首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Septarian concretions in the Staffin Shales Formation (Kimmeridgian, Isle of Skye) allow controls on concretion rheology and septarian cracking to be investigated. Stratabound concretions consist of anhedral ferroan calcite microspar enclosing clay and minor pyrite. Intergranular volumes range from 77% to 88%, and calcite δ13C and δ18O values in most concretion bodies range from ?10·0‰ to ?17·3‰ and +0·3‰ to ?0·6‰ respectively, consistent with rapid and pervasive cementation in marine pore fluids. Septarian rupture occurred during incipient cementation, with a sediment volume reduction of up to 43%. Crack‐lining brown fibrous calcite records pore fluid re‐oxygenation during a depositional hiatus, followed by increasing Fe content and δ13C related to bacterial methanogenesis. Brown colouration results from an included gel‐like polar organic fraction that probably represents bacterially degraded biomass. A new hypothesis for concretion growth and septarian cracking argues that quasi‐rigid ‘proto‐concretions’ formed via binding of flocculated clays by bacterial extracellular polysaccharide substances (EPS). This provided rheological and chemical conditions for tensional failure, subcritical crack growth, volume contraction, calcite nucleation, and incorporation of degraded products into crack‐lining cements. Bacterial decay of EPS and syneresis of host muds provided internal stresses to initiate rupture at shallow burial. Development of septarian (shrinkage) cracks in muds is envisaged to require pervasive in situ bacterial colonization, and to depend on rates of carbonate precipitation versus EPS degradation and syneresis. Subsequent modification of septarian concretions included envelopment by siderite and calcite microspar, hydraulic fracturing associated with Cretaceous shallow burial or Palaeogene uplift; and cementation by strongly ferroan, yellow sparry calcite that records meteoric water invasion of the host mudrocks. An abundance of fatty acids in these spars indicates aqueous transport of organic breakdown products, and δ13C data suggest a predominantly methanogenic bicarbonate source. However, the wide δ18O range for petrographically identical cement (?1·3‰ to ?15·6‰) is difficult to explain.  相似文献   

2.
A study of septarian concretions from late Cretaceous shale sequences of Texas and northern Mexico reveals complex burial-exhumation histories. First generation concretions and pre-fossilized moulds formed in silty clays before significant compaction occurred. Syneresis cracks developed and were filled by length slow fibrous calcite with a decrease in iron content toward the centre of each vein; in some cases this was succeeded by growth of equant or bladed calcite. Subsequent erosion of enclosing sediment caused collapse and break up of concretions, leaving fragments and some unbroken concretions exposed to encrustation and boring on the sea floor. These were subsequently buried and enclosed in a second generation of concretions, which also developed syneresis cracks. The calcite that filled these latter cracks was generally bladed (sometimes followed by equant calcite) and contains more iron toward the centre of the vein. Differences between the calcite filling first and second generation septarian veins indicates changing diagenetic regimes during burial in the marine environment, without a major shift in diagenetic conditions, such as the introduction of meteoric waters. These conclusions have significant implications to cementation in ancient limestones, which show textural and chemical sequences similar to those present in the septarian concretions described.  相似文献   

3.
Septarian concretions occur at several horizons within the Oxford Clay Formation, a marine mudstone containing pristine aragonite and immature biomarker molecules. They record the passage of at least four generations of pore fluids, the first of marine origin and the last still present in cavities. Concretion bodies formed, cracked, and calcite and pyrite precipitated in and around the cracks within the sulphate reduction zone, as demonstrated by C, O, S and Sr isotopic composition (Pore fluid 1). Before major compaction, sandstone dykes were intruded locally, and baryte precipitated, followed by coarse calcite cements with isotopically light oxygen and radiogenic strontium, indicating the introduction of meteoric-derived water (Pore fluid 2). Later, coarse celestine within concretions has distinct sulphur-isotopic composition and requires a further, geographically restricted, water source (Pore fluid 3). Celestine-bearing concretions contain water in tight cavities whose isotopic composition is close to that of modern precipitation. Its chemistry shows that it is equilibrating with pre-existing minerals implying a relatively recent origin (Pore fluid 4). The mineralogy of the Oxford Clay concretions shows that complex results can follow from a simple burial and uplift history, and that multiple generations of pore fluids can pass through a low-permeability clay.  相似文献   

4.
早期形成的碳酸盐结核在埋藏期间会经历多种碳酸盐矿物相沉淀的复杂胶结作用,岩石学研究是探究结核成因的关键。通过野外剖面观察、岩石学观察和阴极发光技术,分析了鄂尔多斯盆地渭北地区上三叠统延长组长7油层组泥页岩中各种形状的方解石和白云石结核中自生碳酸盐矿物的特征。这些结核为成岩早期的产物,构成结核的自生碳酸盐矿物特征显著:(1)球粒方解石结核中,方解石呈纤维状或刃片状,球粒间充填晶粒方解石或因压实呈贴面结合,纤维状方解石发桔红色和暗红色2种光,刃片状方解石发暗红色光;(2)粉晶方解石结核中,方解石呈他形粒状,含有机质包裹体或纤维状晶形残余,晶间含沥青和纤维状方解石残余,主要发暗红色光;(3)白云石结核有泥晶和粉晶2种晶体类型,粉晶白云石结核含较多泥质,泥质条带或有机质条带处常见纤柱状白云石;(4)沿裂缝充填的方解石和白云石常呈纤维状或纤柱状结构,发暗红色光或不发光。研究区长7油层组碳酸盐结核中的方解石和白云石具有不同的成因类型和复杂的胶结作用:球粒方解石和泥晶白云石代表了结核开始形成时的胶结作用,可以准确地反映结核的成因;粉晶方解石、粉晶白云石反映了交代成因;裂缝中纤维状、纤柱状方解石和白云石集合体则为结核经历了较强压实作用之后充填裂缝而成。  相似文献   

5.
J. D. HUDSON 《Sedimentology》1978,25(3):339-370
In interpreting the results of a petrographic and isotopic study of concretions, a range of subjects is discussed including the original texture of the Oxford Clay sediment, Jurassic palaeotemperatures, the diagenetic history of pore-waters and the palaeo-hydrology of central England. The concretions are all composed predominantly of calcite. They include precompactional, pyrite-rich concretions that later suffered an eposide of brecciation, and others that only commenced to form after compaction had crushed ammonite shells included in the bituminous clay sediment. Petrographic, chemical, and especially carbon isotope data demonstrate a dominantly organic source for the carbon in the early formed concretions. Oxygen isotopes indicate formation at the same temperatures (13-16°C) at which benthic molluscs were living. Concretion growth in pelleted, anaerobic mud proceeded concurrently with bacterial sulphate reduction and pyrite precipitation. Cracking of the concretions started at this stage: in a few concretions, the cracks were also partially filled with brown calcite. During post-compactional growth, δ13C increased and pyrite content decreased, showing waning organic influence; δ18O decreased. The brecciated concretions were intruded by clay in which baryte crystals grew; finally, most remaining voids were filled with strongly-ferroan calcite of δ18O about—7 PDB and δ13C about O PDB. This must indicate strong depletion of the pore waters in 18O. Mechanisms that might lead to this are reviewed. It is concluded that the sequence of mineralogical and chemical changes is most readily explained if originally marine porewaters, first modified by bacterial activity, were flushed from the compacting clays by water of ultimately meteoric origin. This had its source in palaeo-aquifers beneath the Oxford Clay. Speculative attempts are made to relate this history to the geology of the region.  相似文献   

6.
Carbonate concretions formed in bathyal and deeper settings have been studied less frequently than those formed in shallow‐marine deposits. Similarly, concretions affected by catagenetic conditions have rarely been reported. Calcite concretions in deep‐marine mudstones and greywackes of the Bardo Unit (Sudetes Mountains, Poland) formed during early diagenesis and were buried to significant depths. Petrographic and geochemical (elemental and stable C and O isotopic) analyses document their formation close to the sediment–water interface, prior to mechanical compaction within the sulphate reduction zone and their later burial below the oil window. Although the concretions were fully formed during early diagenesis, the effects of increased temperature and interaction with late‐diagenetic interstitial fluids can be discerned. During maximum burial, the concretions underwent thorough recrystallization that caused alteration of fabric and elemental and O isotope composition. The initial finely crystalline cement was replaced by more coarsely crystalline, sheaf‐like, poikilotopic calcite in the concretions. These large calcite crystals engulf and partially replace unstable detrital constituents. The extremely low δ18O values (down to ?21·2‰ Vienna Pee Dee Belemnite) in the concretions are the result of the increased temperature in combination with alteration of volcanic glass, both causing a significant 18O‐depletion of bicarbonate dissolved in the interstitial fluids. Recrystallization led to uniform O isotope ratios in the concretions, but did not affect the C isotope signature. The δ13C values of the late‐diagenetic cements precipitated in the greywacke and in cracks cutting through concretions imply crystallization in the catagenetic zone and decarboxylation as a source of the bicarbonate. These late‐diagenetic processes took place in a supposedly overpressured setting, as suggested by clastic dykes and hydrofractures that cut through both concretions and host rock. All of these features show how the effects of early and late diagenesis can be distinguished in such rocks.  相似文献   

7.
ABSTRACT
Large septarian concretions from the Kimmeridge Clay, up to 1.2 m in diameter, have centres comprising anhedral calcite microspar passing into margins of radiating fibrous calcite microspar, with a pyrite-rich zone at the transition. Septarian veins formed and were lined with brown calcite synchronously with fibrous matrix growth, with white calcite precipitated in septarian cavities after concretion growth ceased. Septarian veins, filled only with white calcite, formed later, at the same time as the outermost calcite microspar crystals were enlarged.
The concretions were buried in the Late Jurassic to about 130 m, and in the Late Cretaceous to about 550 m, with uplift between. Oxygen isotopes show that the concretion grew throughout the first burial, with septarian veins forming from about 30 m depth onwards. Later septarian veins formed between about 200 and 500 m during the second burial.
Carbon isotopes show that the compact inner matrix grew in the sulphate reduction zone, the end of which is marked by the pyrite-enriched zone. Dissolving shells, and possibly minor methanogenic carbonate, slowly diluted sulphate reduction-zone carbonate during deeper burial. During early concretion growth, Mg and Sr were depleted in the pore water. During later stages of the first burial, Mg, Sr, Mn and Fe all increased, especially after concretion growth ceased. During the second burial, Fe, Mn and Mg decreased as calcite precipitated, implying relatively closed systems for these elements.
Synchronous formation of septarian fractures and fibrous calcite matrix shows that the Kimmeridge Clay became overpressured during the later stages of both burials.  相似文献   

8.
Calcite septarian concretions from the Permian Beaufort Group in the Maniamba Graben (NW Mozambique) allow controls on the composition and nature of diagenetic fluids to be investigated. The concretions formed in lacustrine siltstones, where they occur in spherical (1 to 70 cm in diameter) and columnar (up to 50 cm long) forms within three closely spaced, discrete beds totalling 2·5 m in thickness. Cementation began at an early stage of diagenesis and entrapped non‐compacted burrows and calcified plant roots. The cylindrical concretions overgrew calcified vertical plant roots, which experienced shrinkage cracking after entrapment. Two generations of concretionary body cement and two generations of septarian crack infill are distinguished. The early generation in both cases is a low‐Mn, Mg‐rich calcite, whereas the later generation is a low‐Mg, Mn‐rich calcite. The change in chemistry is broadly consistent with a time (burial)‐related transition from oxic to sub‐oxic/anoxic conditions close to the sediment–water interface. Geochemical features of all types of cement were controlled by the sulphate‐poor environment and by the absence of bacterial sulphate reduction. All types of cement present have δ13C ranging between 0‰ and −15‰(Vienna Peedee Belemnite, V‐PDB), and highly variable and highly depleted δ18O (down to 14‰ Vienna Standard Mean Ocean Water, V‐SMOW). The late generation of cement is most depleted in both 13C and 18O. The geochemical and isotopic patterns are best explained by interaction between surface oxic waters, pore waters and underground, 18O‐depleted, reducing, ice‐meltwaters accumulated in the underlying coal‐bearing sediments during the Permian deglaciation. The invariant δ13C distribution across core‐to‐rim transects for each individual concretion is consistent with rapid lithification and involvement of a limited range of carbon sources derived via oxidation of buried plant material and from dissolved clastic carbonates. Syneresis of the cement during an advanced stage of lithification at early diagenesis is considered to be the cause of development of the septarian cracks. After cracking, the concretions retained a small volume of porosity, allowing infiltration of anoxic, Ba‐bearing fluids, resulting in the formation of barite. The results obtained contribute to a better understanding of diagenetic processes at the shallow burial depths occurring in rift‐bound, lacustrine depositional systems.  相似文献   

9.
Sparry calcite fracture fills and concretion body cements in concretions from the Flodigarry Shale Member of the Staffin Shale Formation, Isle of Skye, Scotland, entrap and preserve mineral and organic materials of sedimentary and diagenetic origin. Fatty acids are a major component of the lipids recovered by decarbonation and comprise mainly n-alkanoic and α-ω dicarboxylic acids. Two generations of fracture-fill calcite (early brown and later yellow) and the concretion body microspar yield significantly different fatty acid profiles. Early brown calcites yield mainly medium-chain n-alkanoic acids with strong even predominance; later yellow calcites are dominated by α-ω dicarboxylic acids with no even predominance. Both fracture fills lack the long-chain n-alkanoic and α-ω dicarboxylic acids additionally recovered from the concretion bodies. The absence of longer chain acids in the calcite spar fracture fills is inferred to result from the transport of fatty acids by septarian mineralising fluids whereby low-aqueous solubility of longer chain acids or their salts accounts for their relative immobility.Comparative experiments have been carried out using conventional solvent extraction on the concretion body and associated shales, both decarbonated and untreated. Extracted lipid yields are higher, but the fatty acids probably derive from mixed locations in the rock including both kerogen- and carbonate-associated lipid pools. Only experiments involving decarbonation yielded α-ω dicarboxylic acids in molecular distributions probably controlled mainly by fluid transport. Alkane biomarker ratios indicate very low thermal maturity has been experienced by the concretions and their host sediments. Septarian cracks lined by brown calcite formed during early burial. Microbial CO2 from sulphate-reducing bacteria was probably the main source of mineralising carbonate. Emplacement of the later septarian fills probably involved at least one episode of fluid invasion.  相似文献   

10.
The burial-stress and hydrologic conditions existing during concretion formation in mudrocks are evaluated and integrated into a model for the genesis of septarian cracks. Initial concretion cement formation will lower concretion permeability through the filling of pre-existing pore space. During progressive burial, this may lead to increased excess pore pressure, localized within the concretion body causing a reduction of the effective stress. Analysis of the stress conditions and crack morphology suggests that cracks in septarian concretions result from tensional failure (sub-critical crack growth), as a consequence of this localized excess pore pressure. Conditions suitable for crack formation will depend upon the magnitude of the excess pore pressure and the stress corrosion limit of the concretion body. A review of the likely strength of such concretions indicates that cracking could be initiated at depths less than 10 m. A variety of observed crack morphologies can be explained with this model, depending upon the spatial distribution of strength and effective stress in the concretion. Crack orientations mostly reflect stress anisotropy, but are also influenced by directional anisotropy in the crack growth rates. Locally increased pore pressure also likely occurs in non-septarian concretions, but is not sufficient to cause cracking. This enhanced local pressure may assist the crystal surface growth reactions of the carbonate cement. Through this enhancement process, the shape of concretions may be a response to the local anisotropic pore-pressure contours, which reflect the permeability anisotropy of the concretion and surrounding mudrock.  相似文献   

11.
An injection dyke of fine-grained sandstone derived from the Kellaways Sand Formation intrudes overlying organic-rich shales and shell beds of the Lower Oxford Clay. The dyke shows cross-cutting relationships with early carbonate concretions, and fills uncompacted kosmoceratid ammonite shells both within the concretions and surrounding shales. Internally the dyke displays flow-like features, and the walls show lobate flow structures. Clasts of uncompacted Lower Oxford Clay and fragments of pyrite-rich concretions occur within the sandstone intrusions. The sandstone of the dyke was cemented by calcite identical to that precipitated in septarian cracks in the concretions. This cementation took place prior to final compaction of the Oxford Clay. The dyke has a sub-parallel relationship to the nearby Tinwell-Marholm fault suggesting that the dyke may be related to local tectonic events during the Middle Jurassic.  相似文献   

12.
Much effort has been expended in recent years on determining the factors influencing calcite cementation of sandstones, partly out of academic curiosity and partly because of the important influence these cements have on production from hydrocarbon reservoirs. Calcite cementation may occur pervasively throughout a sandstone sequence or be concentrated in certain horizons within which growth may be as concretions. We are only now beginning to understand the factors governing the growth and distribution of carbonate concretions in sandstones.  相似文献   

13.
不同成因的钙质结核在研究沉积水体、早期成岩环境及泥页岩的压实程度方面具有重要意义。通过对川北地区旺苍县下寒武统筇竹寺组钙质结核抛光,发现结核内部具有层理、暗色圈层和张裂缝构造。结核和围岩的层理关系和具有漂浮状的微观结构特征表明,该地区结核是形成于压实作用之前的成岩早期结核。对结核中Al、Ti、Ca、K、Na元素分析表明,结核的元素分布受到结核内部裂缝的影响。结核内部富含生物碎屑和其形成深度为数十米的特征,推测结核主要是在硫酸盐还原带生长。结核具有暗色圈层之间层理不弯曲和元素移动的特征,揭示了结核为透入性生长,在整个结核生长阶段就开始大量同时结晶。Mg/Ca和Sr/Ca的比值说明,结核内部钙质成分为富镁方解石-生物成因方解石。结核中富含钙质成分的原因可能是围岩中的生物成因方解石大量向结核运移所致。裂缝的形态特征表明,裂缝为张裂缝。对结核上部地层的沉积特征研究表明,张裂缝的成因很可能与筇竹寺顶部的浊积岩和沧浪铺组底部的似瘤状灰岩快速搬运沉积有关。  相似文献   

14.
Lower Cretaceous (Hauterivian) bioclastic sandstone turbidites in the Scapa Member (North Sea Basin) were extensively cemented by low-Mg calcite spars, initially as rim cements and subsequently as concretions. Five petrographically distinct cement stages form a consistent paragenetic sequence across the Scapa Field. The dominant and pervasive second cement stage accounts for the majority of concretions, and is the focus of this study. Stable-isotope characterization of the cement is hampered by the presence of calcitic bioclasts and of later cements in sponge spicule moulds throughout the concretions. Nevertheless, trends from whole-rock data, augmented by cement separates from synlithification fractures, indicate an early calcite δ18O value of+0·5 to -1·5‰ PDB. As such, the calcite probably precipitated from marine pore fluids shortly after turbidite deposition. Carbon isotopes (δ13C=0 to -2‰ PDB) and petrographic data indicate that calcite formed as a consequence of bioclastic aragonite dissolution. Textural integrity of calcitic nannoplankton in the sandstones demonstrates that pore fluids remained at or above calcite saturation, as expected for a mineral-controlled transformation. Electron probe microanalyses demonstrate that early calcite cement contains <2 mol% MgCO3, despite its marine parentage. Production of this cement is ascribed to a combination of an elevated aragonite saturation depth and a lowered marine Mg2+/Ca2+ ratio in early Cretaceous ‘calcite seas’, relative to modern oceans. Scapa cement compositions concur with published models in suggesting that Hauterivian ocean water had a Mg2+/Ca2+ ratio of ≤1. This is also supported by consideration of the spatial distribution of early calcite cement in terms of concretion growth kinetics. In contrast to the dominant early cement, late-stage ferroan, 18O-depleted calcites were sourced outwith the Scapa Member and precipitated after 1–2 km of burial. Our results emphasize that bioclast dissolution and low-Mg calcite cementation in sandstone reservoirs should not automatically be regarded as evidence for uplift and meteoric diagenesis.  相似文献   

15.
Concretions from the Kimmeridge Clay Formation are of three types: calcareous concretions, septarian calcareous concretions and pyrite/calcite concretions and nodules, which occur within different mudstone facies. Isotopic and chemical analysis of the concretionary carbonates indicate growth in the Fe-reduction, sulphate-reduction and decarboxylation zones. The septarian concretions show a long and complex history, with early initiation of growth and development spanning several phases of burial, each often resulting in the formation of septaria. Growth apparently ceased in the transitional zone between the sulphate-reduction and the methanogenesis zones. Very early growth in the Fe-reduction zones is also seen in one sample. The non-septarian concretions began growth later within the sulphate-reduction zone and have had a simpler burial history while the pyrite/calcite concretions show carbonate cementation in the sulphate-reduction-methanogenesis transition zone. A ferroan dolomite/calcite septarian nodule with decarboxylation zone characteristics also occurs. Development of concretions appears to be indirectly controlled by the sedimentation rate and depositional environment, the latter determining the organic matter input to the sediments. Calcareous concretions predominate in swell areas and during periods of low sedimentation rate in the basins with poor organic matter preservation and deposition of calcareous mudstones. Pyrite/calcite concretions occur in organic-rich mudstones deposited under higher sedimentation rates in the basins, while the ferroan dolomite nodule grew under very high sedimentation rates.  相似文献   

16.
The controlling parameters of early marine carbonate cementation in shoal water and hemipelagic to pelagic domains are well‐studied. In contrast, the mechanisms driving the precipitation of early marine carbonate cements at deeper slope settings have received less attention, despite the fact that considerable volumes of early marine cement are present at recent and fossil carbonate slopes in water depths of several hundreds of metres. In order to better understand the controlling factors of pervasive early marine cementation at greater water depths, marine carbonate cements observed along time‐parallel platform to basin transects of two intact Pennsylvanian carbonate slopes are compared with those present in the slope deposits of the Permian Capitan Reef and Neogene Mururoa Atoll. In all four settings, significant amounts of marine cements occlude primary pore spaces downslope into thermoclinal water depths, i.e. in a bathymetric range between some tens and several hundreds of metres. Radial, radiaxial and fascicular optic fibrous calcites, and radiaxial prismatic calcites are associated with re‐deposited facies, boundstones and rudstones. Botryoidal (formerly) aragonitic precipitates are common in microbially induced limestones. From these case studies, it is tentatively concluded that sea water circulation in an extensive, near‐sea floor pore system is a first‐order control on carbonate ion supply and marine cementation. Coastal upwelling and internal or tidal currents are the most probable mechanisms driving pore water circulation at these depths. Carbonate cements precipitated under conditions of normal to elevated alkalinity, locally elevated nutrient levels and variable sea water temperatures. The implications of these findings and suggestions for future work are discussed.  相似文献   

17.
Dark mottles are a prominent and widespread feature of the regressive, cyclic, shallow marine limestones which form the late Asbian succession in many parts of Britain. The colour difference which defines mottles in outcrop is caused by distinct but often subtle petrographic differences in the limestone fabric. Specifically, mottles contain a light brown coloured opaque inclusion-rich calcite spar with characteristic dull brown luminescence; ‘mottle spar’. Outside mottle margins this calcite spar is absent, with clear inequant blocky cements forming the pore filling phase. ‘Mottle spar’ comprises a fabric of irregular crystals predominantly 5–40 μm in diameter, with more regular crystals up to 100 μm diameter often occurring in intraparticle and large interparticle pores. Under cathodoluminescence, ‘mottle spar’ displays crystal morphologies and growth patterns which indicate that both localized neomorphism and patchy cementation contributed to mottle formation. Cathodoluminescence cement stratigraphy shows that ‘mottle spar’ pre-dates all other major pore filling cements in the local Asbian succession, but post-dates marine micritization. ‘Mottle spar’ sharply defines the moulds of former aragonitic allochems which are now filled by the later clear, inequant spar cements. This shows that aragonite dissolution occurred after the formation of ‘mottle spar’. Mottles in calcretes contain unaltered allochems which have been protected from the effects of subaerial micritization by ‘mottle spar’, although mottles are often affected by subaerial brecciation. This evidence shows that mottles formed during early diagenesis; after marine micritization, but before dissolution of aragonite, subaerial exposure and meteoritic phreatic cementation. Mottles represented lithified patches of very low porosity which are interpreted to have formed in the marine/freshwater mixing zone, during the repeated phases of regression and emergence in the late Asbian.  相似文献   

18.
Giant calcite-cemented concretions, Dakota Formation, central Kansas, USA   总被引:1,自引:0,他引:1  
Giant spheroidal concretions (cannonball concretions; some nearly 6 m in diameter) in fluvial channel‐fill sandstones at two localities of the Dakota Sandstone formed by import of cement constituents at a burial depth of <1 km. During cannonball concretion growth a self‐organizational process restricted concretions to a relatively few but widely spaced, and locally, evenly spaced, sites. Other forms of calcite cements at these localities are cement patches in the form of intergrown grape‐size concretions (grapestone), and, locally, pervasive cement. An early episode of invasion by thermogenically generated H2S, which reacted with iron oxides on detrital grains, generated scattered pyrite crystals and decimetre‐scale spheroidal pyrite concretions. Intergranular volumes (IGV) in the concretions range from 36% to 27%. The absence of a trend in IGV and of carbon and oxygen‐isotope ratios from cannonball centres to margins indicates that these concretions did not cement progressively outwards from the centre. Rather, the modern spheres represent the spatial extent of nucleation sites that were not otherwise organized within that volume. Carbon and oxygen‐isotope values for concretion calcites plot along a swath between depleted values of δ18C of ?36‰ and δ18O of ?13‰ and enriched values of ?4‰ and ?6‰, respectively. Four groups of calcites are evident on the basis of trace‐element content and suggest that the calcite precipitated across a range of oxidation conditions that do not correlate strongly with the isotopic compositions. Although fluvial overbank sandstones have some pedogenic calcite, the channel sandstones have at most a trace of pedogenic calcite and carbonate rock fragments, so that the bulk of cement components were imported to the sandstones. Carbon and calcium sources for calcite cement include marine limestone, carbonate shells, and anhydrite in addition to HCO derived from oxidized methane, most likely derived from beds underlying or laterally in communication with Dakota sandstones. HCO in ascending formation waters, released during compaction, mixed with meteoric water whose temperature and composition varied with time, to generate the 7‰ range in δ18Ocalcite values measured.  相似文献   

19.
Early-diagenetic cementation of tropical carbonates results from the combination of numerous physico-chemical and biological processes. In the marine phreatic environment it represents an essential mechanism for the development and stabilization of carbonate platforms. However, diagenetic cements that developed early in the marine phreatic environment are likely to become obliterated during later stages of meteoric or burial diagenesis. When lithified sediment samples are studied, this complicates the recognition of processes involved in early cementation, and their geological implications. In this contribution, a petrographic microfacies analysis of Holocene Halimeda segments collected on a coral island in the Spermonde Archipelago, Indonesia, is presented. Through electron microscopical analyses of polished samples, this study shows that segments are characterized by intragranular cementation of fibrous aragonite, equant High-Mg calcite (3.9 to 7.2 Mol% Mg), bladed Low-Mg calcite (0.4 to 1.0 Mol% Mg) and mini-micritic Low-Mg calcite (3.2 to 3.3 Mol% Mg). The co-existence and consecutive development of fibrous aragonite and equant High-Mg calcite results initially from the flow of oversaturated seawater along the aragonite template of the Halimeda skeleton, followed by an adjustment of cement mineralogy towards High-Mg calcite as a result of reduced permeability and fluid flow rates in the pores. Growth of bladed Low-Mg calcite cements on top of etched substrates of equant High-Mg calcite is explained by shifts in pore water pH and alkalinity through microbial sulphate reduction. Microbial activity appears to be the main trigger for the precipitation of mini-micritic Low-Mg calcite as well, based on the presumable detection of an extracellular polymeric matrix during an early stage of mini-micrite Low-Mg calcite cement precipitation. Radiocarbon analyses of five Halimeda segments furthermore indicate that virtually complete intragranular cementation in the marine phreatic environment with thermodynamically/kinetically controlled aragonite and High-Mg calcite takes place in about 100 years. Collectively, this study shows that early-diagenetic cements are highly diverse and provides new quantitative constraints on the rate of diagenetic cementation in tropical carbonate factories.  相似文献   

20.
Unusual textural and chemical characteristics of disseminated dolomite in Upper Jurassic shelf sediments of the North Sea have provided the basis for a proposed new interpretation of early diagenetic dolomite authigenesis in highly bioturbated marine sandstones. The dolomite is present throughout the Franklin Sandstone Formation of the Franklin and Elgin Fields as discrete, non‐ferroan, generally unzoned, subhedral to highly anhedral ‘jigsaw piece’ crystals. These are of a similar size to the detrital silicate grains and typically account for ≈5% of the rock volume. The dolomite crystals are never seen to form polycrystalline aggregates or concretions, or ever to envelop the adjacent silicate grains. They are uniformly dispersed throughout the sandstones, irrespective of detrital grain size or clay content. Dolomite authigenesis predated all the other significant diagenetic events visible in thin section. The dolomite is overgrown by late diagenetic ankerite, and bulk samples display stable isotope compositions that lie on a mixing trend between these components. Extrapolation of this trend suggests that the dolomite has near‐marine δ18O values and low, positive δ13C values. The unusual textural and chemical characteristics of this dolomite can all be reconciled if it formed in the near‐surface zone of active bioturbation. Sea water provided a plentiful reservoir of Mg and a pore fluid of regionally consistent δ18O. Labile bioclastic debris (e.g. aragonite, Mg‐calcite) supplied isotopically positive carbon to the pore fluids during shallow‐burial dissolution. Such dissolution took place in response to the ambient ‘calcite sea’ conditions, but may have been catalysed by organic matter oxidation reactions. Bioturbation not only ensured that the dissolving carbonate was dispersed throughout the sandstones, but also prohibited coalescence of the dolomite crystals and consequent cementation of the grain framework. Continued exchange of Mg2+ and Ca2+ with the sea‐water reservoir maintained a sufficient Mg/Ca ratio for dolomite (rather than calcite) to form. Irregular crystal shapes resulted from dissolution, of both the dolomite and the enclosed fine calcitic shell debris, before ankerite precipitation during deep‐burial diagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号