首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The new pollen record from the upper 12.75 m of a sediment core obtained in Lake Ladoga documents regional vegetation and climate changes in northwestern Russia over the last 13.9 cal. ka. The Lateglacial chronostratigraphy is based on varve chronology, while the Holocene stratigraphy is based on AMS 14C and OSL dates, supported by comparison with regional pollen records. During the Lateglacial (c. 13.9–11.2 cal. ka BP), the Lake Ladoga region experienced several climatic fluctuations as reflected in vegetation changes. Shrub and grass communities dominated between c. 13.9 and 13.2 cal. ka BP. The increase in Picea pollen at c. 13.2 cal. ka BP probably reflects the appearance of spruce in the southern Ladoga region at the beginning of the Allerød interstadial. After c. 12.6 cal. ka BP, the Younger Dryas cooling caused a significant decrease in spruce and increase in Artemisia with other herbs, indicative of tundra‐ and steppe‐like vegetation. A sharp transition from tundra‐steppe habitats to sparse birch forests characterizes the onset of Holocene warming c. 11.2 cal. ka BP. Pine forests dominated in the region from c. 9.0 to 8.1 cal. ka BP. The most favourable climatic conditions for deciduous broad‐leaved taxa existed between c. 8.1 and 5.5 cal. ka BP. Alder experiences an abrupt increase in the local vegetation c. 7.8 cal. ka BP. The decrease in tree pollen taxa (especially Picea) and the increase in herbs (mainly Poaceae) probably reflect human activity during the last 2.2 cal. ka. Pine forests have dominated the region since that time. Secale and other Cerealia pollen as well as ruderal herbs are permanently recorded since c. 0.8 cal. ka BP.  相似文献   

2.
The deglaciation history and Holocene environmental evolution of northern Wijdefjorden, Svalbard, are reconstructed using sediment cores and acoustic data (multibeam swath bathymetry and sub-bottom profiler data). Results reveal that the fjord mouth was deglaciated prior to 14.5±0.3 cal. ka BP and deglaciation occurred stepwise. Biomarker analyses show rapid variations in water temperature and sea ice cover during the deglaciation, and cold conditions during the Younger Dryas, followed by minimum sea ice cover throughout the Early Holocene, until c. 7 cal. ka BP. Most of the glaciers in Wijdefjorden had retreated onto land by c. 7.6±0.2 cal. ka BP. Subsequently, the sea-ice extent increased and remained high throughout the last part of the Holocene. We interpret a high Late Holocene sediment accumulation rate in the northernmost core to reflect increased sediment flux to the site from the outlet of the adjacent lake Femmilsjøen, related to glacier growth in the Femmilsjøen catchment area. Furthermore, increased sea ice cover, lower water temperatures and the re-occurrence of ice-rafted debris indicate increased local glacier activity and overall cooler conditions in Wijdefjorden after c. 0.5 cal. ka BP. We summarize our findings in a conceptual model for the depositional environment in northern Wijdefjorden from the Late Weichselian until present.  相似文献   

3.
Lake sedimentary records that allow documentation of the distinct climatic and environmental shifts during the early part of the Last Termination are scarce for northern Europe. This multi‐proxy study of the sediments of Atteköpsmosse, southwest Sweden, therefore fills an important gap and provides detailed information regarding past hydroclimatic conditions and local environmental responses to climatic shifts. Lake infilling started c. 15.5 cal. ka BP, but low aquatic productivity, cold summer lake water temperatures, unstable catchments, and scarce herb and shrub vegetation prevailed until c. 14.7–14.5 cal. ka BP. Inflow of warmer air masses and higher July air temperatures favoured a rise in aquatic productivity and lake water summer temperatures, and the establishment of a diverse herb, shrub and dwarf shrub vegetation, which also included tree birch c. 14.5 cal. ka BP. Freshening of the moisture source region c. 13.7–13.6 cal. ka BP does not seem to have had a large impact on the ancient lake and its catchment, as lake aquatic productivity increased further and lake water summer temperatures and minimum mean July air temperatures remained around 12–14 °C. In contrast, further freshening of the moisture source region c. 13 cal. ka BP triggered a decrease in lake productivity, drier conditions and lower lake water summer temperatures. Macroscopic finds of tree Betula and Pinus sylvestris at 13–12.8 cal. ka BP demonstrate the presence of these trees in the lake's catchment. The transition into the Holocene (11.6–11.5 cal. ka BP) is marked by a change in chironomid assemblages and by a rise in lake water summer temperatures and aquatic productivity. These changes were followed by the re‐establishment of a diverse aquatic and terrestrial vegetation, including tree birch and Pinus sylvestris at 11.4 cal. ka BP.  相似文献   

4.
Lake Ladoga in northwestern Russia is Europe's largest lake. The postglacial history of the Ladoga basin is for the first time documented continuously with high temporal resolution in the upper 13.3 m of a sediment core (Co1309) from the northwestern part of the lake. We applied a multiproxy approach including radiographic imaging, (bio‐)geochemical and granulometric analyses. Age control was established combining radiocarbon dating with varve chronology, the latter anchored to a correlated radiocarbon age from a lake close by. The age‐depth model reveals the onset of glacial varve sedimentation at 13 910±140 cal. a BP, when Lake Ladoga was part of the Baltic Ice Lake. Linear extrapolation of published retreat rates of the Scandinavian Ice Sheet provides a formation age of the Luga moraine close to Lake Ladoga's southern shore of 14.5–15.9 cal. ka BP, older than previously assumed. Varve sedimentation covers the Bølling/Allerød interstadial, the Younger Dryas stadial and the Early Holocene. Varve‐thickness variations, conjoined with grain‐size and geochemical variations, inform about the relative position of the Scandinavian Ice Sheet and the climate during the deglaciation phase. The upper limit of the varved succession marks the change from glaciolacustrine to normal lacustrine sedimentation and post‐dates the drainage of the Baltic Ice Lake as well as the formation of the Salpausselkä II moraine north of Lake Ladoga, by c. 250 years. The Holocene sediment record is divided into three periods in the following order: (i) a lower transition zone between the Holocene boundary and c. 9.5 cal. ka BP, characterized by mostly massive sediments with low organic content, (ii) a phase with increased organic content from c. 9.5 to 4.5 cal. ka BP corresponding to the Holocene Thermal Maximum, and (iii) a phase with relatively stable sedimentation in a lacustrine environment from c. 4.5 cal. ka BP until present.  相似文献   

5.
This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely.  相似文献   

6.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

7.
Expansion of fresh and sea‐ice loaded surface waters from the Arctic Ocean into the sub‐polar North Atlantic is suggested to modulate the northward heat transport within the North Atlantic Current (NAC). The Reykjanes Ridge south of Iceland is a suitable area to reconstruct changes in the mid‐ to late Holocene fresh and sea‐ice loaded surface water expansion, which is marked by the Subarctic Front (SAF). Here, shifts in the location of the SAF result from the interaction of freshwater expansion and inflow of warmer and saline (NAC) waters to the Ridge. Using planktic foraminiferal assemblage and concentration data from a marine sediment core on the eastern Reykjanes Ridge elucidates SAF location changes and thus, changes in the water‐mass composition (upper ˜200 m) during the last c. 5.8 ka BP. Our foraminifer data highlight a late Holocene shift (at c. 3.0 ka BP) in water‐mass composition at the Reykjanes Ridge, which reflects the occurrence of cooler and fresher surface waters when compared to the mid‐Holocene. We document two phases of SAF presence at the study site: from (i) c. 5.5 to 5.0 ka BP and (ii) c. 2.7 to 1.5 ka BP. Both phases are characterized by marked increases in the planktic foraminiferal concentration, which coincides with freshwater expansions and warm subsurface water conditions within the sub‐polar North Atlantic. We link the SAF changes, from c. 2.7 to 1.5 ka BP, to a strengthening of the East Greenland Current and a warming in the NAC, as identified by various studies underlying these two currents. From c. 1.5 ka BP onwards, we record a prominent subsurface cooling and continued occurrence of fresh and sea‐ice loaded surface waters at the study site. This implies that the SAF migrated to the southeast of our core site during the last millennium.  相似文献   

8.
Based on geological and archaeological proxies from NW Russia and NE Estonia and on GIS‐based modelling, shore displacement during the Stone Age in the Narva‐Luga Klint Bay area in the eastern Gulf of Finland was reconstructed. The reconstructed shore displacement curve displays three regressive phases in the Baltic Sea history, interrupted by the rapid Ancylus Lake and Litorina Sea transgressions c. 10.9–10.2 cal. ka BP and c. 8.5–7.3 cal. ka BP, respectively. During the Ancylus transgression the lake level rose 9 m at an average rate of about 13 mm per year, while during the Litorina transgression the sea level rose 8 m at an average rate of about 7 mm per year. The results show that the highest shoreline of Ancylus Lake at an altitude of 8–17 m a.s.l. was formed c. 10.2 cal. ka BP and that of the Litorina Sea at an altitude of 6–14 m a.s.l., c. 7.3 cal. ka BP. The oldest traces of human activity dated to 8.5–7.9 cal. ka BP are associated with the palaeo‐Narva River in the period of low water level in the Baltic basin at the beginning of the Litorina Sea transgression. The coastal settlement associated with the Litorina Sea lagoon, presently represented by 33 Stone Age sites, developed in the area c. 7.1 cal. ka BP and existed there for more than 2000 years. Transformation from the coastal settlement back to the river settlement indicates a change from a fishing‐and‐hunting economy to farming and animal husbandry c. 4.4 cal. ka BP, coinciding with the time of the overgrowing of the lagoon in the Narva‐Luga Klint Bay area.  相似文献   

9.
A sudden release of large volumes of water during a glacier outburst flood (GLOF) is a major hazard worldwide. Here, we identify the sedimentary signature of glacial and non‐glacial processes, including GLOFs, based on lacustrine sediments from the distal glacier‐fed Lake Buarvatnet in western Norway. Historically documented GLOFs in 2002 CE and during the 1980s CE are identified in the 210Pb‐ and 14C‐dated sediments. These events have the same sedimentary signature as 12 earlier events throughout the Holocene interpreted to represent previous GLOFs in the catchment. The GLOFs are interpreted to have occurred during periods when the glacier extent was similar to the modern positions, and the events are thus used to pinpoint past positions of the glacier terminus and, hence, the equilibrium line altitudes (ELAs). The results indicate that the glacier Svartenutbreen, located at the eastern part of Folgefonna, had a similar size in 2002 CE as c. 8200–8300 cal. a BP, corresponding to the 8.2 ka event in the North Atlantic region. The regrowth of Sørfonna after the Holocene Thermal Optimum occurred at c. 6900 cal. a BP and Svartenutbreen was at modern size and extent in the periods c. 6400, c. 5450, c. 4850, c. 3850, c. 3550 and c. 1650 cal. a BP. Since 1650 cal. a BP, we infer that the glacier was larger than the 2002 CE glacier extent until 1910 CE when a GLOF occurred. Svartenutbreen has been retreating since 1910 CE, which led to the ice damming of the two historical GLOFs in the 1980s and 2002 CE separated by a glacier advance in the 1990s CE. The findings are discussed and compared to other regional glacier reconstructions in Norway, and emphasize the value of identifying and utilizing GLOFs as an indicator of past ELA variability.  相似文献   

10.
We present a Holocene record of floristic diversity and environmental change for the central Varanger Peninsula, Finnmark, based on ancient DNA extracted from the sediments of a small lake (sedaDNA). The record covers the period c. 10 700 to 3300 cal. a BP and is complemented by pollen data. Measures of species richness, sample evenness and beta diversity were calculated based on sedaDNA sampling intervals and 1000‐year time windows. We identified 101 vascular plant and 17 bryophyte taxa, a high proportion (86%) of which are still growing within the region today. The high species richness (>60 taxa) observed in the Early Holocene, including representatives from all important plant functional groups, shows that modern shrub‐tundra communities, and much of their species complement, were in place as early as c. 10 700 cal. a BP. We infer that postglacial colonization of the area occurred prior to the full Holocene, during the Pleistocene‐Holocene transition, Younger Dryas stadial or earlier. Abundant DNA of the extra‐limital aquatic plant Callitriche hermaphroditica suggests it expanded its range northward between c. 10 200 and 9600 cal. a BP, when summers were warmer than present. High values of Pinus DNA occur throughout the record, but we cannot say with certainty if they represent prior local presence; however, pollen influx values >500 grains cm?2 a?1 between c. 8000 and 7300 cal. a BP strongly suggest the presence of pine woodland during this period. As the site lies beyond the modern tree limit of pine, it is likely that this expansion also reflects a response to warmer Early Holocene summers.  相似文献   

11.
This paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra- and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae ~16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared ~15.9 cal. ka BP, and became dominant after ~15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after ~13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communities gradually decreased in the vegetation reaching a minimum ~11.8 cal. ka BP. A gradual decrease of algae remains suggests a reduction of shallow-water habitats. Shrubby and graminoid tundra was dominant ~11.8–11.1 cal. ka BP, later Salix stands significantly decreased. The forest-tundra ecotone established in the Early Holocene, shortly after 11.1 cal. ka BP. Low contents of green algae in the Early Holocene sediments likely reflect deeper aquatic conditions. The most favourable climate conditions were between ~10.6 and 7 cal. ka BP. Vegetation became similar to the modern after ~7 cal. ka BP but Pinus pumila came to the Ilirney area at about 1.2 cal. ka BP. It is important to emphasize that the study area provided refugia for Betula and Alnus during MIS 2. It is also notable that our records do not reflect evidence of Younger Dryas cooling, which is inconsistent with some regional environmental records but in good accordance with some others.  相似文献   

12.
Holocene sedimentation patterns and environmental development in Aarhus Bay, Denmark, were reconstructed based on proxy analyses of two sediment cores (M1 and M5). Together, the two cores offer an opportunity to examine the history of the area during the past c. 10 000 years. The investigation consisted of acoustic mapping and multi-proxy analyses of the sediment cores including macrofossils, sediment physical properties, sediment accumulation rates, grain size, and X-ray fluorescence elemental counts. Radiocarbon dating of the two sediment successions revealed that they cover the periods c. 10 000–3700 cal. a BP (M1) and c. 4400 cal. a BP to the present (M5). The data from the M1 site indicate the presence of a near-shore lake environment between c. 10 000 and 9000 cal. a BP. The first intrusion of marine water into the area is dated to c. 9000 cal. a BP. In the following c. 1300 years, brackish-water conditions prevailed in the area characterized by a mixture of taxa from marine, limnic and terrestrial habitats, reflecting a shallow estuarine environment. Around 7700 cal. a BP full marine conditions were established, accompanied by a marked increase in sedimentation rates. The changes to full marine conditions and higher sedimentation rates are probably due to a significant sea-level rise leading to flooding of former land areas and intensified erosion. A subsequent distinct decrease in sedimentation rates around 6350 cal. a BP is presumably linked to a previously documented sea-level drop about this time. Continuous sedimentation ceased around 3700 cal. a BP in the central part of the bay, most probably due to a major sea-level lowering involving widespread erosion. In the eastern and deeper part of the bay, sedimentation continued until today. Fully marine conditions prevailed there for at least the last 4400 years.  相似文献   

13.
The Last Termination (19 000–11 000 a BP) with its rapid and distinct climate shifts provides a perfect laboratory to study the nature and regional impact of climate variability. The sedimentary succession from the ancient lake at Hässeldala Port in southern Sweden with its distinct Lateglacial/early Holocene stratigraphy (>14.1–9.5 cal. ka BP) is one of the few chronologically well‐constrained, multi‐proxy sites in Europe that capture a variety of local and regional climatic and environmental signals. Here we present Hässeldala's multi‐proxy records (lithology, geochemistry, pollen, diatoms, chironomids, biomarkers, hydrogen isotopes) in a refined age model and place the observed changes in lake status, catchment vegetation, summer temperatures and hydroclimate in a wider regional context. Reconstructed mean July temperatures increased between c. 14.1 and c. 13.1 cal. ka BP and subsequently declined. This latter cooling coincided with drier hydroclimatic conditions that were probably associated with a freshening of the Nordic Seas and started a few hundred years before the onset of Greenland Stadial 1 (c. 12.9 cal. ka BP). Our proxies suggest a further shift towards colder and drier conditions as late as c. 12.7 cal. ka BP, which was followed by the establishment of a stadial climate regime (c. 12.5–11.8 cal. ka BP). The onset of warmer and wetter conditions preceded the Holocene warming over Greenland by c. 200 years. Hässeldala's proxies thus highlight the complexity of environmental and hydrological responses across abrupt climate transitions in northern Europe.  相似文献   

14.
The Baltic Sea (~393 000 km2) is the largest brackish sea in the world and its hydrographic and environmental conditions are strongly dependent on the frequency of saline water inflows from the North Sea. To improve our understanding of the natural variability of the Baltic Sea ecosystem detailed reconstructions of past saline water inflow changes based on palaeoecological archives are needed. Here we present a high‐resolution study of benthic foraminiferal assemblages accompanied by sediment geochemistry (loss on ignition, total organic carbon) and other microfossil data (ostracods and cladocerans) from a well‐dated 8‐m‐long gravity core taken in the Bornholm Basin. The foraminiferal diversity in the core is low and dominated by species of Elphidium. The benthic foraminiferal faunas in the central Baltic require oxic bottom water conditions and salinities >11–12 PSU. Consequently, shell abundance peaks in the record reflect frequent saline water inflow phases. The first appearance of foraminiferal tests and ostracods in the investigated sediment core is dated to c. 6.9 cal. ka BP and attributed to the first inflows of saline and oxygenated bottom waters into the Bornholm Basin during the Littorina Sea transgression. The transgression terminated the Ancylus Lake phase, reflected in the studied record by abundant cladocerans. High absolute foraminiferal abundances are found within two time intervals: (i) c. 5.5–4.0 cal. ka BP (Holocene Thermal Maximum) and (ii) c. 1.3–0.75 cal. ka BP (Medieval Climate Anomaly). Our data also show three intervals of absent or low saline water inflows: (i) c. 6.5–6.0 cal. ka BP, (ii) c. 3.0–2.3 cal. ka BP and (iii) c. 0.5–0.1 cal. ka BP (Little Ice Age). Our study demonstrates a strong effect of saline and well‐oxygenated water inflows from the Atlantic Ocean on the Baltic Sea ecosystem over millennial time scales, which is linked to the major climate transitions over the last 7 ka.  相似文献   

15.
This study presents a multi‐proxy record from Lake Kotokel in the Baikal region at decadal‐to‐multidecadal resolution and provides a reconstruction of terrestrial and aquatic environments in the area during a 2000‐year interval of globally harsh climate often referred to as the Last Glacial Maximum (LGM). The studied lake is situated near the eastern shoreline of Lake Baikal, in a climatically sensitive zone that hosts boreal taiga and cold deciduous forests, cold steppe associations typical for northern Mongolia, and mountain tundra vegetation. The results provide a detailed picture of the period in focus, indicating (i) a driest phase (c. 24.0–23.4 cal. ka BP) with low precipitation, high summer evaporation, and low lake levels, (ii) a transitional interval of unstable conditions (c. 23.4–22.6 cal. ka BP), and (iii) a phase (c. 22.6–22.0 cal. ka BP) of relatively high precipitation (and moisture availability) and relatively high lake levels. One hotly debated issue in late Quaternary research is regional summer thermal conditions during the LGM. Our chironomid‐based reconstruction suggests at least 3.5 °C higher than present summer temperatures between c. 22.6 and 22.0 cal. ka BP, which are well in line with warmer and wetter conditions in the North Atlantic region inferred from Greenland ice‐cores. Overall, it appears that environments in central Eurasia during the LGM were affected by much colder than present winter temperatures and higher than present summer temperatures, although the effects of temperature oscillations were strongly influenced by changes in humidity.  相似文献   

16.
Atmospheric circulation over the North Atlantic has undergone significant fluctuations during the Holocene. To better constrain these changes and their impacts on the Fennoscandian subarctic, we investigated molecular and inorganic proxies as well as plant wax D/H isotopes (δDC28) in a Holocene sedimentary record from Lake Torneträsk (Sweden). These data indicate a thermal maximum c. 8100 to 6300 cal. a BP with reduced soil organic matter input, followed by a long‐term cooling trend with increasing soil erosion. δD data suggest a stable atmospheric circulation with predominance of westerly flow and North Atlantic moisture sourcing during the Early and Middle Holocene. A substantial depletion in δD followed by increased flood frequency starting at c. 5300 cal. a BP and intensifying c. 1500 cal. a BP suggests a reorganization of the atmospheric circulation from zonal towards meridional flow with predominantly Arctic Ocean and Baltic Sea moisture sourcing.  相似文献   

17.
Seismostratigraphical studies of the 11.8‐km2‐large and ~140‐m‐deep Lake Bolshoye Shchuchye, Polar Ural Mountains, reveal up to 160‐m‐thick acoustically laminated sediments in the lake basin. Using a dense grid of seismic lines, the spatial and temporal distributions of the sedimentary history have been reconstructed. Three regional seismic horizons have been identified and correlated with the well‐dated 24‐m‐long sediment core retrieved from the lake. Isopach maps constructed from the seismic data show four phases of sedimentation. A contour map of the deepest regional seismic reflector represents the earliest hemipelagic sedimentation in the lake. Three contour maps represent time intervals covering the last 23 cal. ka based on the well‐dated core stratigraphy from the lake. The detailed time constraints on the upper stratigraphical units in the lake allow calculation of the lake's development in terms of sediment fluxes and the denudation rates from the Last Glacial Maximum (LGM) to the present. The sedimentation in Lake Bolshoye Shchuchye has been dominated by hemipelagic processes during at least the last 24 cal. ka BP only locally interrupted by delta progradation and slope processes. A major shift in the sediment accumulation at c. 18.7 cal. ka BP is interpreted to mark the end of the local glacial maximum, greatly reduced denudation and the onset of the deglaciation period; this also demonstrates how fast the glaciers melted and possibly disappeared at the end of the LGM. The denudation rate during the Holocene is only a fifth of the LGM rate. The age of the oldest stratified sediments in Lake Bolshoye Shchuchye is not well constrained, but estimated as c. 50–60 ka.  相似文献   

18.
Luoto, T. P. & Sarmaja‐Korjonen, K. 2011: Midge‐inferred Holocene effective moisture fluctuations in a subarctic lake, northern Lapland. Boreas, 10.1111/j.1502‐3885.2011.00217.x. ISSN 0300‐9483. We examined fossil midge (Diptera: Chironomidae) assemblages from Lake Várddoaijávri, northern Finland to track Holocene effective moisture variability. Application of a midge‐based water‐depth calibration model showed that the early Holocene was characterized by a high water level compared with the Holocene average, but the inferred values decreased at c. 8000 cal. a BP and increased again towards c. 6000 cal. a BP. The inferred water level decreased at c. 5500 cal. a BP, but increased again towards c. 4000 cal. a BP. Between 4000 and 3000 cal. a BP the lake experienced two rapid events of lower water level. A relatively high water level detected at c. 3000 cal. a BP was followed by a lowering towards c. 2000 cal. a BP. The time period from c. 2000 cal. a BP onwards was characterized by a general rise in lake level towards the present. Overall, the present reconstruction shows a close correspondence in its trends to previous lake‐level records in the region. Two common core taxa, Paratanytarsus and Corynocera ambigua, did not correlate significantly with water depth in the calibration data, creating a potential error source for the present lake‐level reconstruction. However, statistical analysis showed a clear community response to long‐term lake‐level changes, and therefore the major trends in Holocene effective moisture patterns were revealed. The present palaeoclimatic information can also serve as valuable background data when assessing the effects of the present climate change.  相似文献   

19.
Bolshaya Imandra, the northern sub-basin of Lake Imandra, was investigated by a hydro-acoustic survey followed by sediment coring down to the acoustic basement. The sediment record was analysed by a combined physical, biogeochemical, sedimentological, granulometrical and micropalaeontological approach to reconstruct the regional climatic and environmental history. Chronological control was obtained by 14C dating, 137Cs, and Hg markers as well as pollen stratigraphy and revealed that the sediment succession offers the first continuous record spanning the Lateglacial and Holocene for this lake. Following the deglaciation prior to c. 13 200 cal. a BP, the lake's sub-basin initially was occupied by a glacifluvial river system, before a proglacial lake with glaciolacustrine sedimentation established. Rather mild climate, a sparse vegetation cover and successive retreat of the Scandinavian Ice Sheet (SIS) from the lake catchment characterized the Bølling/Allerød interstadial, lasting until 12 710 cal. a BP. During the subsequent Younger Dryas chronozone, until 11 550 cal. a BP, climate cooling led to a decrease in vegetation cover and a re-advance of the SIS. The SIS disappeared from the catchment at the Holocene transition, but small glaciers persisted in the mountains at the eastern lake shore. During the Early Holocene, until 8400 cal. a BP, sedimentation changed from glaciolacustrine to lacustrine and rising temperatures caused the spread of thermophilous vegetation. The Middle Holocene, until 3700 cal. a BP, comprises the regional Holocene Thermal Maximum (8000–4600 cal. a BP) with relatively stable temperatures, denser vegetation cover and absence of mountain glaciers. Reoccurrence of mountain glaciers during the Late Holocene, until 30 cal. a BP, presumably results from a slight cooling and increased humidity. Since c. 30 cal. a BP Lake Imandra has been strongly influenced by human impact, originating in industrial and mining activities. Our results are in overall agreement with vegetation and climate reconstructions in the Kola region.  相似文献   

20.
Lake Ladoga hosts preglacial sediments, although the Eurasian ice sheet overrode the area during the LGM. These sediments were first discovered by a seismic survey and are investigated using a 22.75‐m‐long core. Its upper 13.30 m comprise Holocene and Lateglacial sediments separated from the lower 11.45 m of preglacial sediments by a hiatus. They consist of highly terrigenous lacustrine sediments, which according to OSL dating, were deposited during an early stage of the last ice age (MIS 5). The palynological data allow a first reconstruction of the Early Weichselian environmental history for northwestern Russia. Birch and alder forests with broad‐leaved taxa dominated during MIS 5d (c. 118–113 ka), suggesting a climate more favourable than in the Holocene. A high content of well‐sorted sands and poorly preserved palynomorphs indicates a shallow‐water environment at least temporarily. More fine‐grained sediments and better preserved organic remains suggest deeper water environments at the core location during MIS 5c (c. 113–88 ka). Pine and spruce became dominant, while broad‐leaved taxa started to disappear, especially after c. 90 ka, pointing to a gradual climate cooling. An increase in open herb‐dominated habitats at the beginning of MIS 5b (c. 88–86 ka) reflects a colder and dryer climate. However, later (c. 86–82 ka) pine and spruce again became more common. Birch and alder forests dominated in the area c. 82–80 ka (beginning of MIS 5a). Although open treeless habitats also became more common at this time, a slight increase in hazel may point to somewhat warmer climate conditions coinciding with the beginning of MIS 5a. The studied sediments also contain numerous remains of freshwater algae and cysts of marine and brackish‐water dinoflagellates and acritarchs documenting that the present lake basin was part of a brackish‐water basin during the Early Weichselian, probably as a gulf of the Pre‐Baltic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号