provides a complete data set of all five noble gases for bulk samples and mineral separates from three Martian shergottites: Shergotty (bulk, pyroxene, maskelynite), Zagami (bulk, pyroxene, maskelynite), and Elephant Moraine (EET) A79001, lithology A (bulk, pyroxene). We also give a compilation of all noble gas and nitrogen studies performed on these meteorites. Our mean values for cosmic‐ray exposure ages from 3He, 21Ne, and 38Ar are 2.48 Myr for Shergotty, 2.73 Myr for Zagami, and 0.65 Myr for EETA79001 lith. A. Serious loss of radiogenic 4He due to shock is observed. Cosmogenic neon results for bulk samples from 13 Martian meteorites (new data and literature data) are used in addition to the mineral separates of this study in a new approach to explore evidence of solar cosmic‐ray effects. While a contribution of this low‐energy irradiation is strongly indicated for all of the shergottites, spallation Ne in Chassigny, Allan Hills (ALH) 84001, and the nakhlites is fully explained by galactic cosmic‐ray spallation. Implanted Martian atmospheric gases are present in all mineral separates and the thermal release indicates a near‐surface siting. We derive an estimate for the 40Ar/36Ar ratio of the Martian interior component by subtracting from measured Ar in the (K‐poor) pyroxenes the (small) radiogenic component as well as the implanted atmospheric component as indicated from 129Xe, * excesses. Unless compromised by the presence of additional components, a high ratio of ~2000 is indicated for Martian interior argon, similar to that in the Martian atmosphere. Since much lower ratios have been inferred for Chassigny and ALH 84001, the result may indicate spatial and/or temporal variations of 40Ar/36Ar in the Martian mantle.  相似文献   

4.
Here we present the isotopic concentrations of He, Ne, Ar, Kr, and Xe for the three Martian meteorites, namely Grove Mountains 99027 (GRV 99027), Northwest Africa 7906 (NWA 7906), and Northwest Africa 7907 (NWA 7907). The cosmic ray exposure (CRE) age for GRV 99027 of 5.7 ± 0.4 Ma (1σ) is consistent with CRE ages for other poikilitic basaltic shergottites and suggests that all were ejected in a single event ~5.6 Ma ago. After correcting for an estimated variable sodium concentration, the CRE ages for NWA 7906 and NWA 7907 of 5.4 ± 0.4 and 4.9 ± 0.4 Ma (1σ), respectively, are in good agreement with the CRE age of ~5 Ma favored by Cartwright et al. ( 2014 ) for NWA 7034. The data, therefore, support the conclusion that all three basaltic regolith breccias are paired. The 40Ar gas retention age for NWA 7907 of ~1.3 Ga is in accord with Cartwright et al. ( 2014 ). For NWA 7906, we were unable to determine a 40Ar gas retention age. The 4He gas retention ages for NWA 7906 and 7907 are in the range of 200 Ma and are much shorter than the 40Ar gas retention age of NWA 7907, indicating that about 86–88% of the radiogenic 4He has been lost. The Kr and Xe isotopic concentrations in GRV 99027 are composed almost exclusively of Martian interior (MI) gases, while for NWA 7906 and NWA 7907, they indicate gases from the MI, elementally fractionated air, and possibly Martian atmosphere.  相似文献   

5.
We present noble gas data for 16 shergottites, 2 nakhlites (NWA 5790, NWA 10153), and 1 angrite (NWA 7812). Noble gas exposure ages of the shergottites fall in the 1–6 Ma range found in previous studies. Three depleted olivine‐phyric shergottites (Tissint, NWA 6162, NWA 7635) have exposure ages of ~1 Ma, in agreement with published data for similar specimens. The exposure age of NWA 10153 (~12.2 Ma) falls in the range of 9–13 Ma reported for other nakhlites. Our preferred age of ~7.3 Ma for NWA 5790 is lower than this range, and it is possible that NWA 5790 represents a distinct ejection event. A Tissint glass sample contains Xe from the Martian atmosphere. Several samples show a remarkably low (21Ne/22Ne)cos ratio < 0.80, as previously observed in a many shergottites and in various other rare achondrites. This was explained by solar cosmic ray‐produced Ne (SCR Ne) in addition to the commonly found galactic cosmic ray‐produced Ne, implying very low preatmospheric shielding and ablation loss. We revisit this by comparing measured (21Ne/22Ne)cos ratios with predictions by cosmogenic nuclide production models. Indeed, several shergottites, acalpulcoites/lodranites, angrites (including NWA 7812), and the Brachina‐like meteorite LEW 88763 likely contain SCR Ne, as previously postulated for many of them. The SCR contribution may influence the calculation of exposure ages. One likely reason that SCR nuclides are predominantly detected in meteorites from rare classes is because they usually are analyzed for cosmogenic nuclides even if they had a very small (preatmospheric) mass and hence low ablation loss.  相似文献   

6.
Abstract– The oxygen fugacities recorded in the nakhlites Nakhla, Yamato‐000593 (Y‐000593), Lafayette, and NWA998 were studied by applying the Fe,Ti‐oxide oxybarometer. Oxygen fugacities obtained cluster closely around the FMQ (Fayalite–Magnetite–Quartz) buffer (NWA998 = FMQ ? 0.8; Y‐000593 = FMQ ? 0.7; Nakhla = FMQ; Lafayette = FMQ + 0.1). The corresponding equilibration temperatures are 810 °C for Nakhla and Y‐000593, 780 °C for Lafayette and 710 °C for NWA998. All nakhlites record oxygen fugacities significantly higher and with a tighter range than those determined for Martian basalts, i.e., shergottites whose oxygen fugacities vary from FMQ ? 1 to FMQ ? 4. It has been known for some time that nakhlites are different from other Martian meteorites in chemistry, mineralogy, and crystallization age. The present study adds oxygen fugacity to this list of differences. The comparatively large variation in fO2 recorded by shergottites was interpreted by Herd et al. (2002) as reflecting variable degrees of contamination with crustal fluids that would also carry a light rare earth element (REE)‐enriched component. The high oxygen fugacities and the large light REE enrichment of nakhlites fit qualitatively in this model. In detail, however, it is found that the inferred contaminating phase in nakhlites must have been different from those in shergottites. This is supported by unique 182W/184W and 142Nd/144Nd ratios in nakhlites, which are distinct from other Martian meteorites. It is likely that the differences in fO2 between nakhlites and other Martian meteorites were established very early in the history of Mars. Parental trace element rich and trace element poor regions (reservoirs) of Mars mantle ( Brandon et al. 2000 ) must have been kept isolated throughout Martian history. Our results further show significant differences in closure temperature among the different nakhlites. The observed range in equilibration temperatures together with similar fO2 values is attributable to crystallization of nakhlites in the same cumulate pile or lava layer at different burial depths from 0.5 to 30 m below the Martian surface in agreement with Mikouchi et al. (2003) and is further confirmed by similar crystallization ages of about 1.3 Ga ago (e.g., Misawa et al. 2003 ).  相似文献   

7.
Abstract– We present 40Ar‐39Ar dating results of handpicked mineral separates and whole‐rock samples of Nakhla, Lafayette, and Chassigny. Our data on Nakhla and Lafayette and recently reported ages for some nakhlites and Chassigny ( Misawa et al. 2006 ; Park et al. 2009 ) point to formation ages of approximately 1.4 Ga rather than 1.3 Ga that is consistent with previous suggestions of close‐in‐time formation of nakhlites and Chassigny. In Lafayette mesostasis, we detected a secondary degassing event at approximately 1.1 Ga, which is not related to iddingsite formation. It may have been caused by a medium‐grade thermal event resetting the mesostasis age but not influencing the K‐Ar system of magmatic inclusions and the original igneous texture of this rock. Cosmic‐ray exposure ages for these meteorites and for Governador Valadares were calculated from bulk rock concentrations of cosmogenic nuclides 3He, 21Ne, and 38Ar. Individual results are similar to literature data. The considerable scatter of T3, T21, and T38 ages is due to systematic uncertainties related to bulk rock and target element chemistry, production rates, and shielding effects. This hampers efforts to better constrain the hypothesis of a single ejection event for all nakhlites and Chassigny from a confined Martian surface terrain ( Eugster 2003 ; Garrison and Bogard 2005 ). Cosmic‐ray exposure ages from stepwise release age spectra using 38Ar and neutron induced 37Ar from Ca in irradiated samples can eliminate errors induced by bulk chemistry on production rates, although not from shielding conditions.  相似文献   

8.
We report light noble gas (He, Ne, and Ar) concentrations and isotopic ratios in 11 achondrites, Tafassasset (unclassified primitive achondrite), Northwest Africa (NWA) 12934 (angrite), NWA 12573 (brachinite), Jiddat al Harasis (JaH) 809 (ureilite), NWA 11562 (ungrouped achondrite), four lodranites (NWA 11901, NWA 7474, NWA 6685, and NWA 6484), NWA 2871 (acapulcoite), and Sahara 02029 (winonaite), most of which have not been previously studied for noble gases. We discuss their noble gas isotopic composition, determine their cosmogenic nuclide content, and systematically calculate their cosmic ray exposure (CRE) and gas retention ages. In addition, we estimate their preatmospheric radii and preatmospheric masses based on the shielding parameter (22Ne/21Ne)cos. None of the studied meteorites shows evidence of contribution from solar cosmic rays (SCRs). JaH 809 and NWA 12934 show evidence of 3He diffusive losses of >90% and 40%, respectively. The winonaite Sahara 02029 has lost most of its noble gases, either during or before analysis. The average CRE age of Tafassasset of ~49 Ma is lower than that reported by Patzer et al. (2003), but is consistent with it within the uncertainties; this confirms that Tafassasset and CR chondrites are not source paired, CR chondrites having CRE ages from 1 to 25 Ma (Herzog & Caffee, 2014). The ureilite JaH 809 has a CRE age of ~5.4 Ma, which falls into the typical range of exposure ages for ureilites; the angrite NWA 12934 has a CRE age of ~49 Ma, which is within the main range of exposure ages reported for angrites (0.2–56 Ma). We calculate a CRE age of ~2.4 Ma for the brachinite NWA 12573, which falls into a possible “cluster” in the brachinite CRE age histogram around ~3 Ma. Three lodranites (NWA 11901, NWA 7474, and NWA 6685) have CRE ages higher than the average CRE ages of lodranites measured so far, NWA 11901 and NWA 6685 having CRE ages far higher than the CRE age already reported by Li et al. (2019) on NWA 8118. The measured 40K-40Ar gas retention ages fit well into established systematics. The gas retention age of Tafassasset is consistent, within respective uncertainties, with that previously calculated by Patzer et al. (2003). Our study indicates that Tafassasset originates from a meteoroid with a preatmospheric radius of ~20 cm, however discordant with the radius of ~85 cm inferred in a previous study (Patzer et al., 2003).  相似文献   

9.
The Martian meteorites comprise mantle‐derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum‐group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine‐phyric shergottites, determined using laser‐ablation ICP‐MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of Martian mantle‐derived melts. The new data reveal distinctive differences between the two meteorite groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to ~160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine‐phyric shergottites Yamato‐980459 (Y‐980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit (<42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru‐rich (~1–4 ppb) parental melt for this meteorite group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru‐depleted signature of chromite and ulvöspinel from the olivine‐phyric shergottites may be the consequence of relatively lower Ru contents (<1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum‐group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems.  相似文献   

10.
Abstract— Argon-isotopic abundances were measured in neutron-irradiated samples of Martian meteorites Chassigny, Allan Hills (ALH) 84001, ALH 77005, Elephant Moraine (EET) 79001, Yamato (Y) 793605, Shergotty, Zagami, and Queen Alexandra Range (QUE) 94201, and in unirradiated samples of ALH 77005. Chassigny gives a 39Ar-40Ar age of 1.32 ± 0.07 Ga, which is similar to radiometric ages of the nakhlites. Argon-39-Argon-40 data for ALH 84001 indicate ages between 3.9 and 4.3 Ga. A more precise definition of this age requires detailed characterization of the multiple trapped Ar components in ALH 84001 and of 39Ar recoil distribution. All six shergottite samples show apparent 39Ar-40Ar ages substantially older than the ~165–200 Ma range in ages given by other isotope dating techniques. Shergottites appear to contain ubiquitous Ar components acquired from the Martian atmosphere, the Martian mantle, and commonly terrestrial atmospheric contamination. Zagami feldspar also suggests inherited radiogenic 40Ar. These data analyses indicate that the recent Martian atmospheric component trapped in shergottites has a 40Ar/36Ar ratio possibly as low as ~1750 and no greater than ~1900. These ratios are less than the value of 3000 ± 500 reported by Viking. The 40Ar/36Ar ratio for the Martian mantle component is probably <500 but is poorly constrained. The correlation between trapped 40Ar/36Ar and 129Xe/132Xe ratios in shergottite impact glasses and unirradiated samples of ALH 77005 shows considerable scatter and suggests that the 36Ar/132Xe ratio in the Martian components may vary. Resolution of Martian atmospheric 40Ar/36Ar ratio at different time periods (i.e., at ~4.0 and 0.2 Ga) is also difficult without an understanding of the composition of various trapped components.  相似文献   

11.
Abstract– Xenon‐isotopic ratios, step‐heating release patterns, and gas concentrations of mineral separates from Martian shergottites Roberts Massif (RBT) 04262, Dar al Gani (DaG) 489, Shergotty, and Elephant Moraine (EET) 79001 lithology B are reported. Concentrations of Martian atmospheric xenon are similar in mineral separates from all meteorites, but more weathered samples contain more terrestrial atmospheric xenon. The distributions of xenon from the Martian and terrestrial atmospheres among minerals in any one sample are similar, suggesting similarities in the processes by which they were acquired. However, in opaque and maskelynite fractions, Martian atmospheric xenon is released at higher temperatures than terrestrial atmospheric xenon. It is suggested that both Martian and terrestrial atmospheric xenon were initially introduced by weathering (low temperature alteration processes). However, the Martian component was redistributed by shock, accounting for its current residence in more retentive sites. The presence or absence of detectable 129Xe from the Martian atmosphere in mafic minerals may correspond to the extent of crustal contamination of the rock’s parent melt. Variable contents of excess 129Xe contrast with previously reported consistent concentrations of excess 40Ar, suggesting distinct sources contributed these gases to the parent magma.  相似文献   

12.
Martian meteorites, in particular shergottites, contain darkened olivine (so‐called “brown olivine”) whose color is induced by iron nanoparticles formed in olivine during a shock event. The formation process and conditions of brown olivine have been discussed in the Northwest Africa 2737 (NWA 2737) chassignite. However, formation conditions of brown olivine in NWA 2737 cannot be applied to shergottites because NWA 2737 has a different shock history from that of shergottites. Therefore, this study observed brown olivine in the NWA 1950 shergottite and discusses the general formation process and conditions of brown olivine in shergottites. Our observation of NWA 1950 revealed that olivine is heterogeneously darkened between and within grains different from brown olivine in NWA 2737. XANES analysis showed that brown olivine contains small amounts of Fe3+ and TEM/STEM observation revealed that there is no SiO‐rich phase around iron metal nanoparticles. These observations indicate that iron nanoparticles were formed by a disproportionation reaction of olivine (3Fe2+olivine → Fe0metal + 2Fe3+olivine + Volivine, where Volivine means a vacancy in olivine). Some parts of brown olivine show lamellar textures in SEM observation and Raman peaks in addition to those expected for olivine, implying that brown olivine experienced a phase transition (to e.g., ringwoodite). In order to induce heterogeneous darkening, heterogeneous high temperature of about 1500–1700 K and shock duration of at least ~90 ms are required. This heterogeneous high temperature resulted in high postshock temperature (>900 K) inducing back‐transformation of most high‐pressure phases. Therefore, in spite of lack of high‐pressure phases, NWA 1950 (= Martian meteorites with brown olivine) experienced higher pressure and temperature compared to other highly shocked meteorite groups.  相似文献   

13.
Abstract— Magnetic properties of 26 (of 32) unpaired Martian meteorites (SNCs) are synthesized to further constrain the lithology carrying Martian magnetic crustal sources. Magnetic properties of ultramafic cumulates (i.e., Chassigny, Allan Hills [ALH] 84001) and lherzolitic shergottites (ALH 77005, Lewis Cliff [LEW] 88516) are one or two orders of magnitude too weak to account for the crustal magnetizations, assuming magnetization in an Earth‐like field. Nakhlites and some basaltic shergottites, which are the most magnetic SNCs, show the right intensity. Titanomagnetite is the magnetic carrier in the nakhlites (7 meteorites), whereas in most basaltic shergottites (11 meteorites) it is pyrrhotite. Dhofar (Dho) 378, Los Angeles, and NWA 480/1460 and 2046 are anomalous basaltic shergottites, as their magnetism is mainly due to titanomagnetite. Pyrrhotite should be among the candidate minerals for the magnetized Noachian crust.  相似文献   

14.
Abstract— Radiometric age dating of Martian rocks and surfaces at known locations for which crater densities can be determined is highly desirable in order to fully understand Martian history. Performing K‐Ar age dating of igneous rocks on Mars by robots, however, presents technical challenges. Some of these challenges can be defined by examining Ar‐Ar data acquired on Martian meteorites, and others can be evaluated through numerical modeling of simulated K‐Ar isochrons like those that would be acquired robotically on Martian rocks. Excess 40Ar is present in all shergottites. Thus for Martian rocks, the slopes of K‐Ar isochrons must be determined to reasonable precision in order to calculate reliable ages. Model simulations of possible isochrons give an indication of some requirements in order to define a precise rock age: Issues addressed here are: how many K‐Ar analyses should be made of rocks thought to have the same age; what range of K concentrations should these analyzed samples have; and what analytical uncertainty in K‐Ar measurements is desirable. Meteorite data also are used to determine the D/a2 diffusion parameters for Ar in plagioclase and pyroxene separates of several shergottites and nakhlites. These data indicate the required temperatures and times for heating similar Martian rocks in order to extract Ar. Quantitatively extracting radiogenic 40Ar could be difficult, and degassing cosmogenic Ar from mafic phases even more so. Considering all these factors, robotic K‐Ar dating of Martian rocks may be achievable, but will be challenging.  相似文献   

15.
The isotopic composition and abundance of sulfur in extraterrestrial materials are of interest for constraining models of both planetary and solar system evolution. A previous study that included phase‐specific extraction of sulfur from 27 shergottites found the sulfur isotopic composition of the Martian mantle to be similar to that of terrestrial mid‐ocean ridge basalts, the Moon, and nonmagmatic iron meteorites. However, the presence of positive Δ33S anomalies in igneous sulfides from several shergottites, indicating incorporation of atmospherically processed sulfur into the subsurface, complicated this interpretation. The current study expands upon the previous work through analyses of 20 additional shergottites, enabling tighter constraints on the isotopic composition of juvenile Martian sulfur. The updated composition (δ34S = ?0.24 ± 0.05‰, Δ33S = 0.0015 ± 0.0016‰, and Δ36S = 0.039 ± 0.054‰, 2 s.e.m.), representing the weighted mean for all shergottites within the combined population of 47 without significant Δ33S anomalies, strengthens our earlier result. The presence of sulfur isotopic anomalies in igneous sulfides of some meteorites suggests that their parent magmas may have assimilated crustal material. We observed small negative Δ33S anomalies in sulfides from two meteorites, NWA 7635 and NWA 11300. Although negative Δ33S anomalies have been observed in nakhlites and ALH 84001, previous anomalies in shergottites have all shown positive values of Δ33S. Because NWA 7635 has formation age of 2.4 Ga and is much more ancient than shergottites analyzed previously, this finding expands our perspective on the continuity of Martian atmospheric sulfur photochemistry over geologic time.  相似文献   

16.
Abstract— The newly found meteorite Northwest Africa 6234 (NWA 6234) is an olivine (ol)‐phyric shergottite that is thought, based on texture and mineralogy, to be paired with Martian shergottite meteorites NWA 2990, 5960, and 6710. We report bulk‐rock major‐ and trace‐element abundances (including Li), abundances of highly siderophile elements, Re‐Os isotope systematics, oxygen isotope ratios, and the lithium isotope ratio for NWA 6234. NWA 6234 is classified as a Martian shergottite, based on its oxygen isotope ratios, bulk composition, and bulk element abundance ratios, Fe/Mn, Al/Ti, and Na/Al. The Li concentration and δ7Li value of NWA 6234 are similar to that of basaltic shergottites Zagami and Shergotty. The rare earth element (REE) pattern for NWA 6234 shows a depletion in the light REE (La‐Nd) compared with the heavy REE (Sm‐Lu), but not as extreme as the known “depleted” shergottites. Thus, NWA 6234 is suggested to belong to a new category of shergottite that is geochemically “intermediate” in incompatible elements. The only other basaltic or ol‐phyric shergottite with a similar “intermediate” character is the basaltic shergottite NWA 480. Rhenium‐osmium isotope systematics are consistent with this intermediate character, assuming a crystallization age of 180 Ma. We conclude that NWA 6234 represents an intermediate compositional group between enriched and depleted shergottites and offers new insights into the nature of mantle differentiation and mixing among mantle reservoirs in Mars.  相似文献   

17.
Amphibole in chassignite melt inclusions provides valuable information about the volatile content of the original interstitial magma, but also shock and postshock processes. We have analyzed amphibole and other phases from NWA 2737 melt inclusions, and we evaluate these data along with published values to constrain the crystallization Cl and H2O content of phases in chassignite melt inclusions and the effects of shock on these amphibole grains. Using a model for the Cl/OH exchange between amphibole and melt, we estimate primary crystallization OH contents of chassignite amphiboles. SIMS analysis shows that amphibole from NWA 2737 currently has 0.15 wt% H2O. It has lost ~0.6 wt% H2O from an initial 0.7–0.8 wt% H2O due to intense shock. Chassigny amphibole had on average 0.3–0.4 wt% H2O and suffered little net loss of H2O due to shock. NWA 2737 amphibole has δD ≈ +3700‰; it absorbed Martian atmosphere‐derived heavy H in the aftermath of shock. Chassigny amphibole, with δD ≤ +1900‰, incorporated less heavy H. Low H2O/Cl ratios are inferred for the primitive chassignite magma, which had significant effects on melting and crystallization. Volatiles released by the degassing of Martian magma were more Cl‐rich than on Earth, resulting in the high Cl content of Martian surface materials.  相似文献   

18.
Abstract— We report new 39Ar‐40Ar measurements on 15 plagioclase, pyroxene, and/or whole rock samples of 8 Martian shergottites. All age spectra suggest ages older than the meteorite formation ages, as defined by Sm‐Nd and Rb‐Sr isochrons. Employing isochron plots, only Los Angeles plagioclase and possibly Northwest Africa (NWA) 3171 plagioclase give ages in agreement with their formation ages. Isochrons for all shergottite samples reveal the presence of trapped Martian 40Ar (40Arxs), which exists in variable amounts in different lattice locations. Some 40Arxs is uniformly distributed throughout the lattice, resulting in a positive isochron intercept, and other 40Arxs occurs in association with K‐bearing minerals and increases the isochron slope. These samples demonstrate situations where linear Ar isochrons give false ages that are too old. After subtracting 40Ar*that would accumulate by 40K decay since meteorite formation and small amounts of terrestrial 40Ar, all young age samples give similar 40Arxs concentrations of ?1–2 × 10?6cm3/g, but a variation in K content by a factor of ?80. Previously reported NASA Johnson Space Center data for Zagami, Shergotty, Yamato (Y‐) 000097, Y‐793605, and Queen Alexandra Range (QUE) 94201 shergottites show similar concentrations of 40Arxs to the new meteorite data reported here. Similar 40Arxs in different minerals and meteorites cannot be explained as arising from Martian atmosphere carried in strongly shocked phases such as melt veins. We invoke the explanation given by Bogard and Park (2008) for Zagami, that this 40Arxs in shergottites was acquired from the magma. Similarity in 40Arxs among shergottites may reveal common magma sources and/or similar magma generation and emplacement processes.  相似文献   

19.
Abstract— We report a high‐resolution 40Ar‐39Ar study of mineral separates and whole‐rock samples of olivine‐phyric (Dhofar 019, Sayh al Uhaymir [SaU] 005) and basaltic (Shergotty, Zagami) shergottites. Excess argon is present in all samples. The highest (40Ar/36Ar)trapped ratios are found for argon in pyroxene melt inclusions (?1500), maskelynite (?1200), impact glass (?1800) of Shergotty and impact glass of SaU 005 (?1200). A high (40Ar/36Ar)trapped component‐usually uniquely ascribed to Martian atmosphere‐can also originate from the Martian interior, indicating a heterogeneous Martian mantle composition. As additional explanation of variable high (40Ar/36Ar)trapped ratios in shocked shergottites, we suggest argon implantation from a “transient atmosphere” during impact induced degassing. The best 40Ar‐39Ar age estimate for Dhofar 019 is 642 ± 72 Ma (maskelynite). SaU 005 samples are between 700–900 Ma old. Relatively high 40Ar‐39Ar ages of melt inclusions within Dhofar 019 (1086 ± 252 Ma) and SaU 005 olivine (885 ± 66 Ma) could date entrapment of a magmatic liquid during early olivine crystallization, or reflect unrecognized excess 40Ar components. The youngest 40Ar‐39Ar age of Shergotty separates (maskelynite) is ?370 Ma, that of Zagami is ?200 Ma. The 40Ar‐39Ar chronology of Dhofar 019 and SaU 005 indicate >1 Ga ages. Apparent ages uncorrected for trapped (e.g., Martian atmosphere, mantle) argon components approach 4.5 Ga, but are not caused by inherited 40Ar, because excess 40Ar is supported by 36Artrapped. Young ages obtained by 40Ar‐39Ar and other chronometers argue for primary rather than secondary events. The cosmic ray exposure ages calculated from cosmogenic argon are 15.7 ± 0.7 Ma (Dhofar 019), 1.0–1.6 Ma (SaU 005), 2.1–2.5 Ma (Shergotty) and 2.2–3.0 Ma (Zagami).  相似文献   

20.
NWA 2737, a Martian meteorite from the Chassignite subclass, contains minute amounts (0.010 ± 0.005 vol%) of metal‐saturated Fe‐Ni sulfides. These latter bear evidence of the strong shock effects documented by abundant Fe nanoparticles and planar defects in Northwest Africa (NWA) 2737 olivine. A Ni‐poor troilite (Fe/S = 1.0 ± 0.01), sometimes Cr‐bearing (up to 1 wt%), coexists with micrometer‐sized taenite/tetrataenite‐type native Ni‐Fe alloys (Ni/Fe = 1) and Fe‐Os‐Ir‐(Ru) alloys a few hundreds of nanometers across. The troilite has exsolved flame‐like pentlandite (Fe/Fe + Ni = 0.5–0.6). Chalcopyrite is almost lacking, and no pyrite has been found. As a hot desert find, NWA 2737 shows astonishingly fresh sulfides. The composition of troilite coexisting with Ni‐Fe alloys is completely at odds with Chassigny and Nahkla sulfides (pyrite + metal‐deficient monoclinic‐type pyrrhotite). It indicates strongly reducing crystallization conditions (close to IW), several log units below the fO2 conditions inferred from chromites compositions and accepted for Chassignites (FMQ‐1 log unit). It is proposed that reduction in sulfides into base and precious metal alloys is operated via sulfur degassing, which is supported by the highly resorbed and denticulated shape of sulfide blebs and their spongy textures. Shock‐related S degassing may be responsible for considerable damages in magmatic sulfide structures and sulfide assemblages, with concomitant loss of magnetic properties as documented in some other Martian meteorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号