首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Erguna Fault runs along the east bank of the Erguna River in NE China and is a large-scale ductile shear zone comprising granitic mylonites. This paper reports on the geometry, kinematic indicators, and 40Ar/39 Ar biotite ages of the granitic mylonites, to constrain the structural characteristics, forming age, and tectonic attribute of the Erguna ductile shear zone. The zone strikes NE and records a top-to-the-NW sense of shear. A mylonitic foliation and stretching lineation are well developed in the mylonites, which are classified as S-L tectonites. Logarithmic flinn parameters(1.18–2.35) indicate elongate strain which approximates to plane strain. Kinematic vorticity numbers are 0.42–0.92 and 0.48–0.94, based on the polar Mohr diagram and the oblique foliation in quartz ribbons, respectively, suggesting that the ductile shear zone formed under general shear, or a combination of simple and pure shear. According to finite strain and kinematic vorticity analyses, the Erguna Fault is a lengthening-thinning ductile shear zone that formed by extension. The deformation behavior of minerals in the mylonites indicates that the fault was the site of three stages of deformation: an initial stage of middle- to deep-level, high-temperature shear, a post-stress recovery phase of high-temperature static recrystallization, and a final phase of low-temperature uplift and cooling. The 40Ar/39 Ar plateau ages of biotite from the granitic mylonites are 106.16 ± 0.79 and 111.55 ± 0.67 Ma, which constrain the timing of low-temperature uplift and cooling but are younger than the ages of metamorphic core complexes(MCCs) in the Transbaikalia-northeast Mongolia region. Using measured geological sections, microtectonics, estimates of finite strain and kinematic vorticity, and regional correlations and geochronology, we conclude that the Erguna Fault is an Early Cretaceous, NNE-trending, large-scale, sub-horizontal, and extensional ductile shear zone. It shares a similar tectonic background with the MCCs, volcanic fault basins, and large and super-large volcanic-hydrothermal deposits in Transbaikalia-northeast Mongolia and the western Great Khingan Mountains, all of which are the result of overthickened crust that gravitationally collapsed and extended in the Early Cretaceous after plate collision along the present-day Sino-Russia-Mongolia border tract.  相似文献   

2.
The Louzidian ductile shear zone at the south of Chifeng strikes NE-SW and dips SE at low-medium- angles. This ductile shear zone is mainly composed of granitic mylonite, which grades structurally upward into a chloritized zone, a microbreccia zone, a brittle fault and a gouge zone. All these zones share similar planar attitudes, but contain different linear attitudes and kinematic indicators. Finite strain measurements were performed on feldspar porphyroclasts using the Fry method. These meas- urements yield Fulin indexes of 1.25―3.30, Lode's parameters of -0.535―-0.112 and strain parameters of 0.41―0.75 for the protomylonite, respectively. These data are plotted within the apparent constric- tional field in Fulin and Hossack diagrams. In contrast, for the mylonite, corresponding parameters are 0.99―1.43, -0.176―-0.004 and 0.63―0.82, respectively, and located in the apparent constrictional field close to the plane strain. The mean kinematic vorticity numbers of the protomylonite and mylonite by using three methods of polar Mohr circle, porphyroclast hyperbolic and oblique foliation, are in the range of 0.67―0.95, suggesting that the ductile shearing is accommodated by general shearing that is dominated by simple shear. Combination of the finite strain and kinematic vorticity indicates that shear type was lengthening shear and resulted in L-tectonite at the initial stage of deformation and the shear type gradually changed into lengthening-thinning shear and produced L-S-tectonite with the uplifting of the shear zone and accumulating of strain. These kinds of shear types only produce a/ab strain facies, so the lineation in the ductile shear zone could not deflect 90° in the progressively deformation.  相似文献   

3.
The ancient flow regime in natural shear zones is often considered to have followed a deformation path comparable to that in theoretical shear zones, i.e. progressive simple shear between rigid wall rocks with a persistent flow plane orientation parallel to the edges of the zone. This is often based on the presence of monoclinic fabric elements in the zones which indicate a dominantly non-coaxial flow regime, though not necessarily persistent simple shear. The deformation fabric of a shear zone from the Pyrenees illustrates that, even at a kinematic vorticity number ofW′ = 1 (simple shear) along the entire deformation path, obliqueness of the flow planes with the edges of the zone is possible for some time if incremental stretching axes were rotating with respect to zone edges. This implies that ductile deformation must have taken place in the wall rock of the zone. Such a flow regime may be difficult to recognize with the fabric criteria used at present but leads to an unusual kinematic significance of the shear zone involved; in extreme cases the zone may have acted as a passive marker in a ductilely deforming medium. It also means that not onlyW′ must be known to reconstruct the ancient flow regime in natural shear zones, but at least also the time dependence of the orientation of the incremental stretching axes.  相似文献   

4.
During the Late Paleozoic Alleghanian orogeny, the mid-Atlantic Piedmont experienced transpressional deformation dominated by dextral strke-slip shear zones. The dextral displacement on these shear zones greatly influenced the geographic distribution of lithotectonic units. Transpressional deformation is evident in the Piedmont with the cogenetic development of domes and en-echelon antiforms between many of the shear zones. In the core of the Pennsylvania reentrant, major Alleghanian structures include the dextral Pleasant Grove shear zone and Tucquan-Mine Ridge antiform. Recent field mapping coupled with detailed metamorphic and deformation fabric studies have revealed that a major thrust, the Martic thrust, was also active during this time. Shear bands were identified during petrofabric analysis of the hanging wall rocks to the Martic thrust. The direction of displacement on these shear bands was parallel to the orogen, a direction contrary to earlier studies. Metamorphic mineral assemblages and ceased reaction textures, associated with ductile shear fabrics in the hangingwall rocks, are consistent with lower greenshist facies deformation. This low grade metamorphism, which is generally confined to sheared rocks, overprints the regional upper greenshist- to lower amphibolite-facies assemblages. Structural and magnetic modeling of the hangingwall block has revealed a complex geometry. A model of orogen parallel structural escape, or orogenic float, related to late Paleozoic dextral transpression is employed to explain the late reactivation on this important central Appalachian structure.  相似文献   

5.
The geometry of the most recent deformation in Alpine Corsica is discussed in terms of reactivation of thrusts as normal faults and crustal extension, following crustal thickening in late Cretaceous and Eocene time. A cross section interpreted in terms of obduction in previous works is shown here to be a result of ductile and brittle extension in late Oligocene and Early Miocene time. This new interpretation is based on field observations of the brittle and ductile structures and their relations to the metamorphic history in the Tenda-col de Teghime and Centuri regions, as well as additional observations in other parts of Alpine Corsica. The following geological features are observed: (1) The recent deformation was partly achieved during a top-to-the-east ductile shear close to the brittle-ductile transition and was later superimposed by brittle shear indicating a transition in time from ductile to brittle regime. (2) Extensional brittle structures in the Early Miocene Saint Florent limestone and sense of tilt are compatible with the eastward sense of shear observed in the ductile rocks. (3) The movement along major “thrust” contacts is associated with retrograde metamorphism which overprinted the early high-P-low-T paragenesis at less severe P-T conditions. They also bring tectonic units with contrasted metamorphic evolutions into close contacts. (4) There is a regional correlation between retromorphosis and recent deformation since the high-P-low-T paragenesis are better preserved in southern of Alpine Corsica where the recent deformation is less pervasive. (5) Highly non-coaxial deformation is localized along east-dipping shear zones close to brittle normal faults which bounds tilted Miocene basins; in between the geometry is more symmetric and the finite strain therefore more coaxial. (6) Late extensional brittle structures are observed at many sites in the metamorphic rocks. In the present paper we discussed these first-order observations and describe the geometry of crustal extension in Alpine Corsica. We analyze the progressive formation of a crustal-scale tilted block in Cap Corse and propose that the normal faults are localized by asymmetric boudinage of the crust. The asymmetry of this crustal-scale boudinage is controlled by the position of early thrust planes.  相似文献   

6.
This work deals with the preliminary relationship between strain path and strain partitioning pattern in a sinistral transpressional zone,Lancangjiang shear zone,located to the southeast of Tibet.Various ductile rocks provide an opportunity to investigate quantitative finite strain(Rs),kinematic vorticity values(Wm),and proportions of simple and pure shear components.The mean kinematic vorticity values(Wm) were evaluated based on three methods,such as Rs-θ,prophyroclast hyperbolic distribution method(PHD),a...  相似文献   

7.
韧性剪切带及其变形岩石   总被引:6,自引:0,他引:6       下载免费PDF全文
本文讨论了地壳和上地幔中韧性剪切带及其中的变形岩石。在大多数情况下,韧性剪切带中的变形岩石为糜棱岩,因为经受韧性剪切变形时,岩石的粒度显著减小并发育了强化的叶理(线理)。但是在某些情况下,例如,当隐晶质灰岩及富含长石的岩石经受韧性剪切变形时,剪切带中的变形岩石粒度局部增大或者没有发生明显减小,它们并不是典型的糜棱岩。由于变形环境、变形介质及变形机制的不同,韧性剪切带内岩石变形的产物是不同的  相似文献   

8.
Hercynian basement rocks and Mesozoic ophiolites of the Calabria-Peloritani terrane drifted in the present position during the opening of western Mediterranean basins (namely Liguro-Provençal and Tyrrhenian basins) since the Oligocene. Basement rocks were partly involved by Alpine (late Cretaceous—Eocene) deformation and metamorphism before the onset of the drifting process. Even though the kinematics of the Alpine deformation in Calabria has been already defined, restoration of structural and kinematic data to the original position and orientation before the opening of the western Mediterranean has never been performed. In this work we present new structural and petrological data on a major tectonic contact of Alpine age exposed in central Calabria (Serre Massif). Structural and kinematic data are then restored at the original orientation in the early Oligocene time, to allow a correct tectonic interpretation.In the Serre Massif the Hercynian basement is sliced into three nappes emplaced during the Alpine orogeny. The upper nappe is formed by a nearly continuous section of the Hercynian crust, consisting of medium- to high-grade metamorphic rocks in the lower portion. The intermediate nappe mainly consists of orthogneisses, whereas the lower nappe is chiefly composed of phyllites. The contacts between the Alpine nappes are outlined by well developed mylonitic and cataclastic rocks. The Curinga-Girifalco Line is a well exposed shear zone that overprints mainly metapelitic rocks of the upper nappe and granitoid orthogneisses of the intermediate nappe. Mylonites of the intermediate nappe typically show overgrowths on garnet and hornblende with grossular-rich and tschermakitic composition, respectively. The Alpine mineral assemblage indicates that deformation took place in epidote-amphibolite facies at pressures ranging from 0.75 to 0.9 GPa.In the investigated area mylonites strike roughly WNW–ESE, with shallow dips towards SSW. Kinematic indicators in mylonites are mostly consistent with a top-to-the-SE shear sense in the present geographic coordinates. The mylonitic belt is affected by later extensional faults outlined by South-dipping cataclasite horizons. Published geochronological data indicate that mylonites and cataclasites developed in Eocene and early Miocene times, respectively.Considering rotational parameters coming from paleomagnetic studies and large-scale palinspastic reconstructions, the shear sense of the Curinga-Girifalco Line has been restored to the early Oligocene position and orientation. Through restoration a top-to-the-S shear sense is obtained. This result is in striking agreement with the convergence direction between Africa and W-Europe/Iberia during Eocene, computed from the North Atlantic magnetic anomalies. Our geodynamic reconstruction, combined with structural and petrological evidence, allows to relate the Curinga-Girifalco mylonites to a thrust related to the southeastern front of the double-verging Alpine chain. The adopted method could be used also for other exotic terranes, such as the Kabylie or the Corsica-Sardinia, to better constrain geometry and evolution of the southern Alpine belt.  相似文献   

9.
Geometry,kinematics and evolution of the Tongbai orogenic belt   总被引:2,自引:0,他引:2  
1 Introduction spectively[2,3]. Several tectonic units such as the Bei- The Qinling-Dabie orogenic belt has attracted huaiyang, north Dabie, south Dabie and Susong belts worldwide attention by its very complex and abundant have been recognized in eastern Dabie[4]. Nine tec- geological characters, and has been a “hot point” of tonic units have been recognized in western Dabie and international geological research[1]. A vast amount of a more detailed division has been suggested especially …  相似文献   

10.
The structures and microstructures of the Takanuki and Hitachi areas in the Abukuma massif, Northeast Japan are described. In the Takanuki area, the basic Gosaisho series thrusts the pelitic Takanuki ones in a HP metamorphic context. The nappe structure is afterwards refolded by a migmatitic dome: the Samegawa dome, in a HT metamorphic context. Microtectonic analysis shows that the nappe was transported from south to north along the stretching lineation. Geometric features suggest that the Samegawa dome was emplaced by diapirism. The role of the thrust surface as an instable interface promoting the doming is emphasized. The Hitachi metamorphic rocks composed of basic schist, limestone and sandstone shist thrust the pelitic rocks of the western Hitachi gneisses. As for the Takanuki area, the thrusting occurred in ductile synmetamorphic conditions with a north or northeastward displacement. Owing to lithologic, petrologic, structural similitudes, the nappe of the Hitachi metamorphic rocks and that of the Gosaisho series are unified into a unique nappe with a northward motion. The emplacement occurred between late Permian and late Cretaceous likely in late Jurassic. The allochthonous units of the Abukuma massif are correlated with the Green Schist nappe described in Southwest Japan, since they are surrounded by the same zones, namely the Tanba zone and the Kurosegawa-Kitakami one. Moreover both in Southwest and Northeast Japan, the emplacement of the Green Schist nappes is due to a shear deformation inducing rotational structures along the stretching lineation indicating the same sense of transport, that is eastward in Southwest Japan and northward in Northeast Japan, owing to the late bending of the Japanese Islands. The late Jurassic nappe structure is obliquely overprinted by a HT metamorphism, Ryoke in Southwest Japan, Abukuma in Northeast Japan, and afterwards cut by late faults as the Median Tectonic Line or the Tanakura fault, giving rise to the present complexity.  相似文献   

11.
The Qinling–Dabie–Sulu orogenic belt in east-central China is the largest high and ultrahigh pressure (HP and UHP) metamorphic zone in the world. The Dabie Mountains are the central segment of this orogenic belt between the North China and Yangtze cratons. This work studies the nature of the crustal structure beneath the Dabie orogenic belt to better understand the orogeny. To do that, we apply ambient noise tomography to the Dabie orogenic belt using ambient noise data from 40 stations of the China National Seismic Network (CNSN) between January 2008 and December 2009. We retrieve high signal noise ratio (SNR) Rayleigh waves by cross-correlating ambient noise data between most of the station pairs and then extract phase velocity dispersion measurements from those cross-correlations using a spectral method. Taking those dispersion measurements, we obtain high-resolution phase velocity maps at 8–35 second periods. By inverting Rayleigh wave phase velocity maps, we construct a high-resolution 3D shear velocity model of the crust in the Dabie orogenic belt.The resulting 3D model reveals interesting crustal features related to the orogeny. High shear wave velocities are imaged beneath the HP/UHP metaphoric zones at depths shallower than 9 km, suggesting that HP/UHP metaphoric rocks are primarily concentrated in the upper crust. Underlying the high velocity HP/UHP metamorphic zones, low shear velocities are observed in the middle crust, probably representing ductile shear zones and/or brittle fracture zones developed during the exhumation of the HP/UHP metamorphic rocks. Strong high velocities are present beneath the Northern Dabie complex unit in the middle crust, possibly related to cooling and crystallization of intrusive igneous rocks in the middle crust resulting from the post-collisional lithosphere delamination and subsequent magmatism. A north-dipping Moho is revealed in the eastern Dabie with the deepest Moho appearing beneath the Northern Dabie complex unit, consistent with the model of Triassic northward subduction of the Yangtze Craton beneath the North China Craton.  相似文献   

12.
华北地区深、浅部应力状态的差异及其成因研究   总被引:6,自引:1,他引:5  
在分析一评价各种应力资料的基础上,从三维空间分析应力图象的差异性,并从边界条件和岩石圈介质的不均一性出发,提出华北地块构造应力双层模式。多面手用有限元方法进进了模拟,计算结果与实际资料相当吻合,即以10km左右深度的滑脱面为分界,其下存在一个比较一致的以近水平的北东-北东东的最大压应力为特征的挤压应力场,而滑脱成之上的浅 地块内主应力方向的一致性很差,总体上反映出多方向伸展的格局。计算得到的剪应力  相似文献   

13.
This paper approaches the neotectonic stress field based on the data of foeal mechanismsolution,ground stress measurement,tectonic mechanical analysis and geodetic surveying,and finds out that the orientations of the maximum principal comproessive sterss patterns arequite discordant with different methods and the stress patterns are widely differnt betweenthose in the shallow and deep part of the crust in North China.Based on the analysis ofabove-mentioned data,we established a duplex model by considering the diversities of theStress patterns in 3-dimentional spaces,the boundary conditions and the lithospheric media,and made an inverse calculation by using the finite element method.The calculated results fitwell with the reality in North China,i.e.the stress patterns in lower crust which is below thedetachment interface at the deptp of 10 km from ground surface are relatively consistent withnearly horizontal state and NE-ENE trending of the maximum principal compressive stressaxes,whereas the stress patt  相似文献   

14.
“郯-庐断裂带南段深层次的塑性变形特征及区域应变场”(以下简称“郯-庐带应变场”)一文(发表于本刊,1984,第6卷,第4期)作者认为,郯-庐断裂带南段是一个对应于郯-庐断裂带深层次的大型平移韧性剪切带,并根据变形砾石讨论了区域应变场,用剪切的片理面、劈理面走向、褶皱轴迹以及原始片理面上的拉伸线理(经过展平)作为拉伸构造线的标志测量θ′角并计算位移量。同时还讨论了应变在垂深(实为地层)  相似文献   

15.
Abstract The Himalaya is a fold-and-thrust wedge formed along the northern margin of the Indian continent, and consists of three thrust-bounded lithotectonic units; the Sub-Himalaya, the Lesser Himalaya, and the Higher Himalaya with the overlying Tethys Himalaya from south to north, respectively. The orogen-scale, intracrustal thrusts which bound the above lithotectonic units are splays off an underlying subhorizontal dkcollement, and show a southward propagating piggy-back sequence with an out-of-sequence thrust. Among these thrusts, the Main Central Thrust zone (MCT zone) has played a major role in Himalayan tectonics. The MCT zone represents a shear zone which has accommodated southward thrusting of the Higher Himalayan crystalline thrust sheet over the Lesser Himalayan sequence for ~140 km. The Kathmandu Nappe in central Nepal has been transported over the Lesser Himalayan metasediments along the MCT zone, and is locally separated from the Higher Himalayan thrust sheet in the north by an out-of-sequence thrust. 40Ar/39Ar ages have been determined for one whole-rock phyllite and six muscovite concentrates from metasedimenta-ry rocks and variably deformed granites in the Kathmandu Nappe. These ages range from 44 Ma to 14 Ma, and suggest a record of both Eo-Himalayan (Eocene) and Neo-Himalayan (Miocene) tectonothermal events in the Tertiary Himalayan orogeny. The Miocene event was associated with translation along the MCT zone. No tectonothermal event of the Late Miocene to Early Pliocene ages have been reported near the MCT zone in southern Lesser Himalayan crystalline nappe or klippe, although such events have been documented within and around the MCT zone in the northern root zone of the Higher Himalaya. This suggests that out-of-sequence thrusting may have occurred between 14 Ma and 5 Ma, probably during the period 10-7.5 Ma. Since then the frontal MCT zone below the Kathmandu Nappe has been inactive, but the MCT zone in the northern root zone has remained active. The rapid increase in denudation rates of the Higher Himalaya since the Late Miocene may have been caused by ramping along the out-of-sequence thrust at depth.  相似文献   

16.
在青藏高原东北缘祁连山造山带至阿拉善地块之间完成了一条372km的大地电磁剖面,通过二维反演计算,获得了沿剖面180km深的壳幔电性结构模型,结合研究区地质和地球物理资料开展综合分析,研究结果表明:(1)剖面自南向北所经过的祁连山造山带、走廊过渡带和阿拉善地块对应3种壳幔电性结构模型:东祁连壳幔高-低-高阻似层状电性结构、河西走廊壳幔低阻带状电性结构和阿拉善南缘壳幔高-低-高阻层状电性结构.(2)剖面所经过的主要断裂带在电性结构上表现为低阻异常带或电性梯度带,并且止于中上地壳或消失于下地壳低阻层中.除这些分布于中上地壳的断裂系统以外,在下地壳至上地幔顶部还存在两条切割莫霍面的壳幔韧性剪切带:西华山北缘壳幔韧性剪切带和阿拉善南缘壳幔韧性剪切带.其中,西华山北缘壳幔韧性剪切带可能是1920年海原8.6级地震发生的深部背景之一;而阿拉善南缘壳幔剪切带可能是卫宁北山燕山晚期和喜山期幔源岩浆上升到地壳浅部或喷出到地表的通道,为在该区域寻找晚中生代至新生代含矿隐伏岩体提供了深部电性结构依据.(3)由若干形状不规则、彼此不相连的"碎块状"极高阻块体组成的中上地壳与"似层状"的中下地壳低阻层共同构成的地壳电性结构,是引起青藏高原东北缘强烈破坏性地震最佳的地壳电性结构组合之一.印度板块向欧亚板块俯冲碰撞楔入引起青藏高原块体向北东方向运移与阿拉善地块向南的俯冲碰撞楔入,是青藏高原东北缘强震活动带产生的动力学背景.  相似文献   

17.
Diancangshan metamorphic massif is one of the four metamorphic massifs developed along the Ailaoshan-Red River strike-slip fault zone, Yunnan, China. It has experienced multi-stage metamorphism and deformation, especially since the late Oligocene it widely suffered high-temperature ductile shear deformation and exhumation of the metamorphic rocks from the deep crust to the shallow surface. Based on the previous research and geological field work, this paper presents a detailed study on deformation and metamorphism, and exhumation of deep metamorphic rocks within the Diancangshan metamorphic massif, especially focusing on the low-temperature overprinted retrogression metamorphism and deformation of mylonitic rocks. With the combinated experimental techniques of optical microscope, electron backscatter diffraction attachmented on field-emission scanning electron microscopy and cathodoluminescence, our contribution reports the microstructure, lattice preferred orientations of the deformed minerals, and the changes of mineral composition phases of the superposition low-temperature retrograde mylonites. All these results indicate that: (1) Diancangshan deep metamorphic rock has experienced early high-temperature left-lateral shear deformation and late extension with rapid exhumation, the low-temperature retrogression metamorphism and deformation overprinted the high-temperature metamorphism, and the high-temperature microstructure and texture are in part or entirely altered by subsequent low-temperature shearing; (2) the superposition of low-temperature deformation-metamorphism occurs at the ductile-brittle transition; and (3) the fluid is quite active during the syn-tectonic shearing overprinted low-temperature deformation and metamorphism. The dynamic recrystallization and/or fractures to micro-fractures result in the strongly fine-grained of the main minerals, and present strain localization in micro-domians, such as micro-shear zones in the mylonites. It is often accompanied by the decrease of rock strength and finally influences the rheology of the whole rock during further deformation and exhumation of the Diancangshan massif.  相似文献   

18.
浙东南碰撞造山带的岩石磁组构及其构造意义   总被引:3,自引:1,他引:3       下载免费PDF全文
对浙江东南碰撞造山带龙泉等地的岩石磁组构测试,显示了普遍具优势取向的最小磁化率主轴方向,由此所揭示的NW-SE方向的主压应力与侏罗纪以后该地区的推覆构造所揭示的主压应力方向一致.结合已发表的邻近地区的古地磁、同位素年龄等资料,认为该地区应属中生代碰撞造山带,龙泉群的变质年龄也与此相当.  相似文献   

19.
Thrust and nappe tectonics have affected the eastern Jiaodong Peninsula, the easternmost terminal of the Sulu Ultra-high Pressure Metamorphic Belt. Four nappes have been mapped, named respectively the Shidao, Rongcheng, Mishan and Mouping nappes. The methods used included multi-scale struc- tural analysis and structural chronology analysis. These nappes define four deep level slip-thrust shear zones that were mainly active in the Mesozoic. The amount of ductile deformation decreases from the Shidao to Rongcheng to Mouping to Mishan shear zones, and shows an inverse relationship with temperature. 40Ar/39Ar chronological analysis and the chronological results of former workers reveal four movement steps defined by the development of thrusts and nappes in the late Triassic (210-180 Ma), extensional movement from the Jurassic to early Cretaceous (180-130 Ma), slip-thrust movement in the Early Cretaceous (130-120 Ma), and extensional movement since the Late Cretaceous (120 Ma). The order of boundary shear zone motion in the period of slip-thrust movement during the Early Cre- taceous (130-120 Ma) was along the Shidao, Rongcheng, Mouping and finally the Mishan shear zone. This resulted in clockwise rotation of the nappes relative to block west to the Tan-Lu Faults. Because of the similar evolutionary history of the Tan-Lu Faults and the thrust and nappe structure in the eastern Jiaodong Peninsula, slip dislocation along the Tan-Lu Faults might have been absorbed by thrust and nappe tectonics in the Jiaodong area in the Mesozoic era, resulting in much less dislocation on the Tan-Lu faults in North Eastern China than that in south along the Jiaodong Peninsula.  相似文献   

20.
喜马拉雅构造带及其临近区域是印度板块与欧亚大陆板块挤压碰撞的前缘地带.本文利用GPS实测速度场与震源机制解数据分别计算了研究区域现今地壳岩石圈表面的GPS应变场及岩石圈内部的主应力分布,研究了印度板块持续挤压作用下板块边界带地壳岩石圈现今地壳形变的空间分布特征.结果显示,南北向的剧烈挤压变形与东西向的拉伸变形是现今青藏高原南缘地壳岩石圈的主要变形特征.其中南北向的地壳挤压变形主要集中在主前缘冲断带与雅鲁藏布江缝合带之间.东西方向上,南北走向的亚东—谷露断裂是区域地壳东西向伸展变形的重要分界断裂.75°E是研究区域地壳形变的另一条显著不连续边界,其西侧地壳主压应变强度低、方向弥散且最大主压应力方向一致性较差,而东侧地壳主压应变方向与主压应力方向以及地壳水平运动速度场方向均具有较好的一致性.布格重力异常的小波多尺度辨析结果显示该分界带与循喜马拉雅西构造结楔入欧亚大陆的印度板块密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号