首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK   总被引:16,自引:9,他引:7  
A user of heterogeneous GPS and GLONASS receiver pairs in differential positioning mode will experience ambiguity fixing challenges due to the presence of inter-channel biases. These biases cannot be canceled by differencing GLONASS observations, whether pseudorange or carrier phase. Fortunately, pre-calibration of GLONASS pseudorange and carrier phase observations can make ambiguity fixing for GPS/GLONASS positioning much easier. We propose an effective algorithm that transforms an RTK (real-time kinematic) solution in a mixed receiver baseline from a float to a fixed ambiguity solution. Carrier phase and code inter-channel biases are estimated from a zero baseline. Then, GLONASS both carrier phase and code observations are corrected accordingly. The results show that a mixed baseline can be transformed from a float (~100 %) to a fixed (more than 92 %) solution.  相似文献   

2.
The concept of optimal filtering of observations collected with a dual frequency GPS P-code receiver is investigated in comparison to an approach for C/A-code units. The filter presented here uses only data gathered between one receiver and one satellite. The estimated state vector consists of a one-way pseudorange, ionospheric influence, and ambiguity biases. Neither orbit information nor station information is required. The independently estimated biases are used to form double differences where, in case of a P-code receiver, the wide lane integer ambiguities are usually recovered successfully except when elevation angles are very small. An elevation dependent uncertainty for pseudorange measurements was discovered for different receiver types. An exponential model for the pseudorange uncertainty was used with success in the filter gain computations.  相似文献   

3.
接收机端伪距偏差是指非理想的卫星导航信号在接收机前端带宽和相关器间隔不同时产生的伪距测量系统性偏差。研究表明,北斗二号、GPS和Galileo系统均存在与接收机类型相关的伪距偏差,影响基于混合类型接收机站网的精密数据处理。本文基于iGMAS网和MGEX网观测数据,采用MW组合、伪距残差和伪距无几何距离无电离层组合3种方法分析北斗三号接收机端伪距偏差特性。试验结果表明,北斗三号同样存在与接收机类型相关的伪距偏差,且无电离层组合的伪距偏差可以达到6 ns。根据偏差特性,按接收机类型建立了8类伪距偏差改正模型。将上述模型应用于卫星差分码偏差(DCB)估计与单频伪距单点定位,结果表明,模型改正后可以显著提升不同接收机类型估计的卫星DCB一致性,其中基于iGMAS网和MGEX网两个不同接收机站网估计得到的北斗三号C2I-C6I、C1P-C5P和C2I-C7D DCB差值分别平均降低了91.6%、64.7%和71.9%;模型改正后单频伪距单点定位水平方向和高程方向精度分别提升了13.9%和11.0%。  相似文献   

4.
GLONASS carrier phase and pseudorange observations suffer from inter-channel biases (ICBs) because of frequency division multiple access (FDMA). Therefore, we analyze the effect of GLONASS pseudorange inter-channel biases on the GLONASS clock corrections. Different Analysis Centers (AC) eliminate the impact of GLONASS pseudorange ICBs in different ways. This leads to significant differences in the satellite and AC-specific offsets in the GLONASS clock corrections. Satellite and AC-specific offset differences are strongly correlated with frequency. Furthermore, the GLONASS pseudorange ICBs also leads to day-boundary jumps in the GLONASS clock corrections for the same analysis center between adjacent days. This in turn will influence the accuracy of the combined GPS/GLONASS precise point positioning (PPP) at the day-boundary. To solve these problems, a GNSS clock correction combination method based on the Kalman filter is proposed. During the combination, the AC-specific offsets and the satellite and AC-specific offsets can be estimated. The test results show the feasibility and effectiveness of the proposed clock combination method. The combined clock corrections can effectively weaken the influence of clock day-boundary jumps on combined GPS/GLONASS kinematic PPP. Furthermore, these combined clock corrections can improve the accuracy of the combined GPS/GLONASS static PPP single-day solutions when compared to the accuracy of each analysis center alone.  相似文献   

5.
Summary Many GPS networks which were initially surveyed with Texas Instruments TI-4100 receivers have now been resurveyed with mixtures of TI-4100 and Trimble 4000 receivers or exclusively with Trimble receivers. In order to make confident tectonic interpretation of displacements observed between such surveys, it is necessary to understand any biases which may be introduced by using different receiver types or by mixing receivers within a network. Therefore, one of the primary objectives of the Ecuador 1990 GPS campaign (February 1990) was to provide a direct long baseline comparison between the TI-4100 and Trimble 4000SDT GPS receivers. p ]During this campaign, TI and Trimble receivers were co-located at each end of a 1323 kilometer baseline (Jerusalen to Baltra). Solutions for this baseline show no variation with receiver type. Zero-length baseline solutions showed no evidence for any intrinsic bias caused by mixing the two receiver types. Short baseline solutions indicate a bias of -34±10 mm in the baseline vertical component; the sign of the bias indicates that either the assumed phase center location for the TI is too low or the assumed location for the Trimble is too high. The bias is explainable if the phase centers of the Trimble SDT and SST antennas are similarly located. p ]Solutions for baselines measured with codeless receivers (such as the Trimble) should be as precise as those for baselines measured with P-code receivers (such as the TI) as long as it is possible to resolve ambiguities. Resolution of the widelane ambiguity is the limiting factor in ambiguity resolution with any codeless receiver, and in the February 1990 campaigns it was not successful fore baselines longer than 100 km. Without explicit modeling of the ionospheric effect on the widelane, ambiguity resolution with codeless receivers will not be successful for baselines longer than about 100 km, depending on the local ionospheric conditions.  相似文献   

6.
在传统多系统非差非组合精密单点定位(precise point positioning,PPP)模型中,电离层延迟会吸收部分接收机码硬件延迟,其估计值可能为负数。提出了一种估计接收机差分码偏差(differential code bias,DCB)参数的GPS(Global Positioning System)/BDS(BeiDou Navigation Satellite System)非组合PPP模型,将每个系统第1个频率上的接收机码硬件延迟约束为零,对接收机DCB进行参数估计,达到了分离电离层延迟和接收机码硬件延迟的目的,降低了接收机钟差和电离层延迟的相关程度。利用4个多星座实验(multi-GNSS experiment,MGEX)跟踪站的GPS/BDS数据进行了静态和动态PPP试验,结果表明,与不估计DCB参数的PPP模型相比,采用估计DCB参数PPP模型后,静态模式下定位精度和收敛速度平均提高了29.3%和29.8%,动态模式下定位精度和收敛速度平均提高了15.7%和21.6%。  相似文献   

7.
The development and numerical values of the new absolute phase-center correction model for GPS receiver and satellite antennas, as adopted by the International GNSS (global navigation satellite systems) Service, are presented. Fixing absolute receiver antenna phase-center corrections to robot-based calibrations, the GeoForschungsZentrum Potsdam (GFZ) and the Technische Universität München reprocessed more than 10 years of GPS data in order to generate a consistent set of nadir-dependent phase-center variations (PCVs) and offsets in the z-direction pointing toward the Earth for all GPS satellites in orbit during that period. The agreement between the two solutions estimated by independent software packages is better than 1 mm for the PCVs and about 4 cm for the z-offsets. In addition, the long time-series facilitates the study of correlations of the satellite antenna corrections with several other parameters such as the global terrestrial scale or the orientation of the orbital planes with respect to the Sun. Finally, completely reprocessed GPS solutions using different phase-center correction models demonstrate the benefits from switching from relative to absolute antenna phase-center corrections. For example, tropospheric zenith delay biases between GPS and very long baseline interferometry (VLBI), as well as the drift of the terrestrial scale, are reduced and the GPS orbit consistency is improved.  相似文献   

8.
Stochastic properties of GNSS range measurements can accurately be estimated using a geometry-free short and zero baseline analysis method. This method is now applied to dual-frequency measurements from a new field campaign. Results are presented for the new GPS L5Q and GIOVE E5aQ wideband signals, in addition to the GPS L1 C/A and GIOVE E1B signals. As expected, the results clearly show the high precision of the new signals, but they also show, rather unexpectedly, significant, slowly changing variations in the pseudorange code measurements that are probably a result of strong multipath interference on the data. Carrier phase measurement noise is assessed on both frequencies, and finally successful mixed GPS-GIOVE double difference ambiguity resolution is demonstrated.  相似文献   

9.
GPS双频接收机C/A码与P码伪距精度的分析和比较   总被引:4,自引:0,他引:4  
本文主要研究GPS双频接收机C/A码和P码伪距的精度问题,首先阐述了保密P(Y)码伪距的测量原理,然后采用自行编制的精密单点定位程序,利用大量IGS跟踪站观测数据进行了试算,对该问题进行了探讨和分析,结论认为C/A码和P1码伪距的精度基本相同,而P2码伪距观测值的精度较低。  相似文献   

10.
In this article, the influence of biases in GPS code observations on the estimated parameters of the geometry-free model is investigated. This is done for undifferenced as well as double-differenced data from short baselines, that is, baselines for which ionospheric effects may be assumed absent. It is shown how introducing a linear model for code multipath affects the original model parameters. The performance of the original and extended model is illustrated by analyzing data from a single receiver and a short baseline. ? 1999 John Wiley & Sons, Inc.  相似文献   

11.
伪距偏差是指卫星导航信号非理想特征导致的不同技术状态接收机产生的伪距测量常数偏差。本文将伪距偏差作为一种用户段误差,提出基于并置接收机的伪距偏差计算方法和基于DCB参数的伪距偏差计算方法,以实现伪距偏差与其他误差的分离。然后利用实测数据测量了北斗卫星伪距偏差,结果表明伪距偏差标定序列波动STD约为0.1 m,不随时间明显变化,不同地点接收机测量的伪距偏差具有较好的一致性。在1.5 G频段,北斗卫星B1I频点伪距偏差最大。北斗卫星新体制信号B1C伪距偏差最小,较北斗卫星B1I频点伪距偏差明显改善,也明显好于GPS卫星L1C/A频点伪距偏差。在其他频段,GPS卫星L2C伪距偏差略大于北斗卫星B3I伪距偏差,L5C频点伪距偏差次之,B2a频点伪距偏差最小。最后,利用实测数据分析了伪距偏差对定位精度的影响。结果表明伪距偏差与卫星群延迟参数高度相关。若用户接收机与群延迟参数计算采用的接收机技术状态差异较大,用户接收机定位精度将明显恶化。  相似文献   

12.
A preliminary study was conducted to evaluate the amount of pseudorange multipath at 390+ sites in the National Continuously Operating Reference Station (CORS) Network. The National CORS Network is a cooperative effort involving over 110 different agencies, universities, and private companies who seek to make GPS data from dual-frequency receivers located throughout the United States and its territories available to the general public. For CORS users, pseudorange multipath can seriously degrade the accuracy of any application that relies on precise measurements of the pseudorange observable over a short period of time, including differential pseudorange navigation, kinematic and rapid-static surveying, and ionospheric monitoring. The main objectives of this study were to identify the most affected and least affected sites in the network, to closely investigate problematic sites, and to compare various receiver/antenna combinations. Dual-frequency carrier phase and pseudorange measurements were used to estimate the amount of L1 and L2 pseudorange multipath at each site over a one-year period. Some of the most severely affected sites were maritime Differential GPS and Nationwide Differential GPS (DGPS/NDGPS) sites. Photographs obtained for these sites verified the presence of transmission towers and other reflectors in close proximity to the GPS antennas. Plotting the variations of the L1 and L2 pseudorange multipath with respect to azimuth and elevation further verified that even above a 60° elevation angle there was still as much as five meters of pseudorange multipath at some sites. The least affected sites were the state networks installed in Ohio and Michigan; these sites used excellent antenna mounts, choke ring antennas, and new receiver technology. A comparison of the 12 most commonly used receiver/antenna combinations in the CORS Network indicated that newer receivers such as the Ashtech UZ-12, Leica RS-500, and Trimble 5700 help to significantly mitigate pseudorange multipath, while the receivers/antennas at some DGPS/NDGPS sites, and the antennas formerly used at the Wide Area Augmentation System (WAAS) sites, are among those most affected by pseudorange multipath. The receiver/antenna comparison did not take into account the potential presence of reflectors at the sites (i.e., it is possible that a well-performing receiver/antenna combination could have been consistently placed at very poor site locations, and vice-versa).Product Disclaimer: Mention of a commercial company or product does not constitute an endorsement by the National Oceanic and Atmospheric Administration. Use for publicity or advertisement purposes of information from this paper concerning proprietary products or the comparison of such products is not authorized.  相似文献   

13.
The Global Positioning System (GPS) has become a powerful tool for ionospheric studies. In addition, ionospheric corrections are necessary for the augmentation systems required for Global Navigation Satellite Systems (GNSS) use. Dual-frequency carrier-phase and code-delay GPS observations are combined to obtain ionospheric observables related to the slant total electron content (sTEC) along the satellite-receiver line-of-sight (LoS). This observable is affected by inter-frequency biases [IFB; often called differential code biases (DCB)] due to the transmitting and the receiving hardware. These biases must be estimated and eliminated from the data in order to calibrate the experimental sTEC obtained from GPS observations. Based on the analysis of single differences of the ionospheric observations obtained from pairs of co-located dual-frequency GPS receivers, this research addresses two major issues: (1) assessing the errors translated from the code-delay to the carrier-phase ionospheric observable by the so-called levelling process, applied to reduce carrier-phase ambiguities from the data; and (2) assessing the short-term stability of receiver IFB. The conclusions achieved are: (1) the levelled carrier-phase ionospheric observable is affected by a systematic error, produced by code-delay multi-path through the levelling procedure; and (2) receiver IFB may experience significant changes during 1 day. The magnitude of both effects depends on the receiver/antenna configuration. Levelling errors found in this research vary from 1.4 total electron content units (TECU) to 5.3 TECU. In addition, intra-day vaiations of code-delay receiver IFB ranging from 1.4 to 8.8 TECU were detected.  相似文献   

14.
Multipath Mitigation of Continuous GPS Measurements Using an Adaptive Filter   总被引:13,自引:4,他引:9  
Though state-of-the-art dual-frequency receivers are employed in the continuous Global Positioning System (CGPS) arrays, the CGPS coordinate time series are typically very noisy due to the effects of atmospheric biases, multipath, receiver noise, and so on, with multipath generally being considered the major noise contributor. An adaptive finite-duration impulse response filter, based on a least-mean-square algorithm, has been developed to derive a relatively noise-free time series from the CGPS results. Furthermore, this algorithm is suitable for real-time applications. Numerical simulation studies indicate that the adaptive filters is a powerful signal decomposer, which can significantly mitigate multipath effects. By applying the filter to both pseudorange and carrier phase multipath sequences derived from some experimental GPS data, multipath models have been reliably derived. It is found that the best multipath mitigation strategy is forward filtering using data on two adjacent days, which reduces the standard deviations of the pseudorange multipath time series to about one fourth its magnitude before correction and to about half in the case of carrier phase. The filter has been successfully applied to the pseudorange multipath sequences derived from CGPS data. The benefit of this techniques is that the affected observable sequences can be corrected, and then these corrected observables can be used to improve the quality of the GPS coordinate results. ? 2000 John Wiley & Sons, Inc.  相似文献   

15.
Combined GPS/GLONASS precise point positioning (PPP) can obtain a more precise and reliable position than GPS PPP. However, because of frequency division multiple access, GLONASS carrier phase and pseudorange observations suffer from inter-channel biases (ICBs) which will influence the accuracy and convergence speed of combined GPS/GLONASS PPP. With clear understanding of the characteristics of carrier phase ICBs, we estimated undifferenced GLONASS pseudorange ICBs for 133 receivers from five manufacturers and analyzed their characteristics. In general, pseudorange ICBs corresponding to the same firmware have strong correlations. The ICB values of two receivers with the same firmware may be different because of different antenna types, and their differences are closely related to frequency. Pseudorange ICBs should be provided for each satellite to obtain more precise ICBs as the pseudorange ICBs may vary even on the same frequency. For the solutions of standard point positioning (SPP), after pseudorange ICB calibration, the mean root mean square (RMS) improvements of GLONASS SPP reach up to 57, 48, and 53 % for the East, North, and Up components, while combined GPS/GLONASS SPP reach up to 27, 17, and 23 %, respectively. The combined GPS/GLONASS PPP after pseudorange ICB calibration evidently improved the convergence speed, and the mean RMS of PPP improved by almost 50 % during the convergence period.  相似文献   

16.
A study on the dependency of GNSS pseudorange biases on correlator spacing   总被引:2,自引:0,他引:2  
We provide a comprehensive overview of pseudorange biases and their dependency on receiver front-end bandwidth and correlator design. Differences in the chip shape distortions among GNSS satellites are the cause of individual pseudorange biases. The different biases must be corrected for in a number of applications, such as positioning with mixed signals or PPP with ambiguity resolution. Current state-of-the-art is to split the pseudorange bias into a receiver- and a satellite-dependent part. As soon as different receivers with different front-end bandwidths or correlator designs are involved, the satellite biases differ between the receivers and this separation is no longer practicable. A test with a special receiver firmware, which allows tracking a satellite with a range of different correlator spacings, has been conducted with live signals as well as a signal simulator. In addition, the variability of satellite biases is assessed through zero-baseline tests with different GNSS receivers using live satellite signals. The receivers are operated with different settings for multipath mitigation, and the changes in the satellite-dependent biases depending on the receivers’ configuration are observed.  相似文献   

17.
B2a信号是北斗三号(BeiDou-3 satellite navigation system, BD-3)新增的高宽带信号,具备非常高的伪距测量精度,适合开展基于全球导航卫星系统反射信号(global navigation satellite system-reflectometry, GNSS-R)的水面高度测量。由于BD-3近两年才开始为全球提供服务,基于BD-3反射信号的研究较少。中国科学院国家空间科学中心研发了具备自主知识产权的GNSS-R接收机,接收机专门增加了BD-3 B2a的捕获跟踪功能,可以对直射和反射B2a信号同时进行捕获和跟踪。接收机同时具备了交叉定标功能,能够有效消除由电缆和接收机通道间差异引起的系统偏差。在中国北京市怀柔开展的岸基实验过程中,累计获取了BD-3 B2a、北斗二号(BeiDou-2 satellite navigation system, BD-2)B1I和全球定位系统(global positioning system, GPS)L1C/A反射信号的相关波形数据,成功反演了水面高度并进行了系统偏差消除。数据处理结果表明,基于BD-3 B2a的水面高度在30 s非相干积分时间条件下反演精度达到了5.9 cm,比BD-2 B1I的高度测量精度提高了13 cm,比GPS L1C/A信号的高度测量精度提高了20 cm。  相似文献   

18.
GPS双频相位平滑伪距及其单点定位的精度研究   总被引:10,自引:1,他引:9  
讨论了利用Hatch滤波对双频消电离层组合伪距观测值进行相位平滑,对原Hatch滤波公式中的定权方法进行了改进.在此基础上,采用JPL提供的间隔为30 s的sp3事后精密星历和卫星钟差,对GPS双频相位平滑伪距及其单点定位的精度进行了研究.采用自编软件,利用IGS跟踪站观测数据进行了实际计算,并得出结论.  相似文献   

19.
Vertical total electron content (VTEC) parameters estimated using global navigation satellite system (GNSS) data are of great interest for ionosphere sensing. Satellite differential code biases (SDCBs) account for one source of error which, if left uncorrected, can deteriorate performance of positioning, timing and other applications. The customary approach to estimate VTEC along with SDCBs from dual-frequency GNSS data, hereinafter referred to as DF approach, consists of two sequential steps. The first step seeks to retrieve ionospheric observables through the carrier-to-code leveling technique. This observable, related to the slant total electron content (STEC) along the satellite–receiver line-of-sight, is biased also by the SDCBs and the receiver differential code biases (RDCBs). By means of thin-layer ionospheric model, in the second step one is able to isolate the VTEC, the SDCBs and the RDCBs from the ionospheric observables. In this work, we present a single-frequency (SF) approach, enabling the joint estimation of VTEC and SDCBs using low-cost receivers; this approach is also based on two steps and it differs from the DF approach only in the first step, where we turn to the precise point positioning technique to retrieve from the single-frequency GNSS data the ionospheric observables, interpreted as the combination of the STEC, the SDCBs and the biased receiver clocks at the pivot epoch. Our numerical analyses clarify how SF approach performs when being applied to GPS L1 data collected by a single receiver under both calm and disturbed ionospheric conditions. The daily time series of zenith VTEC estimates has an accuracy ranging from a few tenths of a TEC unit (TECU) to approximately 2 TECU. For 73–96% of GPS satellites in view, the daily estimates of SDCBs do not deviate, in absolute value, more than 1 ns from their ground truth values published by the Centre for Orbit Determination in Europe.  相似文献   

20.
Combination of GNSS and SLR observations using satellite co-locations   总被引:6,自引:6,他引:0  
Satellite Laser Ranging (SLR) observations to Global Navigation Satellite System (GNSS) satellites may be used for several purposes. On one hand, the range measurement may be used as an independent validation for satellite orbits derived solely from GNSS microwave observations. On the other hand, both observation types may be analyzed together to generate a combined orbit. The latter procedure implies that one common set of orbit parameters is estimated from GNSS and SLR data. We performed such a combined processing of GNSS and SLR using the data of the year 2008. During this period, two GPS and four GLONASS satellites could be used as satellite co-locations. We focus on the general procedure for this type of combined processing and the impact on the terrestrial reference frame (including scale and geocenter), the GNSS satellite antenna offsets (SAO) and the SLR range biases. We show that the combination using only satellite co-locations as connection between GNSS and SLR is possible and allows the estimation of SLR station coordinates at the level of 1–2 cm. The SLR observations to GNSS satellites provide the scale allowing the estimation of GNSS SAO without relying on the scale of any a priori terrestrial reference frame. We show that the necessity to estimate SLR range biases does not prohibit the estimation of GNSS SAO. A good distribution of SLR observations allows a common estimation of the two parameter types. The estimated corrections for the GNSS SAO are 119 mm and −13 mm on average for the GPS and GLONASS satellites, respectively. The resulting SLR range biases suggest that it might be sufficient to estimate one parameter per station representing a range bias common to all GNSS satellites. The estimated biases are in the range of a few centimeters up to 5 cm. Scale differences of 0.9 ppb are seen between GNSS and SLR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号