首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On August 21st and 22nd 1856, two strong earthquakes occurred off the seaport of Djidjelli, a small city of 1000 inhabitants, located 300 km east of Algiers (capital of Algeria). In relation to these two earthquakes, an important tsunami (at least one) affected the western Mediterranean region and the eastern Algerian coastline between Algiers and La Calle (Algero-Tunisian border). Based on historical information as well as on data recently collected during the Maradja 2 survey conducted in 2005 over the Algerian margin, we show that the tsunami could have been generated by the simultaneous rupture of a set of three en echelon faults evidenced off Djidjelli. From synthetic models, we point out that the area affected along the Algerian coast extended from Bejaia to Annaba. The maximum height of waves reached 1.5 m near the harbor of Djidjelli.  相似文献   

2.
A new 3D velocity model of the crust and upper mantle in the southeastern (SE) margin of the Tibetan plateau was obtained by joint inversion of body- and surface-wave data. For the body-wave data, we used 7190 events recorded by 102 stations in the SE margin of the Tibetan plateau. The surface-wave data consist of Rayleigh wave phase velocity dispersion curves obtained from ambient noise cross-correlation analysis recorded by a dense array in the SE margin of the Tibetan plateau. The joint inversion clearly improves the v S model because it is constrained by both data types. The results show that at around 10 km depth there are two low-velocity anomalies embedded within three high-velocity bodies along the Longmenshan fault system. These high-velocity bodies correspond well with the Precambrian massifs, and the two located to the northeast of 2013 M S 7.0 Lushan earthquake are associated with high fault slip areas during the 2008 Wenchuan earthquake. The aftershock gap between 2013 Lushan earthquake and 2008 Wenchuan earthquake is associated with low-velocity anomalies, which also acts as a barrier zone for ruptures of two earthquakes. Generally large earthquakes (M ≥ 5) in the region occurring from 2008 to 2015 are located around the high-velocity zones, indicating that they may act as asperities for these large earthquakes. Joint inversion results also clearly show that there exist low-velocity or weak zones in the mid-lower crust, which are not evenly distributed beneath the SE margin of Tibetan plateau.  相似文献   

3.
Turkey was struck by two major events on August 17th and November 12th, 1999. Named Kocaeli (Mw=7.4) and Düzce (Mw=7.2) earthquakes, respectively, the two earthquakes provided the most extensive strong ground motion data set ever recorded in Turkey. The strong motion stations operated by the General Directorate of Disaster Affairs, the Kandilli Observatory and Earthquake Research Institute of Bogazici University and Istanbul Technical University have produced at least 27 strong motion records for the Kocaeli earthquake within 200 km of the fault. Kocaeli earthquake has generated six motions within 20 km of the fault adding significantly to the near-field database of ground motions for Mw>=7.0 strike–slip earthquakes. The paper discusses available strong motion data, studies their attenuation characteristics, analyses time domain, as well as spectral properties such as spectral accelerations with special emphasis on fault normal and fault parallel components and the elastic attenuation parameter, kappa. A simulation of the Kocaeli earthquake using code FINSIM is also presented.  相似文献   

4.
Soil H2 and CO2 surveys were carried out along seven active faults and around the aftershock region of the 2000 Tottori-ken Seibu earthquake in Japan. Diffuse CO2 effluxes were also measured along one fault and around the 2000 aftershock region. The results show highly variable H2 concentration in space and time and it seems that the maximum H2 concentration at each active fault correlates with fault activity as exemplified by the time of the latest big earthquakes. Even though observed H2 concentrations in four faults were markedly lower than those collected previously in the latter half of the 1970s, it is evident that the higher H2 concentrations in this study are due to the addition of the fault gases. Comparing the chemical composition of trapped gases (H2: 5–20% and CO2/H2: 0.5–12) in fractured rocks of drill cores bored at the Nojima fault, a soil gas sample with the highest H2 concentration showed large amounts of the trapped fault gas, diluted with atmospheric component. The profile experiment across a fracture zone at the Yamasaki fault showed higher H2 concentrations and lower CO2/H2 ratios as was observed in soil gas from the fracture zone. A few days after the 2000 Tottori-kei Seibu earthquake, no CO2 effluxes related to the occurrence of earthquakes were observed at the aftershock region. However, only above the epicenter zone, relatively high H2 concentrations in soil gases were observed.  相似文献   

5.
The Catalan seismic crisis of the years 1427 and 1428 is one of the most destructive seismic episodes that happened in the northeastern Iberian Peninsula in historical times. The main earthquakes of this crisis occurred on March 19th 1427 in the zone around Amer (IEMS-98 = VIII), May 15th 1427 in the vicinity of Olot (IEMS-98 = VIII) and on February 2nd 1428 in the area close to Camprodon (IEMS-98 = IX). There is much evidence that the Amer fault produced the first two events of this crisis, but is still uncertain which fault generated the earthquake on February 2nd 1428. Using newly available macroseismic data, the earthquake area sources of the three main earthquakes of the crisis have been obtained and they corroborate that the Amer fault may be the origin of the first two events. However, the area source corresponding to the last earthquake of the crisis cannot be associated to a single fault and indicates three possible candidates: the Vallfogona and Ribes-Camprodon thrusts and the Amer normal fault. Modeling of the Coulomb failure stress transfer has been performed to help determine the best candidate responsible for the February event. The results of the modeling points to: (a) a triggering relationship between the three main events of the crisis and (b) the Amer fault, or a similar extensional fault close and parallel to it, as the most probable origin of the earthquake on February 2nd 1428.  相似文献   

6.
《Geofísica Internacional》2013,52(2):173-196
An analysis of local and regional data produced by the shallow, thrust Ometepec-Pinotepa Nacional earthquake (Mw 7.5) of 20 March 2012 shows that it nucleated at 16.254°N 98.531°W, about 5 km offshore at a depth of about 20 km. During the first 4 seconds the slip was relatively small. It was followed by rupture of two patches with large slip, one updip of the hypocenter to the SE and the other downdip to the north. Total rupture area, estimated from inversion of near-source strong-motion recordings, is ~25 km × 60 km. The earthquake was followed by an exceptionally large number of aftershocks. The aftershock area overlaps with that of the 1982 doublet (Mw 7.0, 6.9). However, the seismic moment of the 2012 earthquake is ~3 times the sum of the moments of the doublet, indicating that the gross rupture characteristics of the two earthquake episodes differ. The small-slip area near the hypocenter and large-slip areas of the two patches are characterized by relatively small aftershock activity. A striking, intense, linear NE alignment of the aftershocks is clearly seen. The radiated energy to seismic moment ratios, (Es/M0), of five earthquakes in the region reveal that they are an order of magnitude smaller for near-trench earthquakes than those that occur further downdip (e.g., 2012 and the 1995 Copala earthquakes). The near-trench earthquakes are known to produce low Amax. The available information suggests that the plate interface in the region can be divided in three domains. (1) From the trench to a distance of about 35 km downdip. In this domain M~6 to 7 earthquakes with low values of (Es/M0) occur. These events generate large number of aftershocks. It is not known whether the remaining area on this part of the interface slips aseismically (stable sliding) or is partially locked. (2) From 35 to 100 km from the trench. This domain is seismically coupled where stick-slip sliding occurs, generating large earthquakes. Part of the area is probably conditionally stable. (3) From 100 to 200 km from the trench. In this domain slow slip events (SSE) and nonvolcanic tremors (NVT) have been reported.The earthquake caused severe damage in and near the towns of Ometepec and Pinotepa Nacional. The PGA exceeded 1 g at a soft site in the epicentral region. Observed PGAs on hard sites as a function of distance are in reasonable agreement with the expected ones from ground motion prediction equations derived using data from Mexican interplate earthquakes. The earthquake was strongly felt in Mexico City. PGA at CU, a hard site in the city, was 12 gal. Strong-motion recordings in the city since 1985 demonstrate that PGAs during the 2012 earthquake were not exceptional, and that similar motion occurs about once in three years.  相似文献   

7.
In regions that undergo low deformation rates, as is the case for metropolitan France (i.e. the part of France in Europe), the use of historical seismicity, in addition to instrumental data, is necessary when dealing with seismic hazard assessment. This paper presents the strategy adopted to develop a parametric earthquake catalogue using moment magnitude Mw, as the reference magnitude scale to cover both instrumental and historical periods for metropolitan France. Work performed within the framework of the SiHex (SIsmicité de l’HEXagone) (Cara et al. Bull Soc Géol Fr 186:3–19, 2015. doi: 10.2113/qssqfbull.186.1.3) and SIGMA (SeIsmic Ground Motion Assessment; EDF-CEA-AREVA-ENEL) projects, respectively on instrumental and historical earthquakes, have been combined to produce the French seismic CATalogue, version 2017 (FCAT-17). The SiHex catalogue is composed of ~40,000 natural earthquakes, for which the hypocentral location and Mw magnitude are given. In the frame of the SIGMA research program, an integrated study has been realized on historical seismicity from intensity prediction equations (IPE) calibration in Mw detailed in Baumont et al. (submitted) companion paper to their application to earthquakes of the SISFRANCE macroseismic database (BRGM, EDF, IRSN), through a dedicated strategy developed by Traversa et al. (Bull Earthq Eng, 2017. doi: 10.1007/s10518-017-0178-7) companion paper, to compute their Mw magnitude and depth. Macroseismic data and epicentral location and intensity used both in IPE calibration and inversion process, are those of SISFRANCE without any revision. The inversion process allows the main macroseismic field specificities reported by SISFRANCE to be taken into account with an exploration tree approach. It also allows capturing the epistemic uncertainties associated with macroseismic data and to IPEs selection. For events that exhibit a poorly constrained macroseismic field (mainly old, cross border or off-shore earthquakes), joint inversion of Mw and depth is not possible, and depth needs to be fixed to calculate Mw. Regional a priori depths have been defined for this purpose based on analysis of earthquakes with a well constrained macroseismic field where joint inversion of Mw and depth is possible. As a result, 27% of SISFRANCE earthquake seismological parameters have been jointly inverted and for the other 73% Mw has been calculated assuming a priori depths. The FCAT-17 catalogue is composed of the SIGMA historical parametric catalogue (magnitude range between 3.5 up to 7.0), covering from AD463 to 1965, and of the SiHex instrumental one, extending from 1965 to 2009. Historical part of the catalogue results from an automatic inversion of SISFRANCE data. A quality index is estimated for each historical earthquake according to the way the events are processed. All magnitudes are given in Mw which makes this catalogue directly usable as an input for probabilistic or deterministic seismic hazard studies. Uncertainties on magnitudes and depths are provided for historical earthquakes following calculation scheme presented in Traversa et al. (2017). Uncertainties on magnitudes for instrumental events are from Cara et al. (J Seismol 21:551–565, 2017. doi: 10.1007/s10950-016-9617-1).  相似文献   

8.
On 8 September 2005 a moderate MW 4.5 earthquake occurred in the north-western Alps midway between Chamonix (France) and Martigny (Switzerland). The focal mechanism corresponds to a right-lateral strike-slip on a N60°E fault plane. The foreshock–mainshock–aftershock sequence is investigated on the basis of data recorded by a temporary network of 28 stations deployed for 1 month just after the mainshock, and data from permanent, regional seismic networks. Absolute and relative locations of more than 400 events are obtained with a mean uncertainty of approximately 0.2 km. Small foreshocks, the mainshock, and early and late aftershocks are located relative to the main aftershock set. The seismic sequence exhibits a surprisingly complex structure, with at least five clusters on distinct fault planes. The main elongated cluster agrees with the location of the mainshock, its hypocenter being 4.3 km below sea level. We discuss the relationship between the right-lateral fault beneath the Loriaz peak (the source of the Vallorcine event), the nearby normal Remuaz fault, and the regional seismotectonic stress field.  相似文献   

9.
A MS8.0 earthquake occurred in Wenchuan County, Sichuan Province, China, on May 12, 2008, and subsequently, numerous aftershocks followed. We obtained the moment tensor solutions and source time functions (STFs) for the Wenchuan earthquake and its seven larger aftershocks (MS5.0~6.0) by a new technique of moment tensor inversion using the broadband and long-period seismic waveform data from the Global Seismic Network (GSN). Firstly, the theoretical background and technical flow of the new technique was briefly introduced, and an aftershock of the Wenchuan earthquake sequence was employed to illustrate the real procedure for inverting the moment tensor; secondly, the moment tensor solutions and STFs of the eight events, including the main shock, were presented, and finally, the interpretation of the results was made. The agreement of our results with the GCMT results indicates the new approach is efficient and feasible. By using this approach, not only the moment tensor solution can be obtained but also the STF can be retrieved; the inverted STFs indicate that the source rupture process may be complicated even for the moderate earthquakes. The inverted focal mechanisms of the Wenchuan earthquake sequence show that the most of the aftershocks occurred in the main faults of the Longmenshan fault zone with predominantly thrustingwith minor right-lateral strike-slip component, but some of them may have occurred in the subfaults with strike-slip faulting in the vicinity of the main faults.  相似文献   

10.
We use 576 earthquakes of magnitude, M w, 3.3 to 6.8 that occurred within the region 33° N–42.5° N, 19° E–30° E in the time period 1969 to 2007 to investigate the stability of the relation between moment magnitude, M w, and local magnitude, M L, for earthquakes in Greece and the surrounding regions. We compare M w to M L as reported in the monthly bulletins of the National Observatory of Athens (NOA) and to M L as reported in the bulletins of the Seismological Station of the Aristotle University of Thessaloniki. All earthquakes have been analyzed through regional or teleseismic waveform inversion, to obtain M w, and have measured maximum trace amplitudes on the Wood–Anderson seismograph in Athens, which has been in operation since 1964. We show that the Athens Wood–Anderson seismograph performance has changed through time, affecting the computed by NOA M L by at least 0.1 magnitude units. Specifically, since the beginning of 1996, its east–west component has been recording systematically much larger amplitudes compared to the north–south component. From the comparison between M w and M L reported by Thessaloniki, we also show that the performance of the sensors has changed several times through time, affecting the calculated M L’s. We propose scaling relations to convert the M L values reported from the two centers to M w. The procedures followed here can be applied to other regions as well to examine the stability of magnitude calculations through time.  相似文献   

11.
—?The digital data acquired by 16 short-period seismic stations of the Friuli-Venezia-Giulia seismic network for 56 earthquakes of magnitude 2.3–4.7 which occurred in and near NE Italy have been used to estimate the coda attenuation Q c and seismic source parameters. The entire area under study has been divided into five smaller regions, following a criterion of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events. Standard IASPEI routines for coda Q c determination have been used for the analysis of attenuation in the different regions showing a marked anomaly in the values measured across the NE border between Friuli and Austria for Q 0 value. A large variation exists in the coda attenuation Q c for different regions, indicating the presence of great heterogeneities in the crust and upper mantle of the region. The mean value of Q c (f) increases from 154–203 at 1.5?Hz to 1947–2907 at 48?Hz frequency band with large standard deviation estimates.¶Using the same earthquake data, the seismic-moment, M 0, source radius, r and stress-drop, Δσ for 54 earthquakes have been estimated from P- and S-wave spectra using the Brune's seismic source model. The earthquakes with higher stress-drop (greater than 1?Kbar) occur at depths ranging from 8 to 14?km.  相似文献   

12.
The catalogue by Grünthal et al. (J Seismol 13:517?C541, 2009a) of earthquakes in central, northern, and north-western Europe with M w????3.5 (CENEC) has been expanded to cover also southern Europe and the Mediterranean area. It has also been extended in time (1000?C2006). Due to the strongly increased seismicity in the new area, the threshold for events south of the latitude 44°N has here been set at M w????4.0, keeping the lower threshold in the northern catalogue part. This part has been updated with data from new and revised national and regional catalogues. The new Euro-Mediterranean Earthquake Catalogue (EMEC) is based on data from some 80 domestic catalogues and data files and over 100 special studies. Available original M w and M 0 data have been introduced. The analysis largely followed the lines of the Grünthal et al. (J Seismol 13:517?C541, 2009a) study, i.e., fake and duplicate events were identified and removed, polygons were specified within each of which one or more of the catalogues or data files have validity, and existing magnitudes and intensities were converted to M w. Algorithms to compute M w are based on relations provided locally, or more commonly on those derived by Grünthal et al. (J Seismol 13:517?C541, 2009a) or in the present study. The homogeneity of EMEC with respect to M w for the different constituents was investigated and improved where feasible. EMEC contains entries of some 45,000 earthquakes. For each event, the date, time, location (including focal depth if available), intensity I 0 (if given in the original catalogue), magnitude M w (with uncertainty when given), and source (catalogue or special study) are presented. Besides the main EMEC catalogue, large events before year 1000 in the SE part of the investigated area and fake events, respectively, are given in separate lists.  相似文献   

13.
A new modified magnitude scale M S (20R) is elaborated. It permits us to extend the teleseismic magnitude scale M S (20) to the regional epicenter distances. The data set used in this study contains digital records at 12 seismic stations of 392 earthquakes that occured in the northwest Pacific Ocean in the period of 1993–2008. The new scale is based on amplitudes of surface waves of a narrow range of the periods (16–25 s) close to the period of 20 s, for distances of 80–3000 km. The digital Butterworth filter is used for processing. On the basis of the found regional features concerning distance dependence for seismic wave attenuation, all the stations of the region have been subdivided into two groups, namely, “continental” and “island-arc.” For each group of stations, its own calibration function is proposed. Individual station corrections are used to compensate for the local features.  相似文献   

14.
This study uses macroseismic data and wave equations to solve the problem of ultra long propagation of felt ground motion (over 9000 km from the epicenter) due to the Sea-of-Okhotsk earthquake. We show that the principal mechanism of this phenomenon could be excitation of a previously unknown standing radial wave as a mode of the Earth’s free oscillations, 0S0, due to the superposition of an incident and a reflected spherical P wave in the epicentral area of the Sea-of-Okhotsk earthquake. The standing wave generates slowly attenuating P waves that travel over the earth’s surface that act as carrying waves; when superposed on these, direct body waves acquire the ability to travel over great distances. We show previously unknown parameters of the radial mode 0S0 for the initial phase of earth deformation due to the large deep-focus earthquake. We used data on the Sea-of-Okhotsk and Bolivian earthquakes to show that large deep-focus earthquakes can excite free oscillations of the Earth that are not only recorded by instrumental means, but are also felt by people, with the amplification of the macroseismic effect being directly related to the phenomenon of resonance for multistory buildings.  相似文献   

15.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

16.
In this paper we assess the size and effects of the earthquakes of 12 May 1866, and 24 January 1916 in Anatolia (Turkey). We show that these events had a magnitude Ms 7.2 and that the former was associated with a 45-km long surface fault break along the north-east part of the East Anatolian Fault Zone. These two earthquakes are chosen among others in order to demonstrate how easy it is to miss out large earthquakes of the historical, even of the early instrumental period, and to draw the incompleteness of many existing catalogues to the attention of those who use them for the estimation of slip rates and the assessment of seismic hazard. Of the two earthquakes studied here, the former was only vaguely known and the latter is not included in Gutenberg and Richter's catalogue.  相似文献   

17.
Large data sets covering large areas and time spans and composed of many different independent sources raise the question of the obtained degree of harmonization. The present study is an analysis of the harmonization with respect to the moment magnitude M w within the earthquake catalogue for central, northern, and northwestern Europe (CENEC). The CENEC earthquake catalogue (Grünthal et al., J Seismol, 2009) contains parameters for over 8,000 events in the time period 1000–2004 with magnitude M w ≥ 3.5. Only about 2% of the data used for CENEC have original M w magnitudes derived directly from digital data. Some of the local catalogues and data files providing data give M w, but calculated by the respective agency from other magnitude measures or intensity. About 60% of the local data give strength measures other than M w, and these have to be transformed by us using available formulae or new regressions based on original M w data. Although all events are thus unified to M w magnitude, inhomogeneity in the M w obtained from over 40 local catalogues and data files and 50 special studies is inevitable. Two different approaches have been followed to investigate the compatibility of the different M w sets throughout CENEC. The first harmonization check is performed using M w from moment tensor solutions from SMTS and Pondrelli et al. (Phys Earth Planet Inter 130:71–101, 2002; Phys Earth Planet Inter 164:90–112, 2007). The method to derive the SMTS is described, e.g., by Braunmiller et al. (Tectonophysics 356:5–22, 2002) and Bernardi et al. (Geophys J Int 157:703–716, 2004), and the data are available in greater extent since 1997. One check is made against the M w given in national catalogues and another against the M w derived by applying different empirical relations developed for CENEC. The second harmonization check concerns the vast majority of data in CENEC related to earthquakes prior to 1997 or where no moment tensor based M w exists. In this case, an empirical relation for the M w dependence on epicentral intensity (I 0) and focal depth (h) was derived for 41 master events, i.e., earthquakes, located all over central Europe, with high-quality data. To include also the data lacking h, the corresponding depth-independent relation for these 41 events was also derived. These equations are compared with the different sets of data from which CENEC has been composed, and the goodness of fit is demonstrated for each set. The vast majority of the events are very well or reasonably consistent with the respective relation so that the data can be said to be harmonized with respect to M w, but there are exceptions, which are discussed in detail.  相似文献   

18.
The complex seismotectonic studies of the pleistoseist area of the Ilin-Tas earthquake (Ms = 6.9), one of the strongest seismic events ever recorded by the regional seismic network in northeastern Russia, are carried out. The structural tectonic position, morphotectonic features of present-day topography, active faults, and types of Cenozoic deformations of the epicentral zone are analyzed. The data of the instrumental observations are summarized, and the manifestations of the strong seismic events in the Yana–Indigirka segment of the Cherskii seismotectonic zone are considered. The explanation is suggested for the dynamical tectonic setting responsible for the Andrei-Tas seismic maximum. This setting is created by the influence of the Kolyma–Omolon indenter, which intrudes into the Cherskii seismotectonic zone from the region of the North American lithospheric plate and forms the main seismogenic structures of the Yana–Indigirka segment in the frontal zone (the Ilin-Tas anticlinorium). The highest seismic potential is noted in the Andrei- Tas block—the focus of the main tectonic impacts from the Kolyma–Omolon superterrane. The general trend of this block coincides with the orientation of the major axis of isoseismal ellipses (azimuth 50°–85°), which were determined from the observations of macroseismic effects on the ground after the Uyandina (Ms = 5.6), Andrei-Tas (Ms = 6.1), and Ilin-Tas (Ms = 6.9) earthquakes.  相似文献   

19.
We try to give a quantitative and global discrimination function by studying m b/M S data using Fisher method that is a kind of pattern recognition methods. The reliability of the function is also analyzed. The results show that this criterion works well and has a global feature, which can be used as first-level filtering criterions in event identification. The quantitative and linear discrimination function makes it possible to identify events automatically and achieve the goal to react the events quickly and effectively.  相似文献   

20.
The Sakarya prefecture is an interesting area with various seismicity types. This activity comes from earthquakes occurring at the North Anatolian Fault Zone and from a few quarry blast areas in the region. These quarry blast recordings produce errors in the determination of active faults and mapping of the microearthquake activity. Therefore, to recognize the tectonic activity in the region, we need to be able to discriminate between earthquakes and quarry blasts in the catalogues. In this study, a statistical analysis method (linear discriminant function) has been applied to classify seismic events occurring in the Sakarya region. We used 110 seismic events that were recorded by Sakarya University Seismic Station between 2012 and 2014. Time and frequency variant parameters, maximum S wave and maximum P wave amplitude ratio (S/P), the spectral ratio (Sr), maximum frequency (fmax), and total signal duration of the waveform were used for discrimination analyses. The maximum frequency (fmax) versus time duration of the seismic signal gives a higher classification percentage (94%) than the other discriminants. At the end of this study, 41 out of 110 events (44%) are determined as quarry blasts, and 62 (56%) are considered as earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号