首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT
Large septarian concretions from the Kimmeridge Clay, up to 1.2 m in diameter, have centres comprising anhedral calcite microspar passing into margins of radiating fibrous calcite microspar, with a pyrite-rich zone at the transition. Septarian veins formed and were lined with brown calcite synchronously with fibrous matrix growth, with white calcite precipitated in septarian cavities after concretion growth ceased. Septarian veins, filled only with white calcite, formed later, at the same time as the outermost calcite microspar crystals were enlarged.
The concretions were buried in the Late Jurassic to about 130 m, and in the Late Cretaceous to about 550 m, with uplift between. Oxygen isotopes show that the concretion grew throughout the first burial, with septarian veins forming from about 30 m depth onwards. Later septarian veins formed between about 200 and 500 m during the second burial.
Carbon isotopes show that the compact inner matrix grew in the sulphate reduction zone, the end of which is marked by the pyrite-enriched zone. Dissolving shells, and possibly minor methanogenic carbonate, slowly diluted sulphate reduction-zone carbonate during deeper burial. During early concretion growth, Mg and Sr were depleted in the pore water. During later stages of the first burial, Mg, Sr, Mn and Fe all increased, especially after concretion growth ceased. During the second burial, Fe, Mn and Mg decreased as calcite precipitated, implying relatively closed systems for these elements.
Synchronous formation of septarian fractures and fibrous calcite matrix shows that the Kimmeridge Clay became overpressured during the later stages of both burials.  相似文献   

2.
A study of septarian concretions from late Cretaceous shale sequences of Texas and northern Mexico reveals complex burial-exhumation histories. First generation concretions and pre-fossilized moulds formed in silty clays before significant compaction occurred. Syneresis cracks developed and were filled by length slow fibrous calcite with a decrease in iron content toward the centre of each vein; in some cases this was succeeded by growth of equant or bladed calcite. Subsequent erosion of enclosing sediment caused collapse and break up of concretions, leaving fragments and some unbroken concretions exposed to encrustation and boring on the sea floor. These were subsequently buried and enclosed in a second generation of concretions, which also developed syneresis cracks. The calcite that filled these latter cracks was generally bladed (sometimes followed by equant calcite) and contains more iron toward the centre of the vein. Differences between the calcite filling first and second generation septarian veins indicates changing diagenetic regimes during burial in the marine environment, without a major shift in diagenetic conditions, such as the introduction of meteoric waters. These conclusions have significant implications to cementation in ancient limestones, which show textural and chemical sequences similar to those present in the septarian concretions described.  相似文献   

3.
Septarian concretions in the Staffin Shales Formation (Kimmeridgian, Isle of Skye) allow controls on concretion rheology and septarian cracking to be investigated. Stratabound concretions consist of anhedral ferroan calcite microspar enclosing clay and minor pyrite. Intergranular volumes range from 77% to 88%, and calcite δ13C and δ18O values in most concretion bodies range from ?10·0‰ to ?17·3‰ and +0·3‰ to ?0·6‰ respectively, consistent with rapid and pervasive cementation in marine pore fluids. Septarian rupture occurred during incipient cementation, with a sediment volume reduction of up to 43%. Crack‐lining brown fibrous calcite records pore fluid re‐oxygenation during a depositional hiatus, followed by increasing Fe content and δ13C related to bacterial methanogenesis. Brown colouration results from an included gel‐like polar organic fraction that probably represents bacterially degraded biomass. A new hypothesis for concretion growth and septarian cracking argues that quasi‐rigid ‘proto‐concretions’ formed via binding of flocculated clays by bacterial extracellular polysaccharide substances (EPS). This provided rheological and chemical conditions for tensional failure, subcritical crack growth, volume contraction, calcite nucleation, and incorporation of degraded products into crack‐lining cements. Bacterial decay of EPS and syneresis of host muds provided internal stresses to initiate rupture at shallow burial. Development of septarian (shrinkage) cracks in muds is envisaged to require pervasive in situ bacterial colonization, and to depend on rates of carbonate precipitation versus EPS degradation and syneresis. Subsequent modification of septarian concretions included envelopment by siderite and calcite microspar, hydraulic fracturing associated with Cretaceous shallow burial or Palaeogene uplift; and cementation by strongly ferroan, yellow sparry calcite that records meteoric water invasion of the host mudrocks. An abundance of fatty acids in these spars indicates aqueous transport of organic breakdown products, and δ13C data suggest a predominantly methanogenic bicarbonate source. However, the wide δ18O range for petrographically identical cement (?1·3‰ to ?15·6‰) is difficult to explain.  相似文献   

4.
An injection dyke of fine-grained sandstone derived from the Kellaways Sand Formation intrudes overlying organic-rich shales and shell beds of the Lower Oxford Clay. The dyke shows cross-cutting relationships with early carbonate concretions, and fills uncompacted kosmoceratid ammonite shells both within the concretions and surrounding shales. Internally the dyke displays flow-like features, and the walls show lobate flow structures. Clasts of uncompacted Lower Oxford Clay and fragments of pyrite-rich concretions occur within the sandstone intrusions. The sandstone of the dyke was cemented by calcite identical to that precipitated in septarian cracks in the concretions. This cementation took place prior to final compaction of the Oxford Clay. The dyke has a sub-parallel relationship to the nearby Tinwell-Marholm fault suggesting that the dyke may be related to local tectonic events during the Middle Jurassic.  相似文献   

5.
The burial-stress and hydrologic conditions existing during concretion formation in mudrocks are evaluated and integrated into a model for the genesis of septarian cracks. Initial concretion cement formation will lower concretion permeability through the filling of pre-existing pore space. During progressive burial, this may lead to increased excess pore pressure, localized within the concretion body causing a reduction of the effective stress. Analysis of the stress conditions and crack morphology suggests that cracks in septarian concretions result from tensional failure (sub-critical crack growth), as a consequence of this localized excess pore pressure. Conditions suitable for crack formation will depend upon the magnitude of the excess pore pressure and the stress corrosion limit of the concretion body. A review of the likely strength of such concretions indicates that cracking could be initiated at depths less than 10 m. A variety of observed crack morphologies can be explained with this model, depending upon the spatial distribution of strength and effective stress in the concretion. Crack orientations mostly reflect stress anisotropy, but are also influenced by directional anisotropy in the crack growth rates. Locally increased pore pressure also likely occurs in non-septarian concretions, but is not sufficient to cause cracking. This enhanced local pressure may assist the crystal surface growth reactions of the carbonate cement. Through this enhancement process, the shape of concretions may be a response to the local anisotropic pore-pressure contours, which reflect the permeability anisotropy of the concretion and surrounding mudrock.  相似文献   

6.
Calcite septarian concretions from the Permian Beaufort Group in the Maniamba Graben (NW Mozambique) allow controls on the composition and nature of diagenetic fluids to be investigated. The concretions formed in lacustrine siltstones, where they occur in spherical (1 to 70 cm in diameter) and columnar (up to 50 cm long) forms within three closely spaced, discrete beds totalling 2·5 m in thickness. Cementation began at an early stage of diagenesis and entrapped non‐compacted burrows and calcified plant roots. The cylindrical concretions overgrew calcified vertical plant roots, which experienced shrinkage cracking after entrapment. Two generations of concretionary body cement and two generations of septarian crack infill are distinguished. The early generation in both cases is a low‐Mn, Mg‐rich calcite, whereas the later generation is a low‐Mg, Mn‐rich calcite. The change in chemistry is broadly consistent with a time (burial)‐related transition from oxic to sub‐oxic/anoxic conditions close to the sediment–water interface. Geochemical features of all types of cement were controlled by the sulphate‐poor environment and by the absence of bacterial sulphate reduction. All types of cement present have δ13C ranging between 0‰ and −15‰(Vienna Peedee Belemnite, V‐PDB), and highly variable and highly depleted δ18O (down to 14‰ Vienna Standard Mean Ocean Water, V‐SMOW). The late generation of cement is most depleted in both 13C and 18O. The geochemical and isotopic patterns are best explained by interaction between surface oxic waters, pore waters and underground, 18O‐depleted, reducing, ice‐meltwaters accumulated in the underlying coal‐bearing sediments during the Permian deglaciation. The invariant δ13C distribution across core‐to‐rim transects for each individual concretion is consistent with rapid lithification and involvement of a limited range of carbon sources derived via oxidation of buried plant material and from dissolved clastic carbonates. Syneresis of the cement during an advanced stage of lithification at early diagenesis is considered to be the cause of development of the septarian cracks. After cracking, the concretions retained a small volume of porosity, allowing infiltration of anoxic, Ba‐bearing fluids, resulting in the formation of barite. The results obtained contribute to a better understanding of diagenetic processes at the shallow burial depths occurring in rift‐bound, lacustrine depositional systems.  相似文献   

7.
Sparry calcite fracture fills and concretion body cements in concretions from the Flodigarry Shale Member of the Staffin Shale Formation, Isle of Skye, Scotland, entrap and preserve mineral and organic materials of sedimentary and diagenetic origin. Fatty acids are a major component of the lipids recovered by decarbonation and comprise mainly n-alkanoic and α-ω dicarboxylic acids. Two generations of fracture-fill calcite (early brown and later yellow) and the concretion body microspar yield significantly different fatty acid profiles. Early brown calcites yield mainly medium-chain n-alkanoic acids with strong even predominance; later yellow calcites are dominated by α-ω dicarboxylic acids with no even predominance. Both fracture fills lack the long-chain n-alkanoic and α-ω dicarboxylic acids additionally recovered from the concretion bodies. The absence of longer chain acids in the calcite spar fracture fills is inferred to result from the transport of fatty acids by septarian mineralising fluids whereby low-aqueous solubility of longer chain acids or their salts accounts for their relative immobility.Comparative experiments have been carried out using conventional solvent extraction on the concretion body and associated shales, both decarbonated and untreated. Extracted lipid yields are higher, but the fatty acids probably derive from mixed locations in the rock including both kerogen- and carbonate-associated lipid pools. Only experiments involving decarbonation yielded α-ω dicarboxylic acids in molecular distributions probably controlled mainly by fluid transport. Alkane biomarker ratios indicate very low thermal maturity has been experienced by the concretions and their host sediments. Septarian cracks lined by brown calcite formed during early burial. Microbial CO2 from sulphate-reducing bacteria was probably the main source of mineralising carbonate. Emplacement of the later septarian fills probably involved at least one episode of fluid invasion.  相似文献   

8.
Carbonate concretions from the Jet Rock (Upper Lias, Lower Jurassic) of NE England grew in uncompacted sediment, close to the sediment surface. Microbiological activity created isolated microenvironments in which dissolved carbonate and sulphide species were produced more rapidly than they could be dispersed by diffusion, so establishing the localised supersaturation of calcite and metastable iron sulphides. Precipitation of these minerals in the microenvironment formed a single concretion.Mass-balance calculations demonstrate that at least two different microbiological processes participated in concretionary growth. The early growth stages had an unidentifiable microbiological source of carbonate which declined in importance relative to sulphate reduction as growth proceeded. It is suggested that the diffusion of dissolved organic material was important in sustaining microbiological activity.Mineralogical zonations in the concretions result from changes in the chemistry of the microenvironment due to variations in the rates of addition/removal Ca2+, Fe2+, HCO?3 and HS? by microbiological activity, the crystallization of authigenic minerals and diffusion between the microenvironment and surrounding pore waters. Such changes are of only local significance and the resulting mineralogical zonations in a concretion cannot be used to deduce successive stages of diagenesis in the whole sediment.  相似文献   

9.
Concretions from the Kimmeridge Clay Formation are of three types: calcareous concretions, septarian calcareous concretions and pyrite/calcite concretions and nodules, which occur within different mudstone facies. Isotopic and chemical analysis of the concretionary carbonates indicate growth in the Fe-reduction, sulphate-reduction and decarboxylation zones. The septarian concretions show a long and complex history, with early initiation of growth and development spanning several phases of burial, each often resulting in the formation of septaria. Growth apparently ceased in the transitional zone between the sulphate-reduction and the methanogenesis zones. Very early growth in the Fe-reduction zones is also seen in one sample. The non-septarian concretions began growth later within the sulphate-reduction zone and have had a simpler burial history while the pyrite/calcite concretions show carbonate cementation in the sulphate-reduction-methanogenesis transition zone. A ferroan dolomite/calcite septarian nodule with decarboxylation zone characteristics also occurs. Development of concretions appears to be indirectly controlled by the sedimentation rate and depositional environment, the latter determining the organic matter input to the sediments. Calcareous concretions predominate in swell areas and during periods of low sedimentation rate in the basins with poor organic matter preservation and deposition of calcareous mudstones. Pyrite/calcite concretions occur in organic-rich mudstones deposited under higher sedimentation rates in the basins, while the ferroan dolomite nodule grew under very high sedimentation rates.  相似文献   

10.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

11.
不同成因的钙质结核在研究沉积水体、早期成岩环境及泥页岩的压实程度方面具有重要意义。通过对川北地区旺苍县下寒武统筇竹寺组钙质结核抛光,发现结核内部具有层理、暗色圈层和张裂缝构造。结核和围岩的层理关系和具有漂浮状的微观结构特征表明,该地区结核是形成于压实作用之前的成岩早期结核。对结核中Al、Ti、Ca、K、Na元素分析表明,结核的元素分布受到结核内部裂缝的影响。结核内部富含生物碎屑和其形成深度为数十米的特征,推测结核主要是在硫酸盐还原带生长。结核具有暗色圈层之间层理不弯曲和元素移动的特征,揭示了结核为透入性生长,在整个结核生长阶段就开始大量同时结晶。Mg/Ca和Sr/Ca的比值说明,结核内部钙质成分为富镁方解石-生物成因方解石。结核中富含钙质成分的原因可能是围岩中的生物成因方解石大量向结核运移所致。裂缝的形态特征表明,裂缝为张裂缝。对结核上部地层的沉积特征研究表明,张裂缝的成因很可能与筇竹寺顶部的浊积岩和沧浪铺组底部的似瘤状灰岩快速搬运沉积有关。  相似文献   

12.
The Vectis Formation was deposited in a restricted lagoonal environment that periodically dried up, as indicated by the presence of desiccation surfaces. The fauna indicates that salinities fluctuated significantly during deposition, from fresh to brackish-marine. Pre-burial berthierine-rich clay replaced faecal pellets in the sediment, infilling desiccation cracks, during re-flooding of the lagoon. Concretions formed by early pyrite and apatite cementation during initial burial in lake sediment, with organic debris of fish and wood, acting as nuclei and a trigger for cementation. With subsequent partial or complete exhumation oxidation of the pyrite occurred, prior to cementation by Mn siderite. All further concretion cementation occurred within the oxic to sub-oxic diagenetic zones. Textural relationships indicate that commonly occurring baryte formedafter pyrite oxidation and represents the last diagenetic mineral phase.  相似文献   

13.
Septarian concretions are abundant in many Phanerozoic marine and marginal‐marine shales and mudstones. They range from a few centimetres to several metres in size and are spherical or ellipsoidal in morphology. In general, formation by localized calcite or siderite cementation in argillaceous sediments began under less than a few metres of burial. Septarian cracks vary widely in shape and configuration: included are networks of wide, vertically, radially and sometimes concentrically oriented, lenticular shrinkage cracks; and narrower, parallel‐sided, straight to irregular tension cracks locally accompanied by brecciation, and plumose and en échelon sigmoidal cracks indicative of shear stresses. Crack types are intergradational; many concretions exhibit multiple cracking events. Enclosed macrofossils and isopachous fibrous calcite cement that lines earlier formed cracks are commonly broken and displaced. In some cases, cracks contain injected lime mud and silt. These features, taken together, testify that cracking involved a spectrum of responses in concretion interiors, from loss of shear strength, dewatering and shrinkage to brittle failure, demonstrating variations in, and contrasts between, the rheological properties of the matrix and enclosed objects. Localization to interiors and outward tapering of lenticular cracks make a case for fracture partitioning and indicate that interiors were softer than exteriors at the time of shrinkage. Parallel‐sided cracks point to greater stiffness, and evolving crack shape in multiply cracked concretions shows that rigidity increased with time. Crack orientations indicate highly variable tensile and shear stress directions within individual concretions. Rupture, brecciation, displacement of fragments, loss of shear strength, liquefaction and injection of unconsolidated granular sediment suggest that deformation events were rapid, if not virtually instantaneous. Previous explanations for the internal cracking, such as gas generation, spontaneous chemical dehydration or localized overpressuring due to compaction, seem either untenable or fail to account for the spectrum of observed features. However, syndepositional earthquake‐induced shaking of cementing bodies of varying rigidity at shallow burial depths seems to be a plausible source for the requisite short‐lived, variable to anisotropic, high‐stress regime inside the concretions. Septarian concretions may thus preserve a signature of basin seismicity as it relates to their cementation history.  相似文献   

14.
Carbonate concretions formed in bathyal and deeper settings have been studied less frequently than those formed in shallow‐marine deposits. Similarly, concretions affected by catagenetic conditions have rarely been reported. Calcite concretions in deep‐marine mudstones and greywackes of the Bardo Unit (Sudetes Mountains, Poland) formed during early diagenesis and were buried to significant depths. Petrographic and geochemical (elemental and stable C and O isotopic) analyses document their formation close to the sediment–water interface, prior to mechanical compaction within the sulphate reduction zone and their later burial below the oil window. Although the concretions were fully formed during early diagenesis, the effects of increased temperature and interaction with late‐diagenetic interstitial fluids can be discerned. During maximum burial, the concretions underwent thorough recrystallization that caused alteration of fabric and elemental and O isotope composition. The initial finely crystalline cement was replaced by more coarsely crystalline, sheaf‐like, poikilotopic calcite in the concretions. These large calcite crystals engulf and partially replace unstable detrital constituents. The extremely low δ18O values (down to ?21·2‰ Vienna Pee Dee Belemnite) in the concretions are the result of the increased temperature in combination with alteration of volcanic glass, both causing a significant 18O‐depletion of bicarbonate dissolved in the interstitial fluids. Recrystallization led to uniform O isotope ratios in the concretions, but did not affect the C isotope signature. The δ13C values of the late‐diagenetic cements precipitated in the greywacke and in cracks cutting through concretions imply crystallization in the catagenetic zone and decarboxylation as a source of the bicarbonate. These late‐diagenetic processes took place in a supposedly overpressured setting, as suggested by clastic dykes and hydrofractures that cut through both concretions and host rock. All of these features show how the effects of early and late diagenesis can be distinguished in such rocks.  相似文献   

15.
16.
The term ‘hiatus concretions’ was introduced for the first time by the late Ehrhard Voigt, a well‐known German bryozoan specialist, in 1968 (originally as Hiatus‐Konkretionen). Hiatus concretions are early diagenetic bodies that formed within the host sediment. In this respect, they are similar in composition to other concretions that are very common in siliciclastic deposits of different ages, some of which are known to contain fossils or minerals. Hiatus concretions, however, differ from conventional concretions in their complex post‐diagenetic history, including exhumation on the sea‐floor, colonization by various encrusting and/or boring organisms during a break in sedimentation, and final burial. Thus, the name ‘hiatus concretions’ refers to the fact that they indicate hiatal surfaces in sedimentary sequences ( Fig. 1 ). It is known that hiatus concretions may have developed during very different time‐spans: for example, within a part of one ammonite subzone (i.e. tens of thousands to a few hundreds of thousands of years) or much longer, during a time embracing more than a stage (i.e. several millions of years). The majority of the hiatus concretions known from the fossil record have carbonate cements, usually calcite, and these are the main focus of this article. Some hiatus concretions, however, are cemented by phosphate minerals.
Figure 1 Open in figure viewer PowerPoint Hiatus concretions in the field. A. A horizon of hiatus concretions weathered out from the Middle Jurassic (Bathonian) clay sediments at Krzyworzeka, Polish Jura, Poland. B. Close‐up of the hiatus concretions.  相似文献   

17.
Lower Cretaceous (Hauterivian) bioclastic sandstone turbidites in the Scapa Member (North Sea Basin) were extensively cemented by low-Mg calcite spars, initially as rim cements and subsequently as concretions. Five petrographically distinct cement stages form a consistent paragenetic sequence across the Scapa Field. The dominant and pervasive second cement stage accounts for the majority of concretions, and is the focus of this study. Stable-isotope characterization of the cement is hampered by the presence of calcitic bioclasts and of later cements in sponge spicule moulds throughout the concretions. Nevertheless, trends from whole-rock data, augmented by cement separates from synlithification fractures, indicate an early calcite δ18O value of+0·5 to -1·5‰ PDB. As such, the calcite probably precipitated from marine pore fluids shortly after turbidite deposition. Carbon isotopes (δ13C=0 to -2‰ PDB) and petrographic data indicate that calcite formed as a consequence of bioclastic aragonite dissolution. Textural integrity of calcitic nannoplankton in the sandstones demonstrates that pore fluids remained at or above calcite saturation, as expected for a mineral-controlled transformation. Electron probe microanalyses demonstrate that early calcite cement contains <2 mol% MgCO3, despite its marine parentage. Production of this cement is ascribed to a combination of an elevated aragonite saturation depth and a lowered marine Mg2+/Ca2+ ratio in early Cretaceous ‘calcite seas’, relative to modern oceans. Scapa cement compositions concur with published models in suggesting that Hauterivian ocean water had a Mg2+/Ca2+ ratio of ≤1. This is also supported by consideration of the spatial distribution of early calcite cement in terms of concretion growth kinetics. In contrast to the dominant early cement, late-stage ferroan, 18O-depleted calcites were sourced outwith the Scapa Member and precipitated after 1–2 km of burial. Our results emphasize that bioclast dissolution and low-Mg calcite cementation in sandstone reservoirs should not automatically be regarded as evidence for uplift and meteoric diagenesis.  相似文献   

18.
J. D. HUDSON 《Sedimentology》1978,25(3):339-370
In interpreting the results of a petrographic and isotopic study of concretions, a range of subjects is discussed including the original texture of the Oxford Clay sediment, Jurassic palaeotemperatures, the diagenetic history of pore-waters and the palaeo-hydrology of central England. The concretions are all composed predominantly of calcite. They include precompactional, pyrite-rich concretions that later suffered an eposide of brecciation, and others that only commenced to form after compaction had crushed ammonite shells included in the bituminous clay sediment. Petrographic, chemical, and especially carbon isotope data demonstrate a dominantly organic source for the carbon in the early formed concretions. Oxygen isotopes indicate formation at the same temperatures (13-16°C) at which benthic molluscs were living. Concretion growth in pelleted, anaerobic mud proceeded concurrently with bacterial sulphate reduction and pyrite precipitation. Cracking of the concretions started at this stage: in a few concretions, the cracks were also partially filled with brown calcite. During post-compactional growth, δ13C increased and pyrite content decreased, showing waning organic influence; δ18O decreased. The brecciated concretions were intruded by clay in which baryte crystals grew; finally, most remaining voids were filled with strongly-ferroan calcite of δ18O about—7 PDB and δ13C about O PDB. This must indicate strong depletion of the pore waters in 18O. Mechanisms that might lead to this are reviewed. It is concluded that the sequence of mineralogical and chemical changes is most readily explained if originally marine porewaters, first modified by bacterial activity, were flushed from the compacting clays by water of ultimately meteoric origin. This had its source in palaeo-aquifers beneath the Oxford Clay. Speculative attempts are made to relate this history to the geology of the region.  相似文献   

19.
The analysis of Upper Jurassic and Lower Cretaceous marine sections developed in surrounding structures of the Laptev Sea revealed that all of them are composed of terrigenous rocks, which enclose abundant concretions cemented by calcareous material. The Upper Jurassic portion of the section is the most variable in thickness and stratigraphic range of sediments usually including hiatuses. Its Lower Cretaceous part represented by the Boreal Berriasian (=Ryazanian) and lower Valanginian stages is most complete. The Upper Jurassic and Lower Cretaceous sections are usually composed of fine-grained rocks (clays and mudstones) in the west and coarser cemented varieties (siltstones and sandstones) with rare mudstone intercalations in the east. Practically all the investigated Upper Jurassic and Lower Cretaceous sections include readily recognizable age and facies analogs of the Bazhenovo Formation and Achimov sandstones, which are petroliferous in West Siberia. There are grounds to assume the occurrence of these formations also on the Laptev Sea shelf, which is confirmed by seismic records. Conditions favorable for the formation of potential hydrocarbon reservoirs could exist in the western part of the paleobasin along the Nordvik Peninsula coast and northeastern Tamyr Peninsula margin. Paleotectonic reconstructions presented in this work are well consistent with stratigraphic conclusions.  相似文献   

20.
The paper describes an early and primitive sauropod dinosaur, Gongxianosaurus shibeiensis (gen. et sp. nov.), from the Dongyuemiao Member of the Lower Jurassic Ziliujing Formation in Shibei Township, Gongxian County, Sichuan Province, China, which is one of the 5 dinosaur fossils discovered in Gongxian in 1997. Except the skull which is incomplete, the fossils are well preserved. It has some features of both sauropods and prosauropods. It is an intermediate type in the evolution of dinosaurs from prosauropods to sauropods and provides materials for the study of the origin and evolution of the sauropod dinosaur fauna. The discovery of this new sauropod furnishes a way for the stratigraphic correlation between the Early Jurassic Ziliujing Formation in the Sichuan basin and the Lower Jurassic Lufeng Formation in the Central Yunnan basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号