首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
A wildfire in May 1996 burned 4690 hectares in two watersheds forested by ponderosa pine and Douglas fir in a steep, mountainous landscape with a summer, convective thunderstorm precipitation regime. The wildfire lowered the erosion threshold in the watersheds, and consequently amplified the subsequent erosional response to shorter time interval episodic rainfall and created both erosional and depositional features in a complex pattern throughout the watersheds. The initial response during the first four years was an increase in runoff and erosion rates followed by decreases toward pre‐fire rates. The maximum unit‐area peak discharge was 24 m3 s?1 km?2 for a rainstorm in 1996 with a rain intensity of 90 mm h?1. Recovery to pre‐fire conditions seems to have occurred by 2000 because for a maximum 30‐min rainfall intensity of 50 mm h?1, the unit‐area peak discharge in 1997 was 6.6 m3 s?1 km?2, while in 2000 a similar intensity produced only 0.11 m3 s?1 km?2. Rill erosion accounted for 6 per cent, interrill erosion for 14 per cent, and drainage erosion for 80 per cent of the initial erosion in 1996. This represents about a 200‐fold increase in erosion rates on hillslopes which had a recovery or relaxation time of about three years. About 67 per cent of the initially eroded sediment is still stored in the watersheds after four years with an estimated residence time greater than 300 years. This residence time is much greater than the fire recurrence interval so erosional and depositional features may become legacies from the wildfire and may affect landscape evolution by acting as a new set of initial conditions for subsequent wildfire and flood sequences. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

2.
On 29 August, 2003, an intense convective storm system affected the Fella River basin, in the eastern Italian Alps, producing rainfall peaks of approximately 390 mm in 12 h. The storm triggered an unusually large debris flow in the ungauged Rio Cucco basin (0·65 km2), with a volume of approximately 78 000 m3. The analysis of the time evolution of the rainstorm over the basin has been based on rainfall estimates from radar observations and data recorded by a raingauge network. Detailed geomorphological field surveys, carried out both before and after the flood of August 2003, and the application of a distributed hydrological model have enabled assessment of flood response, estimation of erosion volumes and sediment supply to the channel network. The accounts of two eyewitnesses have provided useful elements for reconstructing the time evolution and the flow processes involved in the event. Liquid peak discharge estimates cluster around 20 m3 s?1 km?2, placing this event on the flood envelope curve for the eastern Italian Alps. The hydrological analysis has shown that the major controls of the flood response were the exceptional cumulated rainfall amount, required to exceed the large initial losses, and the large rainfall intensities at hourly temporal scales, required to generate high flood response at the considered basin scale. Observations on the deposits accumulated on the alluvial fan indicate that, although the dominant flow process was a debris flow, sheetflood also contributed to fan aggradation and fluvial reworking had an important role in winnowing debris‐flow lobes and redistributing sediment on the fan surface. This points out to the large discharge values during the recession phase of the flood, implying an important role for subsurface flow on runoff generation of this extreme flash flood event. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Rainfall, peak discharges, and suspended sediment transport were surveyed for 280 events in three small (0.8 to 10 km2) catchments in a hilly area derived from Neogene marls, silts, and sands. Under similar hydrological input conditions, stream flow behaviour and sediment delivery differed considerably from one catchment to another, depending on topography, lithology, land use, and especially sediment availability. Analytical treatment of data showed a good fit between sediment yield and peak flow discharge. Less good, although still significant, was the correlation between sediment concentration and discharge values for different flow stages. Rainfall peak/basin lag time and rainfall/discharge showed poor or no correlation, mainly due to strong variations in rainfall distribution. Sediment concentration in the catchments varied enormously according to season, from zero up to 334 g 1?1; sediment yield was 160-900 tonnes km?2 yr?1 in the two major catchments, and over 5200 tonnes km?2 yr?1 in the headwater catchment, stressing the importance of small tributaries not only in inducing floods in downstream channels, but also in sediment supply.  相似文献   

4.
Raise Beck is a mountain torrent located in the central Lake District fells, northern England (drainage area of 1·27 km2). The torrent shows evidence of several major flood events, the most recent of which was in January 1995. This event caused a major channel avulsion at the fan apex diverting the main flood flow to the south, blocking the A591 trunk road and causing local flooding. The meteorological conditions associated with this event are described using local rainfall records and climatic data. Records show 164 mm of rainfall in the 24 hours preceding the flood. The peak flood discharge is reconstructed using palaeohydrological and rainfall–runoff methods, which provide discharge values of 27–74 m3 s?1, and 4–6 m3 s?1, respectively. The flood transported boulders with b‐axes up to 1400 mm. These results raise some important general questions about flood estimation in steep mountain catchments. The geomorphological impact of the event is evaluated by comparing aerial photographs from before and after the flood, along with direct field observations. Over the historical timescale the impact and occurrence of flooding is investigated using lichenometry, long‐term rainfall data, and documentary records. Two major historical floods events are identified in the middle of the nineteenth century. The deposits of the recent and historical flood events dominate the sedimentological evidence of flooding at Raise Beck, therefore the catchment is sensitive to high magnitude, low frequency events. Following the 1995 flood much of the lower catchment was channelized using rip‐rap bank protection, re‐establishing flow north towards Thirlmere. The likely success of this management strategy in containing future floods is considered, based on an analysis of channel capacities. It is concluded that the channelization scheme is only a short‐term solution, which would fail to contain the discharge of an event equivalent to the January 1995 flood. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Geomorphological evidence and recent trash lines were used as stage indicators in a step-backwater computer model of high discharges through an ungauged bedrock channel. The simulation indicated that the peak discharge from the 26.7 m2 catchment was close to 150m3s?1 during the passage of Hurricane Charlie in August 1986. This estimate can be compared with an estimate of 130–160 m3s?1 obtained using the Flood Studies Report (FSR) unit hydrograph methodology. Other palaeostage marks indicate that higher stages have occurred at an earlier time associated with a discharge of 200 m3s?1. However, consideration of both the geometry of a plunge pool and transport criteria for bedrock blocks in the channel indicates that floods since 1986 have not exceeded 150 m3s?1. Given that the estimated probable maximum flood (PMF) calculated from revised FSR procedure is at least 240 m3s?1, it is concluded that compelling evidence for floods equal to the PMF is lacking. Taking into consideration the uncertainty of the discharge estimation, the 1986 flood computed using field evidence has a minimum return period of 100 years using the FSR procedure. This may be compared with a return period for the same event in the neighbouring gauged River Greta of > 100 years and a rainfall return period of 190 years. In as much as discharges of similar order to FSR estimates are indicated, it is concluded (a) that regional geomorphological evidence and flood simulation within ungauged catchments may be useful as a verification for hydrological estimates of recent widespread flood magnitude and (b) that palaeohydraulic computation can be useful in determining the magnitude of the local maximum [historic] flood when determining design discharges for hydraulic structures within specific catchments.  相似文献   

6.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Tropical rainforest canopy trees that have large projected areas of upwardly inclined branches are capable of funnelling large volumes of rainwater down their trunks. During periods of prolonged heavy rainfall on Mount Bellenden Ker in northeast Queensland, Australia, stemflow volumes were found to be as much as two orders of magnitude greater than the volume of incident rainfall expected in a rain gauge occupying an area equal to the trunk basal area. Stemflow totals ranging from 6000 to 70000 litres were generated by individual trees from 7800 mm of rainfall over two successive wet seasons. The combination of high intensity rainfall and the funnelling effect results in significant quantities of infiltration-excess at the ground surface. Stemflow fluxes as high as 31.4 cm3 min?1 per cm2 of basal area (i.e. the equivalent of 314 mm min?1) were recorded when rainfall intensity was only 2 mm min?1. The mean infiltration capacity of the topsoil was determined to be 6.2 mm min?1. The areas over which the stemflow would have had to spread in order to infiltrate were computed to be as much as 3 m2 around the bases of individual canopy trees. Approximations of the distances that the infiltration-excess would have travelled away from the tree bases were calculated by assuming that the infiltration area either expands radially outward in the form of an annulus or extends straight downslope from the tree base.  相似文献   

8.
This paper compares hydrologic records and geomorphic effects of several historic floods in the central Appalachian region of the eastern United States. The most recent of these, occurring in November 1985, was the largest ever recorded in West Virginia, with peak discharges exceeding the estimated 500-year discharge at eight of eleven stations in the South Branch Potomac River and Cheat River basins. Geomorphic effects on valley floors included some of the most severe and widespread floodplain erosion ever documented and exceeded anything seen in previous floods, even though comparable or greater rainfall and unit discharge have been observed several times in the region over the past 50 years. Comparison of discharge-drainage area plots suggests that the intensity and spatial scale of the November 1985 flood were optimal for erosion of valley floors along the three forks of the South Branch Potomac River. However, when a larger geographic area is considered, rainfall totals and discharge-drainage area relationships are insufficient predictors of geomorphic effectiveness for valley floors at drainage areas of 250 to 2500 km2. Unit stream power was calculated for the largest recorded flood discharge at 46 stations in the central Appalachians. Maximum values of unit stream power are developed in bedrock canyons, where the boundaries are resistant to erosion and the flow cross-section cannot adjust its width to accommodate extreme discharges. The largest value was 2570 W m?2; record discharge at most stations was associated with unit stream power values less than 300 W m?2, but more stations exceeded this value in the November 1985 flood than in the other floods that were analysed. Unit stream power at indirect discharge measurement sites near areas experiencing severe erosion in this and other central Appalachian floods generally exceeded 300 W m?2; reach-average values of 200-500 W m?2 were calculated for valleys where erosion damage was most widespread. Despite these general trends, unit stream power is not a reliable predictor of geomorphic change for individual sites. Improved understanding of flood impacts will require more detailed investigation of interactions between local site characteristics and patterns of flood flow over the valley floor.  相似文献   

9.
Ten representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils. The experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year?1 mean annual rainfall, north‐facing slopes, herbicide treated, and new (less than 3 years old) plantations. Ten rainfall simulation experiments (1 h at 55 mm h?1 on 0·25 m2 plots) were carried out at each of the 10 selected study sites to determine the interill soil erosion and runoff rates. The 100 rainfall simulation tests (10 × 10 m) showed that ponding and runoff occurred in all the plots, and quickly: 121 and 195 s, respectively, following rainfall initiation. Runoff discharge was one third of the rainfall, and sediment concentration reached 10·4 g L?1. The soil erosion rates were 2·4 Mg ha?1 h?1 under 5‐year return period rainfall thunderstorms. These are among the highest soil erosion rates measured in the western Mediterranean basin, similar to badland, mine spoil and road embankment land surfaces. The positive relationship between runoff discharge and sediment concentration (r2 = 0·83) shows that the sediment availability is very high. Soil erosion rates on new citrus orchards growing on sloped soils are neither tolerable nor sustainable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A sediment budget for an upland catchment–reservoir system at Burnhope Reservoir, North Pennines, UK has been developed. This provides a framework for quantifying historic and contemporary sediment yields and drainage basin response to disturbance from climate change and human activities in the recent past. Bathymetric survey, core sampling, 137Cs dating and aerial photographs have been used to assess sediment accumulation in the reservoir. The average reservoir sedimentation rate is 1·24 cm yr?1 (annual sediment yield 33·3 t km?2 yr?1 ± 10%, trap efficiency 92%). Mean annual reservoir sedimentation over the 67 year period has been estimated at 592 t ± 10%. Inputs of suspended sediment from direct catchwater streams account for 54% of sediment supply to the budget (best estimate yield of 318 t yr?1 ± 129%), while those from actively eroding reservoir shorelines contribute 328 t yr?1 ± 92%. Sediment yield estimates from stream monitoring and reservoir sedimentation are an order of magnitude lower than those reported from South Pennine reservoirs of comparable drainage basin area. Analysis of historical rainfall series for the catchment shows fluctuations in winter and summer rainfall patterns over the past 62 years. From 1976 to 1998 there has been a diverging trend between winter and summer rainfall, with a large increase in winter and a gradual decrease in summer totals. Periods of maximum variation occur during the summer drought events of the late 1970s, early 1980s and mid‐1990s. Analysis of the particle size of core sediments highlights abrupt increases in sand‐sized particles in the top 20 cm of the core. Based on the 137Cs chronology, these layers were deposited from the late 1970s onwards and relate to these diverging rainfall records and rapidly fluctuating reservoir levels. This provides evidence of potential sediment reworking within the reservoir by rapid water‐level rise after drought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The aim of this study is to analyze suspended sediment transport in a Mediterranean agricultural catchment under traditional soil and water conservation practices. Field measurements were conducted in Can Revull, a small ephemeral catchment (1.03 km2) on the island of Mallorca. This study uses continuous turbidity records to analyse suspended sediment transport regimes, construct and interpret multiple regression models of total suspended sediment concentration (SSC) and of SSC related to stormflow discharge, and assess the sediment loads and yields of three hydrological years (2004–2005 to 2006–2007). An annual average SSC of 17.3 mg l?1, with a maximum of 2270 mg l?1, was recorded in the middle of the winter period when rainfall intensities are high and headwater slopes are ploughed and thus bare. Strong seasonal contrasts of baseflow dynamics associated with different degrees of dilution provide a large scatter in SSC and in the derived rating curves, reflecting that other factors control the supply of suspended sediment. Multiple regression models identify rainfall intensity as the most significant variable in sediment supply. However, under baseflow conditions, physical and biological processes generate sediment in the channel that is subsequently removed during high flow. In contrast, when baseflow is not present, rainfall intensity is the only process that supplies sediment to the channel, mostly from hillslopes. Considering the study period as average in terms of total annual rainfall and intensities, suspended sediment yields were an order of magnitude lower than those obtained in other Mediterranean catchments, a factor that can be related to the historical use of soil conservation practices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Sensitivity analysis of the hydrological behaviour of basins has mainly focused on the correlation between streamflow and climate, ignoring the uncertainty of future climate and not utilizing complex hydrological models. However, groundwater storage is affected by climatic change and human activities. The streamflow of many basins is primarily sourced from the natural discharge of aquifers in upstream regions. The correlation between streamflow and groundwater storage has not been thoroughly discussed. In this study, the storage–discharge sensitivity of 22 basins in Taiwan was investigated by means of daily streamflow and rainfall data obtained over more than 30 years. The relationship between storage and discharge variance was evaluated using low‐flow recession analysis and a water balance equation that ignores the influence of rainfall and evapotranspiration. Based on the obtained storage–discharge sensitivity, this study explored whether the water storage and discharge behaviour of the studied basins is susceptible to climate change or human activities and discusses the regional differences in storage–discharge sensitivity. The results showed that the average storage–discharge sensitivities were 0.056 and 0.162 mm?1 in the northern and southern regions of Taiwan, respectively. In the central and eastern regions, the values were both 0.020 mm?1. The storage–discharge sensitivity was very high in the southern region. The regional differences in storage–discharge sensitivity with similar climate conditions are primarily due to differences in aquifer properties. Based on the recession curve, other factors responsible for these differences include land utilization, land coverage, and rainfall patterns during dry and wet seasons. These factors lead to differences in groundwater recharge and thus to regional differences in storage–discharge sensitivity.  相似文献   

13.
The summer discharge pattern of the Skeldal River, which drains a 560 km2 partly glacierized catchment in north‐east Greenland, is dominated by diurnal oscillations reflecting variations in the melt rate of snow and ice in the basin. Superimposed on this diurnal pattern are numerous short‐lived discharge fluctuations of irregular periodicity and magnitude. The larger fluctuations are described and attributed to both rainfall events and periodic collapse of the glacier margin damming flow from beneath the Skelbrae glacier. Other minor fluctuations are less readily explained but are associated with changes in the channelized and distributed reservoirs and possibly temporary blockage of subglacial conduits caused by ice melt with subsequent damming. Fluctuations in suspended sediment concentration (SSC) are normally associated with discharge fluctuations, although examples of ‘transient flushes’ were observed where marked increases in SSC occurred in the absence of corresponding discharge variations. A strong relationship between the event discharge increase and event SSC increase for rainfall‐induced events was established, but no such relationship existed for non‐rainfall‐induced events. There is some evidence for an exhaustion effect in the SSC patterns both at the event time‐scale and as the month proceeds. A mean suspended sediment load of 1765 ± 0·26 t day?1 was estimated for the study period, which would be equivalent to a suspended sediment yield of 732 ± 4 t km?2 year?1. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Sediment yield can be a sensitive indicator of catchment dynamics and environmental change. For a glacierized catchment in the High Arctic, we compiled and analyzed diverse sediment transfer data, spanning a wide range of temporal scales, to quantify catchment yields and explore landscape response to past and ongoing hydroclimatic variability. The dataset integrates rates of lake sedimentation from correlated varve records and repeated annual and seasonal sediment traps, augmented by multi‐year lake and fluvial monitoring. Consistent spatial patterns of deposition enabled reconstruction of catchment yields from varve‐ and trap‐based fluxes. We used hydroclimatic data and multivariate modeling to examine annual controls of sediment delivery over almost a century, and to examine shorter‐term controls of sediment transfer during peak glacier melt. Particle‐size analyses, especially for annual sediment traps, were used to further infer sediment transfer mechanisms and timing. Through the Medieval Warm Period and Little Ice Age, there were no apparent multi‐century trends in lake sedimentation rates, which were over three times greater than those during the mid‐Holocene when glaciers were diminished. Twentieth‐century sedimentation rates were greater than those of previous millennia, with a mid‐century step increase in mean yield from 240 to 425 Mg km?2 yr?1. Annual yields through the twentieth century showed significant positive relations with spring/summer temperature, rainfall, and peak discharge conditions. This finding is significant for the future of sediment transfer at Linnévatnet, and perhaps more broadly in the Arctic, where continued increases in temperature and rainfall are projected. For 2004–2010, annual yields ranged from 294 to 1330 Mg km?2 yr?1. Sediment trap volumes and particle‐size variations indicate that recent annual yields were largely dominated by spring to early summer transfer of relatively coarse‐grained sediment. Fluvial monitoring showed daily to hourly sediment transfer to be related to current and prior discharge, diurnal hysteresis, air temperature, and precipitation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
High resolution radar rainfall fields and a distributed hydrologic model are used to evaluate the sensitivity of flood and flash flood simulations to spatial aggregation of rainfall and soil properties at catchment scales ranging from 75 to 983 km2. Hydrologic modeling is based on a Hortonian infiltration model and a network-based representation of hillslope and channel flow. The investigation focuses on three extreme flood and flash flood events occurred on the Sesia river basin, North Western Italy, which are analysed by using four aggregation lengths ranging from 1 to 16 km. The influence of rainfall spatial aggregation is examined by using the flow distance as a spatial coordinate, hence emphasising the role of river network in the averaging of space–time rainfall. The effects of reduced and distorted rainfall spatial variability on peak discharge have been found particularly severe for the flash flood events, with peak errors up to 35% for rainfall aggregation of 16 km and at 983 km2 catchment size. Effects are particularly remarkable when significant structured rainfall variability combines with relatively important infiltration volumes due to dry initial conditions, as this emphasises the non-linear character of the rainfall–runoff relationship. In general, these results confirm that the correct estimate of rainfall volume is not enough for the accurate reproduction of flash flood events characterised by large and structured rainfall spatial variability, even at catchment scales around 250 km2. However, accurate rainfall volume estimation may suffice for less spatially variable flood events. Increasing the soil properties aggregation length exerts similar effects on peak discharge errors as increasing the rainfall aggregation length, for the cases considered here and after rescaling to preserve the rainfall volume. Moreover, peak discharge errors are roughly proportional to runoff volume errors, which indicates that the shape of the flood wave is influenced in a limited way by modifying the detail of the soil property spatial representation. Conversely, rainfall aggregation may exert a pronounced influence on the discharge peak by reshaping the spatial organisation of the runoff volumes and without a comparable impact on the runoff volumes.  相似文献   

16.
Heavily compacted lands, typical of traditional surface mine reclamation techniques, have been shown to hinder tree growth, increase levels of flooding, and produce suboptimal water quality. Utilizing loose‐dumped spoil, in accordance with the Forestry Reclamation Approach (FRA), has demonstrated success with regards to promoting tree growth and survival; however, additional information is needed to assess the potential of FRA to ameliorate other environmental concerns related to water quantity. To better understand the hydrologic characteristics of loose‐dumped spoil, key hydrograph parameters (discharge volume, peak discharge, discharge duration, lag time, and response time) were monitored for three common spoil types: (1) predominately brown weathered sandstone, (2) predominately gray weathered sandstone, and (3) a mixture of both sandstones and shale. Although spoil types were found to differ hydrologically, these differences were relatively minor. Measured discharge volumes were low (averaging 12% of rainfall for all events and treatments), peak discharge rates were small (between 2·5 × 10?5 and 3 × 10?3 m3/s), and the duration of discharge was long (6 days on average). From a hydrologic perspective, the results of this study indicate that mine spoils need not be segregated for reclamation as long as the spoil is placed in accordance with the loose‐dumped techniques as outlined in the FRA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

This study presents an analysis of three hydrological years (2007/08, 2008/09 and 2009/10) of precipitation, runoff and sediment yield collected from a small (669.7 ha) semi-arid watershed in southeastern Spain (Lanjarón). At the watershed outlet the runoff, suspended sediment concentration, total solute concentrations and dissolved nutrients (N-NO3, N-NH4, H2PO4 and K) in streamflow were continuously monitored. The runoff was highly variable, ranging between 53.4 and 154.7 mm year?1, with an average of 97.6 mm year?1. In contrast, sediment yields were more regular, averaging 1.8 Mg ha?1 year?1. The hydrological response of the watershed depended mainly on rainfall intensity. Formerly, 32% of the watershed was forested and runoff was more regular, despite the typical Mediterranean rainfall cycle; however, due to forest area reduction to 17% and the increase in abandoned farmland area (18%) in recent decades, the runoff variability has increased. Greater amounts of solutes (32.7 Mg ha?1 year?1) were exported, so that this water is considered as poor for irrigation use. The temporal nutrient export was related to seasonal discharge fluctuations as well as daily concentrations. In addition, the nutrient concentrations of the water discharged were lower than threshold limits cited in water-quality standards for agricultural use and for potable water, with the exception of K (65.9 mg L?1), which may degrade surface waters as well as irrigated soils. Thus, hydrological and erosive processes depended on the watershed features, but also on prior conditions in combination with the characteristics of rainfall episodes.

Citation Durán, Z.V.H., Francia, M.J.R., Garcia, T.I., Rodríguez, P.C.R., Martínez, R.A., and Cuadros, T.S., 2012. Runoff and sediment yield from a small watershed in southeastern Spain (Lanjarón): implications for water quality. Hydrological Sciences Journal, 57 (8), 1610–1625.  相似文献   

18.
David Dunkerley 《水文研究》2008,22(22):4415-4435
In hydrology and geomorphology, less attention has been paid to rain event properties such as duration, mean and peak rain rate than to rain properties such as drop size or kinetic energy. A literature review shows a lack of correspondence between natural and simulated rain events. For example, 26 studies that report event statistics from substantial records of natural rain reveal a mean rain rate of just 3·47 mm h?1 (s.d. 2·38 mm h?1). In 17 comparable studies dealing with extreme rain rates including events in cyclonic, tropical convective, and typhoon conditions, a mean maximum rain rate (either hourly or mean event rain rate) of 86·3 mm h?1 (s.d. 57·7 mm h?1) is demonstrated. However, 49 studies using rainfall simulation involve a mean maximum rain rate of 103·1 mm h?1 (s.d. 81·3 mm h?1), often sustained for > 1 h, exceeding even than of extreme rain events, and nearly 30 times the mean rain rate in ordinary, non‐exceptional, rain events. Thus rainfall simulation is often biased toward high rain rates, and many of the rates employed (in several instances exceeding 150 mm h?1) appear to have limited relevance to ordinary field conditions. Generally, simulations should resemble natural rain events in each study region. Attention is also drawn to the raindrop arrival rate at the surface. In natural rain, this is known to vary from < 100 m?2 s?1 to > 5000 m?2 s?1. Arrival rate may need to be added to the list of parameters that must be reproduced realistically in rainfall simulation studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Soil erosion vulnerability and extreme rainfall characteristics over the Mediterranean semi-arid region of Tunisia are crucial input for estimation of siltation rate in artificial reservoirs. A comprehensive high-resolution database on erosive rainfall, together with siltation records for 28 small reservoirs, were analysed for this region, the Tunisian Dorsal (the easternmost part of the Atlas Mountains). The general life-span of these reservoirs is only about 14 years. Depending on the soil degradation in the different catchments, the corresponding reservoirs display a wide range of soil erosion rates. The average soil loss was 14.5 t ha?1 year?1 but some catchments display values of up to 36.4 t ha?1 year?1. The maximum 15-min duration rainfall intensity was used to determine the spatial distribution of rainfall erosivity. The northwestern parts of the Tunisian Dorsal display the most extreme rainfall erosivity. Spatial erosion patterns are to some extent similar; however, they vary greatly according to their location in the “soil degradation cycle”. This cycle determines the soil particle delivery potential of the catchment. In general, the northwestern parts of the Dorsal display modest soil erosion patterns due to the already severely degraded soil structure. Here, the soil surface is often the original bedrock. However, the greatest soil erosion occurs in the mid-eastern parts of the Dorsal, which represents the “degradation front”. The latter corresponds to the area with highest erosion, which is continuously progressing westward in the Dorsal. The large variation between the erosive rainfall events and the annual soil loss rates was explained by two important factors. The first relates to the soil degradation cycle. The second factor corresponds to the degradation front with the highest soil loss rates. At present this front is located at 300 m altitude and appears to be moving along an 80-km westward path starting from the east coast. A better understanding of the above can be used to better manage soils and soil covers in the Tunisian Dorsal area and, eventually, to decrease the soil erosion and reservoir siltation risk.

Citation Jebari, S., Berndtsson, R., Bahri, A. & Boufaroua, M. (2010) Spatial soil loss risk and reservoir siltation in semi-arid Tunisia. Hydrol. Sci. J. 55(1), 121–137.  相似文献   

20.
To detect the causal relationship between cave drip waters and stalagmite laminae, which have been used as a climate change proxy, three drip sites in Beijing Shihua Cave were monitored for discharge and dissolved organic carbon (DOC). Drip discharges and DOC were determined at 0 to 14‐day intervals over the period 2004–2006. Drip discharges show two types of response to surface precipitation variations: (1) a rapid response; and (2) a time‐lagged response. Intra‐annual variability in drip discharge is significantly higher than inter‐annual variability. The content of DOC in all drip waters varies inter‐ and intra‐annually and has good correlation with drip water discharge at the rapid response sites. High DOC was observed in July and August in the three years observed. The flushing of soil organic matter is dependent upon the intensity of rain events. The DOC content of drip water increases sharply above a threshold rainfall intensity (>50 mm d?1) and shows several pulses corresponding with intense rain events (>25 mm d?1). The DOC content was lower and less variable during the dry period than during the rainy period. The shape of DOC peak also varies from year to year as it is influenced by the intensity and frequency of rainfall. The different drip sites show marked differences in DOC response, which are dominated by hydrological behaviour linked to the recharge of the soil and karst micro‐fissure/porosity network. The results explain why not all stalagmite laminae are consistent with climate changes and suggest that the structure of the rainy season events could be preserved in speleothems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号