首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
3种GPS+BDS组合PPP模型比较与分析   总被引:1,自引:1,他引:0  
臧楠  李博峰  沈云中 《测绘学报》2017,46(12):1929-1938
无电离层组合和非组合模型是GNSS精密单点定位(PPP)常用的两种函数模型。本文通过详细分析PPP的两种函数模型各类参数间的相关特性,建立了参数独立的函数模型。对非组合PPP模型的电离层参数引入虚拟观测方程进行约束,有效提高了PPP的收敛速度。最后,从定位精度和收敛时间两方面分析不同函数模型的GPS单系统和GPS+BDS组合PPP静态、模拟动态定位效果。结果表明:GPS单系统和GPS+BDS组合PPP定位精度相当,静态的无电离层组合与非组合PPP均可达到厘米至毫米级精度,动态PPP精度的平面优于3cm,高程优于5cm;无电离层组合PPP收敛时间优于非组合的PPP,电离层加权非组合PPP的收敛时间最短。动态定位中,电离层加权模型相比于无电离层组合模型,可减少约15%的收敛时间,相比于非组合模型,可减少约34%。  相似文献   

2.
在全球定位系统(Global Positioning System,GPS)中,接收机硬件延迟引起的码偏差和相位偏差是影响精密授时、电离层建模以及非差模糊度解算的重要因素。利用GPS对电离层总电子含量进行估计和建模时,通常假定GPS接收机硬件延迟偏差是稳定不变的量,对其可能存在的波动及影响因素考虑不充分。因此,对GPS接收机硬件延迟偏差的时变特性进行分析,有助于提高电离层电子含量估值的准确性和可靠性。分析了GPS接收机差分码偏差(differential code bias,DCB)和差分相位偏差(differential phase bias,DPB)单历元及单天解的时间变化特性,并对温度变化与接收机DCB、DPB变化之间的相关性进行了实验探究。结果表明,接收机重启前后其DCB值会发生突变,重启之后接收机DCB和DPB大约需要25 min才能趋于稳定。接收机DCB和DPB并不能长期保持稳定,实验数据显示,在2~3 h内,DCB的变化量可以达到0.8 m左右,DPB的变化量可以达到4 mm左右,接收机DCB和DPB的波动与周围环境温度的变化具有较强相关性。  相似文献   

3.
提出一种使用非差非组合精密单点定位(PPP)估计和分析接收机DCB短时时变特征的方法。首先利用非差非组合PPP得到包含接收机DCB的重构电离层参数估值;然后通过IGS电离层GIMs格网模型内插剥离各历元站星斜向电离层距离延迟;最后通过最小二乘约束得到各历元接收机DCB解。由于格网本身精度(2~8 TECU)和插值精度限制,解算出来的接收机DCB并不能真实反映其短期时变特征。为此,提出利用站间单差或者历元间差分的方法还原其真实的变化态势。实验结果表明,所提出的方法能够正确估计接收机DCB,并能真实还原其短期时变特征,具有良好的适用性。  相似文献   

4.
周锋  徐天河 《测绘学报》2021,50(1):61-70
在精细考虑伪距和载波相位硬件偏差时变特性的基础上,导出了更为严谨的非差非组合观测方程,并给出了非组合模式下两类GNSS偏差的数学表达形式。基于此,本文详细研究了3种常用的三频精密单点定位(PPP),即无电离层两两组合IF1213、单个无电离层组合IF123与非组合UC123函数模型的独立参数化方法,系统分析了3种PPP模型的相互关系以及GPS/BDS/Galileo三频静、动态PPP定位性能。结果表明,静态PPP收敛后定位精度水平方向优于1.0 cm,高程优于1.5 cm;动态PPP水平方向优于2.0 cm,高程优于5.0 cm;三频PPP的定位性能与双频PPP基本相当。  相似文献   

5.
高精度电离层修正是非差非组合精密单点定位(precise point positioning, PPP)加速收敛的重要前提。首先基于参考站网台站观测数据,以非差非组合精密单点定位提取的电离层延迟作为建模数据源,提出一种基于多项式模型的估计天顶电离层延迟参数以及卫星硬件延迟的单差电离层模型。然后开发了服务端和用户端相应软件系统,服务端提取电离层延迟和进行单差建模,并将模型参数播发给用户端作为电离层约束进行非差非组合精密单点定位。最后在欧洲地区通过PPP提取电离层进行拟合实验,结果表明,广域地区GPS和俄罗斯GLONASS(global navigation satellite system)单系统电离层模型内外符合精度分别为1 TECu(total electron content unit)和3 TECu。采用电离层约束的非差非组合动态精密单点定位,统计136个1 h时段的定位结果,发现在附加电离层约束PPP实验中,78个时段(57.35%)收敛时间在5 min内,97个时段(71.32%)在10 min内,122个时段(89.7%)在15 min内,132个时段(97.06%)在25 min内;在无约束PPP实验中,上述收敛时间内结果分别为15个(11.03%)、64个(47.06%)、91个(66.91%)、110个(80.88%)。  相似文献   

6.
全球导航卫星系统(Global Navigation Satellite System,GNSS)探测大气电离层需要精确处理由接收机差分码偏差(differential cade bias,DCB)引起的系统误差。准确掌握接收机DCB的多时间尺度精细变化等特性是联合美国GPS、中国北斗卫星导航系统(BeiDou navigation satellite system,BDS)和欧盟Galileo等多GNSS技术监测电离层所面临的主要科学问题之一。为此,提出了基于零基线精密估计站间单差接收机DCB的方法,并对站间单差接收机DCB的日加权平均值进行了分析。基于4台多模接收机采集于2013年的双频观测值,揭示了站间单差接收机DCB的变化可能受3种因素的影响,即接收机内置软件的版本升级(实验中引起了约3 ns的显著增加)、拆卸个别接收机所导致的观测条件改变(实验中引起了约1.3 ns的显著减少)和估计方法的误差(引起了与导航系统卫星几何结构重复性相一致的周期性变化)等。  相似文献   

7.
李昕  郭际明  周吕  覃发超 《测绘学报》2016,45(8):929-934
提出了一种精确估计区域北斗接收机硬件延迟(DCB)的方法。该方法不需要传统复杂的电离层模型,在已知一个参考站接收机硬件延迟的条件下,利用正常情况下电离层延迟量和卫星-接收机几何距离强相关这一特点,采用站间单差法来精确估计区域内BDS接收机的硬件延迟。试验结果表明,该方法单站估计的单站北斗接收机连续30d的硬件延迟RMS在0.3ns左右。通过GEO卫星双频观测值扣除已知卫星DCB和本文方法估计的接收机DCB,计算对应穿刺点一天的VTEC并和GIM格网内插结果并进行比对分析,二者大小和变化趋势均符合较好,进一步验证了本文提出的方法具有可靠性。  相似文献   

8.
BDS/Galileo四频精密单点定位模型性能分析与比较   总被引:1,自引:1,他引:1  
苏珂  金双根 《测绘学报》1957,49(9):1189-1201
北斗卫星导航系统和Galileo卫星系统都可以提供4个频率信号上的服务。本文通过与双频无电离层模型(DF)比较,评估分析了4种BDS/Galileo四频PPP模型性能,即四频无电离层双组合模型(QF1)、四频无电离层组合模型(QF2)、四频非差非组合模型(QF3)和附加电离层约束四频非差非组合模型(QF4),同时通过等价性原则理论上证明了QF1、QF2、QF3模型的等价性。此外,用1个月参考站的静态数据和1组动态数据分析了四频静态,仿动态和动态PPP性能。试验结果表明,BDS-3 B1C和B2a新频点伪距噪声要略大于B1I和B3I信号,Galileo卫星4个频率上的伪距噪声相差并不明显。对于静态和仿动态PPP模型,QF1、QF2和QF3模型定位性能基本上一致。通过附加外部电离层约束,四频PPP模型性能受到影响,BDS(BDS-2+BDS-3)静态QF4模型相比于QF1、QF2和QF3模型平均收敛时间分别减少了4.4%、4.4%和5.4%,Galileo静态Q4模型平均收敛时间相比于Q3模型增加了16.8 min。对于动态PPP,四频PPP模型相比于双频PPP性能得到提升显著,相比于QF1模型,BDS和Galileo单系统QF4模型三维定位精度分别提高了11.4%和31.4%。BDS/Galileo双系统PPP性能要优于单系统PPP。  相似文献   

9.
针对现有精密单点定位(PPP)模型收敛慢的问题,提出了一种改进的PPP定位模型。采用码相位半合组合观测值以及几何无关组合观测值分别降低码伪距观测噪声和轨道误差的影响,该模型不仅具有较小的观测噪声,还降低了轨道误差影响。实验结果表明,引入新的组合观测值后明显改善了PPP的解算性能。当观测时长为0.5 h时,采用所提模型的收敛率较标准非组合(un-combined model,UC)模型、UofC(university of calgary model)模型和标准非差无电离层组合(un-difference ionosphere free combined model,UD)模型分别提高了37.6%、4.2%和235.9%,且收敛速度有明显提高;在定位精度方面,新模型与UofC模型较为一致,但明显优于UC和UD模型;采用新模型估计的天顶对流层延迟与UC模型较为一致,且高于UofC和UD模型。  相似文献   

10.
针对常规模式下。单系统实时精密单点定位精度受接收机环境和可视卫星数量影响严重等问题,研究了GPS/BDS双系统实时精密单点定位,采用非差无电离层组合载波和伪距观测值,详细推论了Kalman滤波参数估计方法的基本原理,并利用其进行参数估计,最后通过IGS站和实测数据进行了实时PPP实验,实验表明:GPS/BDS双系统定位模式较GPS单系统有明显改善,在E、N、U方向收敛后RMS值分别达到0.125 m、0.117 m、0.289 m,较单系统在各方向分别改善了11.9%、18.1%、22.5%。证明了GPS/BDS实时PPP能够达到分米级到厘米级定位精度。  相似文献   

11.
Multi-GNSS precise point positioning (MGPPP) using raw observations   总被引:5,自引:2,他引:3  
A joint-processing model for multi-GNSS (GPS, GLONASS, BDS and GALILEO) precise point positioning (PPP) is proposed, in which raw code and phase observations are used. In the proposed model, inter-system biases (ISBs) and GLONASS code inter-frequency biases (IFBs) are carefully considered, among which GLONASS code IFBs are modeled as a linear function of frequency numbers. To get the full rank function model, the unknowns are re-parameterized and the estimable slant ionospheric delays and ISBs/IFBs are derived and estimated simultaneously. One month of data in April, 2015 from 32 stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) tracking network have been used to validate the proposed model. Preliminary results show that RMS values of the positioning errors (with respect to external double-difference solutions) for static/kinematic solutions (four systems) are 6.2 mm/2.1 cm (north), 6.0 mm/2.2 cm (east) and 9.3 mm/4.9 cm (up). One-day stabilities of the estimated ISBs described by STD values are 0.36 and 0.38 ns, for GLONASS and BDS, respectively. Significant ISB jumps are identified between adjacent days for all stations, which are caused by the different satellite clock datums in different days and for different systems. Unlike ISBs, the estimated GLONASS code IFBs are quite stable for all stations, with an average STD of 0.04 ns over a month. Single-difference experiment of short baseline shows that PPP ionospheric delays are more precise than traditional leveling ionospheric delays.  相似文献   

12.
Single-frequency precise point positioning (SF-PPP) is a potential precise positioning technique due to the advantages of the high accuracy in positioning after convergence and the low cost in operation. However, there are still challenges limiting its applications at present, such as the long convergence time, the low reliability, and the poor satellite availability and continuity in kinematic applications. In recent years, the achievements in the dual-frequency PPP have confirmed that its performance can be significantly enhanced by employing the slant ionospheric delay and receiver differential code bias (DCB) constraint model, and the multi-constellation Global Navigation Satellite Systems (GNSS) data. Accordingly, we introduce the slant ionospheric delay and receiver DCB constraint model, and the multi-GNSS data in SF-PPP modular together. In order to further overcome the drawbacks of SF-PPP in terms of reliability, continuity, and accuracy in the signal easily blocking environments, the inertial measurements are also adopted in this paper. Finally, we form a new approach to tightly integrate the multi-GNSS single-frequency observations and inertial measurements together to ameliorate the performance of the ionospheric delay and receiver DCB-constrained SF-PPP. In such model, the inter-system bias between each two GNSS systems, the inter-frequency bias between each two GLONASS frequencies, the hardware errors of the inertial sensors, the slant ionospheric delays of each user-satellite pair, and the receiver DCB are estimated together with other parameters in a unique Kalman filter. To demonstrate its performance, the multi-GNSS and low-cost inertial data from a land-borne experiment are analyzed. The results indicate that visible positioning improvements in terms of accuracy, continuity, and reliability can be achieved in both open-sky and complex conditions while using the proposed model in this study compared to the conventional GPS SF-PPP.  相似文献   

13.
The features and differences of various GPS differential code bias (DCB)s are discussed. The application of these biases in dual- and triple-frequency satellite clock estimation is introduced based on this discussion. A method for estimating the satellite clock error from triple-frequency uncombined observations is presented to meet the need of the triple-frequency uncombined precise point positioning (PPP). In order to evaluate the estimated satellite clock error, the performance of these biases in dual- and triple-frequency positioning is studied. Analysis of the inter-frequency clock bias (IFCB), which is a result of constant and time-varying frequency-dependent hardware delays, in ionospheric-free code-based (P1/P5) single point positioning indicates that its influence on the up direction is more pronounced than on the north and east directions. When the IFCB is corrected, the mean improvements are about 29, 35 and 52% for north, east and up directions, respectively. Considering the contribution of code observations to PPP convergence time, the performance of DCB(P1–P2), DCB(P1–P5) and IFCB in GPS triple-frequency PPP convergence is investigated. The results indicate that the DCB correction can accelerate PPP convergence by means of improving the accuracy of the code observation. The performance of these biases in positioning further verifies the correctness of the estimated dual- and triple-frequency satellite clock error.  相似文献   

14.
BDS/GPS精密单点定位收敛时间与定位精度的比较   总被引:5,自引:1,他引:4  
张小红  左翔  李盼  潘宇明 《测绘学报》2015,44(3):250-256
采用武汉大学卫星导航定位技术研究中心发布的北斗精密卫星轨道和钟差,在TriP 2.0软件的基础上实现了BDS PPP定位算法,并利用大量实测数据进行了BDS/GPS静态PPP和动态PPP浮点解试验。结果表明,BDS静态PPP的收敛时间约为80min,动态PPP的收敛时间为100min;对于3h的观测数据,静态PPP收敛后定位精度优于5cm,动态PPP收敛后水平方向优于8cm,高程方向约12cm;与GPS PPP类似,东分量上定位精度较北分量稍差。当前由于BDS的全球跟踪站有限,精密轨道和钟差精度不如GPS,因此BDS PPP的收敛时间较GPS长,但收敛后可实现厘米至分米级的绝对定位。  相似文献   

15.
We present the joint estimation model for Global Positioning System/BeiDou Navigation Satellite System (GPS/BDS) real-time clocks and present the initial satellite clock solutions determined from 106 stations of the international GNSS service multi-GNSS experiment and the BeiDou experimental tracking stations networks for 1 month in December, 2012. The model is shown to be efficient enough to have no practical computational limit for producing 1-Hz clock updates for real-time applications. The estimated clocks were assessed through the comparison with final clock products and the analysis of post-fit residuals. Using the estimated clocks and corresponding orbit products (GPS ultra-rapid-predicted and BDS final orbits), the root-mean-square (RMS) values of coordinate differences from ground truth values are around 1 and 2–3 cm for GPS-only and BDS-only daily mean static precise point positioning (PPP) solutions, respectively. Accuracy of GPS/BDS combined static PPP solutions falls in between that of GPS-only and BDS-only PPP results, with RMS values approximately 1–2 cm in all three components. For static sites, processed in the kinematic PPP mode, the daily RMS values are normally within 4 and 6 cm after convergence for GPS-only and BDS-only results, respectively. In contrast, the combined GPS/BDS kinematic PPP solutions show higher accuracy and shorter convergence time. Additionally, the BDS-only kinematic PPP solutions using clock products derived from the proposed joint estimation model were superior compared to those computed using the single-system estimation model.  相似文献   

16.
As a first step towards studying the ionosphere with the global navigation satellite system (GNSS), leveling the phase to the code geometry-free observations on an arc-by-arc basis yields the ionospheric observables, interpreted as a combination of slant total electron content along with satellite and receiver differential code biases (DCB). The leveling errors in the ionospheric observables may arise during this procedure, which, according to previous studies by other researchers, are due to the combined effects of the code multipath and the intra-day variability in the receiver DCB. In this paper we further identify the short-term temporal variations of receiver differential phase biases (DPB) as another possible cause of leveling errors. Our investigation starts by the development of a method to epoch-wise estimate between-receiver DPB (BR-DPB) employing (inter-receiver) single-differenced, phase-only GNSS observations collected from a pair of receivers creating a zero or short baseline. The key issue for this method is to get rid of the possible discontinuities in the epoch-wise BR-DPB estimates, occurring when satellite assigned as pivot changes. Our numerical tests, carried out using Global Positioning System (GPS, US GNSS) and BeiDou Navigation Satellite System (BDS, Chinese GNSS) observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, suggest two major findings. First, epoch-wise BR-DPB estimates can exhibit remarkable variability over a rather short period of time (e.g. 6 cm over 3 h), thus significant from a statistical point of view. Second, a dominant factor driving this variability is the changes of ambient temperature, instead of the un-modelled phase multipath.  相似文献   

17.
Ambiguity resolved precise point positioning with GPS and BeiDou   总被引:2,自引:1,他引:1  
This paper focuses on the contribution of the global positioning system (GPS) and BeiDou navigation satellite system (BDS) observations to precise point positioning (PPP) ambiguity resolution (AR). A GPS + BDS fractional cycle bias (FCB) estimation method and a PPP AR model were developed using integrated GPS and BDS observations. For FCB estimation, the GPS + BDS combined PPP float solutions of the globally distributed IGS MGEX were first performed. When integrating GPS observations, the BDS ambiguities can be precisely estimated with less than four tracked BDS satellites. The FCBs of both GPS and BDS satellites can then be estimated from these precise ambiguities. For the GPS + BDS combined AR, one GPS and one BDS IGSO or MEO satellite were first chosen as the reference satellite for GPS and BDS, respectively, to form inner-system single-differenced ambiguities. The single-differenced GPS and BDS ambiguities were then fused by partial ambiguity resolution to increase the possibility of fixing a subset of decorrelated ambiguities with high confidence. To verify the correctness of the FCB estimation and the effectiveness of the GPS + BDS PPP AR, data recorded from about 75 IGS MGEX stations during the period of DOY 123-151 (May 3 to May 31) in 2015 were used for validation. Data were processed with three strategies: BDS-only AR, GPS-only AR and GPS + BDS AR. Numerous experimental results show that the time to first fix (TTFF) is longer than 6 h for the BDS AR in general and that the fixing rate is usually less than 35 % for both static and kinematic PPP. An average TTFF of 21.7 min and 33.6 min together with a fixing rate of 98.6 and 97.0 % in static and kinematic PPP, respectively, can be achieved for GPS-only ambiguity fixing. For the combined GPS + BDS AR, the average TTFF can be shortened to 16.9 min and 24.6 min and the fixing rate can be increased to 99.5 and 99.0 % in static and kinematic PPP, respectively. Results also show that GPS + BDS PPP AR outperforms single-system PPP AR in terms of convergence time and position accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号