首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据不同围压下板岩三轴试验的结果,研究不同围压下板岩的能量变化规律和损伤分析。研究结果表明,不同变形阶段板岩的弹性应变能、耗散能的变化情况不同,弹性应变能先增加后减小,耗散能加载初期几乎为零,进入屈服段急剧增加。根据弹性应变能与总吸收能之比将岩石压缩过程中裂隙发展划分为3个阶段:裂隙稳定发展阶段、裂隙加速发展阶段和裂隙贯通阶段。岩样破坏后总吸收能、耗散能与围压的关系表明,从开始加载到屈服段,畸变比能和体变比能之和Ue'大体等于弹性应变能Ue;从屈服段到峰值强度,Ue'小于Ue且差值越来越大。从能量角度定义损伤变量,认为:低围压状态对应较低的耗散能、较高的损伤值;高围压状态对应较高的耗散能、较低的损伤值。   相似文献   

2.
高应力区砂岩加卸载条件下能量变化规律及损伤分析   总被引:3,自引:0,他引:3  
根据高应力区砂岩三轴压缩试验和峰前卸围压试验的结果,分析了砂岩在不同应力路径下的能量变化规律。试验结果表明,相同围压下,峰前卸围压试验的各能量指标(总吸收能、弹性应变能、耗散能)均小于三轴压缩试验,能量变化特征与其初始应力路径密切相关,且随围压的增大而增大。峰前储存的弹性应变能比耗散能多,耗散能只在临近峰值点处才迅速增加。能量的耗散会导致岩石产生损伤,并且使岩性劣化、丧失强度,从能量角度定义的损伤变量,可以得出结论:开始卸荷低围压下的损伤变量大于高围压下,临近破坏时高围压下的损伤变量大于低围压下;卸围压使岩样束缚减小,加速了损伤的发展,岩样所受的应力状态愈趋不平衡。因此,基于能量的角度来表征岩石的损伤演化更符合实际。  相似文献   

3.
为了准确评价油气储藏水力压裂及岩爆等工程中岩石的脆性,总结了目前国内外已有的基于能量理论计算岩石脆性的方法,并指出了它们的局限性.综合考虑岩石峰前和峰后的能量演化特征,建立了一种基于全应力应变曲线的反映岩石变形破坏全过程的脆性指数评价方法,更加全面地描述岩石的脆性特征.为了验证新方法的合理性,收集了4组岩石力学试验对新指数进行检验.试验结果表明:由峰前指数与峰后指数合成的脆性指数都随着围压的增加而减小,低围压下煤岩和页岩2组均具有较强的脆性,而高围压下红砂岩和页岩1组的脆性明显减弱,表现了随围压增大岩石发生脆延转换的特性.在实际边坡工程中通过对板岩进行脆性评价,验证了本文所提出的脆性指数在工程应用中的合理性,该成果有望对岩石脆性评价提供参考.   相似文献   

4.
合理而准确地评价岩石的脆性是评估岩爆风险、油气储层可压裂性等工程实践的前提。针对表征脆性岩石破坏过程的能量跌落系数,详细分析了其适用性和局限性。为更加有效地评价岩石的脆性,基于岩石破坏全过程的应力-应变曲线,在能量跌落系数的基础上,进一步考虑峰前总能量中可释放弹性能的占比,提出一种改进的能量跌落系数,认为脆性是岩石内部可释放弹性能在峰前阶段大量储存与峰后阶段快速释放的综合表现。通过不同围压下大理岩和花岗岩试验数据进行分析和对比,结果表明改进后的能量跌落系数不仅能反映同种岩石不同围压下的脆-延转化行为,还能有效评价相同围压下不同岩石的脆性强弱。同时讨论了泊松比、损伤变量对岩石脆性评价的影响,发现随着泊松比增大,各围压下花岗岩的脆性强于大理岩的性质不改变;随着损伤变量增大,花岗岩的脆性由强于大理岩转变为弱于大理岩,且围压越高现象越明显。试验结果验证了改进后能量跌落系数的可靠性,研究成果有望对岩石脆性评价提供些许参考。  相似文献   

5.
合理而准确地评价岩石的脆性是评估岩爆风险、油气储层可压裂性等工程实践的前提。针对表征脆性岩石破坏过程的能量跌落系数,详细分析了其适用性和局限性。为更加有效地评价岩石的脆性,基于岩石破坏全过程的应力-应变曲线,在能量跌落系数的基础上,进一步考虑峰前总能量中可释放弹性能的占比,提出一种改进的能量跌落系数,认为脆性是岩石内部可释放弹性能在峰前阶段大量储存与峰后阶段快速释放的综合表现。通过不同围压下大理岩和花岗岩试验数据进行分析和对比,结果表明改进后的能量跌落系数不仅能反映同种岩石不同围压下的脆-延转化行为,还能有效评价相同围压下不同岩石的脆性强弱。同时讨论了泊松比、损伤变量对岩石脆性评价的影响,发现随着泊松比增大,各围压下花岗岩的脆性强于大理岩的性质不改变;随着损伤变量增大,花岗岩的脆性由强于大理岩转变为弱于大理岩,且围压越高现象越明显。试验结果验证了改进后能量跌落系数的可靠性,研究成果有望对岩石脆性评价提供些许参考。  相似文献   

6.
合理而准确地评价岩石的脆性是评估岩爆风险、油气储层可压裂性等工程实践的前提。针对表征脆性岩石破坏过程的能量跌落系数,详细分析了其适用性和局限性。为更加有效地评价岩石的脆性,基于岩石破坏全过程的应力-应变曲线,在能量跌落系数的基础上,进一步考虑峰前总能量中可释放弹性能的占比,提出一种改进的能量跌落系数,认为脆性是岩石内部可释放弹性能在峰前阶段大量储存与峰后阶段快速释放的综合表现。通过不同围压下大理岩和花岗岩试验数据进行分析和对比,结果表明改进后的能量跌落系数不仅能反映同种岩石不同围压下的脆-延转化行为,还能有效评价相同围压下不同岩石的脆性强弱。同时讨论了泊松比、损伤变量对岩石脆性评价的影响,发现随着泊松比增大,各围压下花岗岩的脆性强于大理岩的性质不改变;随着损伤变量增大,花岗岩的脆性由强于大理岩转变为弱于大理岩,且围压越高现象越明显。试验结果验证了改进后能量跌落系数的可靠性,研究成果有望对岩石脆性评价提供些许参考。  相似文献   

7.
页岩储层的脆性特征对页岩气的开发有重要影响,脆性页岩有利于页岩气的开采,因此进行页岩脆性评价有重要的实践意义。目前,页岩脆性的研究方法多达20余种,其中主要有:应用三轴压缩实验、X-衍射实验等室内试验的方法,分析其脆性破坏特征及影响因素;利用岩石弹性参数和矿物成分组合对页岩脆性特征进行综合评价。笔者利用脆性矿物指数法和力学性质测试法对四川盆地五峰组及龙马溪组下部页岩储层进行综合脆性测试。结果表明:页岩中脆性矿物主要包括石英、长石、方解石以及黄铁矿等,石英作为脆性矿物的主要组分,在脆性矿物中占60%以上,长石占30%左右;脆性指数为16%~48%;页岩峰值应变参数约0.085,变形经历了压密、弹性变形、屈服变形、残余变形四个阶段。结合研究应力应变关系曲线图,证明页岩表现较好的脆性特征,力学脆性特征介于北美Barnett页岩最大、最小峰值(2.10%,0.04%)之间。研究证明,五峰组—龙马溪组下部页岩储层具有较好的脆性特征,有利于页岩气的压裂开采。  相似文献   

8.
杨小彬  程虹铭  吕嘉琦  侯鑫  聂朝刚 《岩土力学》2019,40(10):3751-3757
为了研究循环载荷下岩石能量演化特征,引入耗能比?,开展砂岩不同围压下轴向循环加卸载试验,探究全应力-应变过程中?值演化特征,进而探讨岩石试样循环加卸载作用下损伤变形演化规律。试验结果表明:对应全应力-应变曲线的5个阶段,?值演化过程可划分为线性下降、稳定发展、缓慢增加、突然增加和平缓变化5个阶段,在?值整个演化过程呈现“勺”演化特征,该特征充分反映了试样变形演化过程中的能量转化关系及损伤演化程度;随着围压的增大,?值整体呈现减小趋势;同一应变水平下,不同围压下?值在线性下降阶段、稳定发展阶段差值逐渐减小,在缓慢增加阶段、突然增加阶段差值逐渐增大,在平缓变化阶段差值减小并趋于一个稳定值;分析循环加载下岩石材料参数演化特征,考虑围压作用及耗能比演化规律,建立岩石试样循环加卸载作用下的应力-应变演化理论公式,并进行了试验曲线拟合,验证了该理论公式的合理性。  相似文献   

9.
为研究尾砂胶结充填体的动态力学性能及能量损伤演化过程,采用分离式霍普金森杆对尾砂胶结充填体进行了不同应变率下的冲击加载试验。试验结果表明:充填体的动态抗压强度和动态抗压强度增强因子随应变率的增加呈指数函数递增规律,且水泥含量越低的充填体应变率效应更显著;充填体的峰前能耗量密度、峰后能耗量密度、单位体积应变能及总能耗量密度随应变率的增加均呈指数函数递增规律,且动态抗压强度与峰后耗散能密度具有明显的正相关关系;冲击载荷作用下,充填体变形破坏主要经历了线弹性变形、屈服破坏及峰后破裂这3个阶段;在充填体的线弹性变形及屈服破坏阶段,能量以弹性应变能的形式储存在试样内部,而在峰后破裂阶段,能量以耗散能释放为主;冲击加载下,充填体的受荷能量损伤演化过程划分为损伤稳定发展阶段、损伤加速阶段及损伤破坏阶段3个阶段。  相似文献   

10.
泥页岩储层岩石力学特性及脆性评价   总被引:7,自引:0,他引:7  
刁海燕 《岩石学报》2013,29(9):3300-3306
泥页岩储层的岩石力学特性对油气开发影响极大,进行泥页岩力学特性和脆性评价方面的研究,可以为泥页岩油钻井和压裂设计工作提供技术支撑。实验研究表明,泥页岩抗压强度与围压、杨氏模量成正相关;体积应变量随杨氏模量减小而增大,随泊松比增加而增加;泥页岩破坏在低围压下以劈裂式破坏为主,高围压时多出现剪切式破坏。泥页岩的脆性与其弹性参数和矿物组成关系密切,通过数值模拟和实验测量,综合弹性参数和矿物组分两种方法提出了一种新的脆性评价方法-弹性参数与矿物成分组合法(EP&MC Method),并实现了单井脆性评价,效果较好。脆性评价既是储层岩石力学特性分析的重要内容,也是压裂选层的重要依据。  相似文献   

11.
利用MTS815程控伺服岩石力学试验系统,对千枚岩进行不同围压下的三轴压缩试验,研究围压对千枚岩变形破坏特征和能量演化特征的影响。结果表明:在低围压下,千枚岩破坏模式为张-剪复合型破坏,随着围压升高,破坏模式转变为剪切破坏;弹性应变能曲线和耗散能曲线的交点k为能量分界点,k之前表现为能量积聚,k之后表现为能量释放;总能量与轴向应变关系曲线在加载初期呈下凹曲线,能量增速升高,加载后期呈上凸曲线,能量增速降低;特征应力点的总能量和储能的弹性应变能均随围压的增大而增大;围压对岩石内部裂纹扩展和峰后能量释放均有阻碍作用。  相似文献   

12.
以重庆松藻同华矿K3煤层制备的煤样为研究对象,利用自主研制的渗流装置,进行了不同围压和瓦斯压力下煤样的三轴压缩试验,并应用能量积聚与耗散的方法,研究了煤样在压缩过程中的能耗特征和渗流特性。结果表明:三轴压缩破坏过程中,含瓦斯煤样存在着能量积聚与耗散。煤样以弹性应变能的形式吸收并储存能量;荷载达到峰值时,煤样储存的弹性应变能在瞬间释放转化为耗散能,成为煤样破坏的源动力。围压和瓦斯压力对煤样的能耗特征有较大影响,随着围压增加,煤样吸收的总能量、储存的弹性应变能和耗散能均会增加;随着瓦斯压力增加,煤样吸收的总能量及耗散能呈现缓慢的增加,储存的弹性应变能呈逐渐下降趋势。围压和瓦斯压力对煤样的渗透性亦有较大影响。应力达到峰值前,随着围压的增加,煤样的渗透性逐步减小;随着瓦斯压力的增加,煤样的渗透性则呈增加的趋势。研究结果可为煤与瓦斯突出的防治和瓦斯抽采提供参考。  相似文献   

13.
为深入研究北山高放废物地质处置预选区内花岗岩在不同加卸载路径条件下的能量演化规律,针对北山花岗岩圆形柱试样开展了不同初始围压和不同加卸载条件下的室内三轴试验,对试验数据进行处理对比分析,并建立了一种新型的岩石破坏能量倾向性指标。研究结果表明:岩石临界破坏时的总应变能、弹性应变能和耗散应变能均随着初始围压的增大而增大;岩石损伤破坏过程中的声发射特征参数与耗散能间具有较强的相关性;卸荷条件下岩石破坏模式分为内部损伤破坏和轴向应变破坏;在不同卸荷试验条件下岩石破坏能量倾向性指标均先增加后减小,在相同试验条件下,弹性应变能转化为耗散能效率越高,能量倾向性指标则越小,岩石破坏程度则越高。  相似文献   

14.
深层致密砂岩储层脆性指数评价新方法   总被引:1,自引:1,他引:0  
储层岩石脆性评价是储层压裂改造方案设计的重要基础工作,对储层压裂改造效果有着重要影响。以准中地区深层致密砂岩储层为研究对象,开展了0~90 MPa多级围压下的岩石三轴试验,分析了围压变化对于岩石脆性的影响。针对现有脆性指数对目标储层岩石脆性评价效果不理想的情况,基于应力-应变曲线中的能量转化关系建立了新的脆性指数模型,包括岩石峰前峰后脆性指数和综合脆性指数。研究结果表明:试验围压对岩石脆性评价有着显著影响;岩石峰前脆性随围压增大先增加后减小,峰后脆性和综合脆性随围压增大而递减;研究区储层含砾细砂岩的脆性较细砂岩的脆性小,脆性差异主要表现在峰后脆性。   相似文献   

15.
开展不同围压下砂岩的强度、变形和损伤演化研究,对岩体工程的结构设计和稳定性评价具有重要意义。对赵固一矿二1煤层顶板砂岩进行试验获得其力学参数,并采用颗粒流程序获得砂岩细观力学参数,结合编制的fish语言程序进行试验,研究砂岩在不同围压的强度、变形和损伤演化机制,得到如下结论:随着围压增加砂岩的屈服段变长,围压小于40 MPa时峰值强度随围压变化敏感,大于40 MPa时敏感性降低,随着围压增加砂岩由脆性破坏逐步转变为延性破坏;砂岩的扩容经历线性体缩、线性扩容和非线性扩容3个阶段,围压增大线性扩容阶段缩短而非线性扩容阶段增加,扩容指数和扩容起始点轴向应变与围压存在指数变化规律;砂岩的损伤破坏经历损伤弥散分布、聚集成核、形成局部裂隙和主控破裂面形成4个阶段,低围压下砂岩沿单一主控破裂面发生压剪破坏,高围压下主控破裂面呈X型交叉破坏岩体,为X型共轭斜面剪切破坏形式。   相似文献   

16.
张希巍  王刚  蔡明  徐荃 《岩土力学》2018,39(10):3515-3524
以凌海花岗岩为研究对象,进行了一系列常规三轴高压试验,研究了花岗岩的变形特点及脆性演化规律。基于试验结果,分析了不同围压下的全应力-应变曲线,探讨了静态应变采集试验中花岗岩表面变形特点、峰前损伤规律及其与裂隙扩展的关系,总结了动态采集试验中典型的裂纹扩展模式,并基于改进的峰后能量平衡法评价岩石的脆性。研究结果表明:多应变片静态采集三轴试验中岩样不同位置变形规律差异明显,压缩应变较大的区域往往是裂隙产生、扩展的位置;动态应变采集三轴试验中识别了3种典型的裂隙扩展模式,且与应力加载方式存在一定联系;在70 MPa围压范围内,岩样都表现出明显的脆性破坏特征,其脆性指数随围压增加呈现出先减小后增加再减小的变化趋势。该研究成果对进一步开展其他硬岩的变形破坏机制研究和地下工程的稳定性分析具有一定参考价值。  相似文献   

17.
张萍  杨春和  汪虎  郭印同  徐峰  侯振坤 《岩土力学》2018,39(6):2106-2114
层理对页岩力学性质和应变能的积聚和耗散具有重要影响,以不同层理面角度下龙马溪组页岩为研究对象,开展电镜扫描试验和单轴压缩试验,研究起裂、扩容和峰值特征点的应力-应变、弹性模量和泊松比的各向异性特征,分析其页岩变形破坏过程中输入应变能、可释放弹性应变能和耗散应变能的变化规律,揭示输入应变能与层理面角度和抗压强度的关系。结果表明:龙马溪组页岩脆性矿物含量达到72.58%,微观结构各向异性明显;随层理面角度增加,起裂、扩容和峰值特征点的应力和应变都先减少后增大,在 30°时均达到一个最低值,总体上呈现两边高、中间低的U型变化规律;随层理面角度增加,起裂、扩容和峰值特征点的输入应变能、可释放弹性应变能和耗散应变能也先减少后增大,在 30°时均达到一个最低值;各特征点的应力、应变和应变能各向异性敏感性明显,0°≤ ≤30°和30°≤ ≤60°内各向异性的敏感性大于60°≤ ≤90°;起裂应力和扩容应力均与峰值应力呈线性相关,同时峰值应变能与抗压强度存在相应的二次非线性关系,这为页岩气钻井、储层压裂改造和井壁稳定性预测预警提供了根据和参考。  相似文献   

18.
岩质边坡锁固段型岩桥的破坏和能量的累积与释放密切相关,利用MTS815伺服控制刚性力学试验机对花岗岩岩桥试样开展了常规三轴加荷试验和三轴加卸荷试验,采用基于轴向应力比的能量分析方法,可对不同工况下峰前加载各阶段能量变化趋势进行有效的对比分析。结果表明:应力峰值前能量特征变化主要分为压密阶段与弹性阶段,试样处于压密阶段,随着初始裂纹的闭合与摩擦,耗散能占比大幅增加;弹性阶段,荷载所做功大部分转化为弹性能储存在试样内部,弹性能占比大幅增加。由于预制裂隙存在,在临近破坏前没有出现明显的屈服阶段,岩桥试样表现为“突发式”的脆性破坏;初始围压的提升会使得应力峰值点的总能量、弹性能明显增大;花岗岩试样的岩桥越长,其吸收的总能量、弹性储能极限越大,应力峰值点的弹性能占总能量比值越高,岩桥长度变化则对耗散能没有明显影响。  相似文献   

19.
储层压裂改造是非常规能源开发的关键核心技术,近年来我国川西南页岩气区块储层埋深已经突破了4000 m,部分储层埋深已经接近5000 m的深度范畴,这些深埋海相页岩储层的开发与3500 m以浅区相比差异较大,其独有特性对于储层改造工程形成挑战。储层压裂改造中起到控制性作用的是储层岩石的物理力学特性,岩石脆性是其中之关键指标。国内外学者提出多个岩石脆性指标评价方法,矿物成分、力学性质、应力-应变曲线特征、硬度测试以及能量理论等等,但是对于深埋储层岩石在原位条件下的脆性评价,则由于实现难度较大而鲜见相关成果。在实验室模拟储层温压条件下在原位钻取岩石样品实施三轴压缩力学试验获得全应力-应变曲线,其峰前与峰后的应力-应变信息有效反映了原位条件下储层岩石的峰值破坏前后的内在材料属性以及变形破坏过程,通过获取多个储层岩芯峰前以及峰后的弹模计算获得脆性指数K1和K2,其值能够反映应力-应变后的弹性变形能量、峰后破裂能量以及冗余能量的关系,该脆性指数的最显著特点是能够反映出深埋页岩储层在原位条件下的温度和压力条件下的材料行为属性,从而能够对深埋海相页岩储层进行原位条件下的脆性评价。本文基于对我国龙马溪页岩储层中龙一层位中1~4小层及其下伏五峰组的页岩原位条件下的脆性评价,对比实际压裂工程现场压裂产气效果讨论了原位条件下的脆性评价的重要性。  相似文献   

20.
单轴压缩下红色砒砂岩水泥土的能量演化机制研究   总被引:1,自引:0,他引:1       下载免费PDF全文
砒砂岩水泥土受荷变形的过程中伴随着能量的积聚和耗散,在能量的驱动下致使水泥土变形破坏。为了探寻单轴加载过程中砒砂岩水泥土的能量演化规律,根据不同养护龄期和不同水泥掺量下砒砂岩水泥土在变形破坏过程中总能量、峰值点总能量、峰值点弹性应变能、峰值点耗散能的演化规律,从能量的角度分析了龄期和水泥掺量对砒砂岩水泥土的影响。研究表明:能量耗散与砒砂岩水泥土的强度衰减密切相关,试样受荷过程中的损伤情况可以用耗散能的多少来反映,砒砂岩水泥土单轴受压破坏的整个过程中,破坏总能量和耗散能均呈“S”状增长,弹性应变能呈先增加后减小的“凸”状趋势发展;随水泥掺量的增加有效能比也随之增加,不同龄期下各水泥掺量的砒砂岩水泥土都是以吸收弹性能为主,而峰值点应变能可以代表水泥土试样的储能极限,因此有效能比、峰值点应变能能够很好地反映砒砂岩水泥土抵抗破坏的能力。通过利用能量分析原理对砒砂岩水泥土的变形过程进行研究,可以打破以往仅仅利用传统的应力-应变强度来描述其破坏特征的思路,为该类材料的受荷变形分析提供了新的方法和思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号