首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I review the processes that shape the evolution of protoplanetary discs around young, solar-mass stars. I first discuss observations of protoplanetary discs, and note in particular the constraints these observations place on models of disc evolution. The processes that affect the evolution of gas discs are then discussed, with the focus in particular on viscous accretion and photoevaporation, and recent models which combine the two. I then discuss the dynamics and growth of dust grains in discs, considering models of grain growth, the gas–grain interaction and planetesimal formation, and review recent research in this area. Lastly, I consider the so-called “transitional” discs, which are thought to be observed during disc dispersal. Recent observations and models of these systems are reviewed, and prospects for using statistical surveys to distinguish between the various proposed models are discussed.  相似文献   

2.
The role of grains in evolution of accretion disc is an important issue in astrophysics. In this paper, we study the effect of vapor pressure of grains in the dead zones of protoplanetary discs. Our study is limited to some particular observed cases in which evaporation of grains would be important and their vapor gas are constrained to an approximately isolated case. Here, we use the Einstein model to investigate the thermodynamics of vapor pressure. The results show that there is a critical temperature as a function of oscillation frequency and binding energy of particles. For temperatures greater than this critical value, the system goes into unstable mode. We show that the dead zone of the disc may reach to enough conditions to condense via instability caused by vapor pressure of grains. This mechanism may play an important role in the formation of planetesimals through protoplanetary disc.  相似文献   

3.
The matrix of primitive chondrites is composed of submicron crystals embedded in amorphous silicates. These grains are thought to be the remains of relatively unprocessed dust from the inner regions of the protoplanetary disk. The matrix of primitive meteorites is often compared to chondritic porous interplanetary dust particles (CP-IDPs) which are believed to be of cometary origin, having accreted in the outermost regions of the solar nebula. Crystalline grains in CP-IDPs show evidence of a size–density relationship between the silicates and sulfides suggesting that these components experienced sorting prior to accretion. Here, we investigate whether such evidence of sorting is also present in the matrix constituents of primitive chondrites. We report findings from our study of grain size distributions of discrete silicate and opaque (sulfide and metal) grains within the matrix of the primitive meteorites Acfer 094 (C2-ung.), ALHA77307 (CO3), MIL 07687 (C3-ung.), and QUE 99177 (CR2). Mean radii of matrix silicate grains range from 103 nm in QUE 99177 to 2018 nm in MIL 07687. The opaque grains show a wider variation, with average radii ranging from 15 nm in QUE 99177 to 219 nm in MIL07687. Our results indicate that, in contrast to CP-IDPs, the size distribution of matrix components of these primitive meteorites cannot be explained by aerodynamic sorting that took place prior to accretion. We conclude that any evidence of sorting is likely to have been lost due to a greater variety and degree of processing experienced on these primitive chondrites than on cometary parent bodies.  相似文献   

4.
Scaling forces to asteroid surfaces: The role of cohesion   总被引:1,自引:0,他引:1  
The scaling of physical forces to the extremely low ambient gravitational acceleration regimes found on the surfaces of small asteroids is performed. Resulting from this, it is found that van der Waals cohesive forces between regolith grains on asteroid surfaces should be a dominant force and compete with particle weights and be greater, in general, than electrostatic and solar radiation pressure forces. Based on this scaling, we interpret previous experiments performed on cohesive powders in the terrestrial environment as being relevant for the understanding of processes on asteroid surfaces. The implications of these terrestrial experiments for interpreting observations of asteroid surfaces and macro-porosity are considered, and yield interpretations that differ from previously assumed processes for these environments. Based on this understanding, we propose a new model for the end state of small, rapidly rotating asteroids which allows them to be comprised of relatively fine regolith grains held together by van der Waals cohesive forces.  相似文献   

5.
The present study has shown that the dependence of the isotopic composition of nitrogen on the N/C ratio, revealed from the data for bulk samples of meteoritic nanodiamond, can be obtained within the framework of the following model of the composition of populations of nanodiamond grains: (a) initial nanodiamond, i.e., the nanodiamond in the protoplanetary cloud before the accretion of the meteorite parent bodies, was composed mainly of grains of two populations (denoted as CN and CF), the ratio of which changed in meteorites depending on the degree of hydrothermal metamorphism; (b) only the grains of one of these populations (CN) contain volume-bound nitrogen with δ15N = ?350‰; (c) the grains of both populations contain surface-bound nitrogen (δ15N ≡ 0). The calculations revealed the following properties of population grains in this model. (1) The grains of the CN and CF populations are most likely the same in isotopic composition of carbon and heterogeneous in distribution of its isotopes: the central part of grains is enriched with the δ12C isotope relative to the remainder of the grain. While the value of δ13C is ?37.3 ± 1.1‰ for carbon in the central part, it is ?32.8 ± 1.5‰ for the whole volume of the grains. (2) The noble gases of the HL component, specifically Xe-HL, are anomalous in isotopic composition and are most likely contained in the third population of nanodiamond grains (denoted as CHL), the mass fraction of which is negligible relative to that for other grain populations. Only the grains of the CHL population have an undoubtedly presolar origin, while the grains of the other nanodiamond populations could have formed at the early stages of the evolution of the protoplanetary cloud material before the accretion of the meteoritic parent bodies.  相似文献   

6.
Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary disks. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface. Magnetically-driven mixing has implications for disk chemistry and evolution of the grain population, and the effective viscous response of the disk determines whether planets migrate inwards or outwards. However, the weak ionisation of protoplanetary disks means that magnetic fields may not be able to effectively couple to the matter. I examine the magnetic diffusivity in a minimum solar nebula model and present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas, except at the disk surfaces where the low density of neutrals permits the ions to remain attached to the field lines. For a standard population of 0.1 μm grains the active surface layers have a combined column Σactive≈2 g cm−2 at 1 AU; by the time grains have aggregated to 3 μm, Σactive≈80 g cm−2. Ionisation in the active layers is dominated by stellar X-rays. In the absence of grains, X-rays maintain magnetic coupling to 10% of the disk material at 1 AU (i.e. Σactive≈150 g cm−2). At 5 AU the Σactive≈Σtotal once grains have aggregated to 1 μm in size.  相似文献   

7.
Simonelli DP  Pollack JB  McKay CP 《Icarus》1997,125(2):261-280
As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in the solar nebula and present Solar System. These results may also help constrain the size of the accretion disk: for example, if we require that the calculations produce partial survival of organic grains into the solar nebula, we infer that some material entered the disk intact at distances comparable to or greater than a few AU. Intriguingly, this is comparable to the heliocentric distance that separates the C-rich outer parts of the current Solar System from the C-poor inner regions.  相似文献   

8.
Gas giant planets have been detected in orbit around an increasing number of nearby stars. Two theories have been advanced for the formation of such planets: core accretion and disk instability. Core accretion, the generally accepted mechanism, requires several million years or more to form a gas giant planet in a protoplanetary disk like the solar nebula. Disk instability, on the other hand, can form a gas giant protoplanet in a few hundred years. However, disk instability has previously been thought to be important only in relatively massive disks. New three-dimensional, "locally isothermal," hydrodynamical models without velocity damping show that a disk instability can form Jupiter-mass clumps, even in a disk with a mass (0.091 M middle dot in circle within 20 AU) low enough to be in the range inferred for the solar nebula. The clumps form with initially eccentric orbits, and their survival will depend on their ability to contract to higher densities before they can be tidally disrupted at successive periastrons. Because the disk mass in these models is comparable to that apparently required for the core accretion mechanism to operate, the models imply that disk instability could obviate the core accretion mechanism in the solar nebula and elsewhere.  相似文献   

9.
In a previous work the authors estimated cross-sections for constructive and destructive collisions (‘constructive’ and ‘destructive’ cross-sections) related to silica grains embedded in a protoplanetary nebula. The outstanding point of the problem has induced the authors to examine more closely the physical conditions in which the accretion processes occur, and their dependence on the materials, by which the particles are probably made. In this paper the interaction processes among conducting grains (iron, graphite) and among the insulating (silica) ones have been considered. The following results have been obtained: (1) insulating grains have smaller constructive crossections than conducting; and (2) conducting grains show very large cross-sections for masses up to about 10?9 g.  相似文献   

10.
Túnyi  I.  Guba  P.  Roth  L. E.  Timko  M. 《Earth, Moon, and Planets》2003,93(1):65-74
Lightning discharge generated in the protoplanetary nebula is viewed as a temporally isolated surge in the flow of electrically charged particles, similar to that of terrestrial lightning. If the current is intense enough, a powerful circular impulse magnetic field is generated around the instantaneous virtual electric conductor. Such magnetic field is capable of magnetizing dust grains containing ferromagnetic components present in its vicinity to their saturation levels. As a result, dust grains attract one another, forming the aggregates. This magnetically driven attraction suggests an important process possibly operational at an early stage of the planetary accretion. Based on both a classical model for electric conductor, and the theory of Lienard–Wiechert electromagnetic potentials, our calculations show that the magnetic impulse due to a discharge channel of a few cm in diameter transferring a charge of about 104 electrons reaches as high as 10 T. At these magnetic fields, the ferromagnetic dust grains, and possibly the already-formed larger aggregates as well, are easily magnetized to the saturation levels, producing compact clusters exhibiting permanent magnetic moments.  相似文献   

11.
Astronomical observations have shown that protoplanetary disks are dynamic objects through which mass is transported and accreted by the central star. This transport causes the disks to decrease in mass and cool over time, and such evolution is expected to have occurred in our own solar nebula. Age dating of meteorite constituents shows that their creation, evolution, and accumulation occupied several Myr, and over this time disk properties would evolve significantly. Moreover, on this timescale, solid particles decouple from the gas in the disk and their evolution follows a different path. It is in this context that we must understand how our own solar nebula evolved and what effects this evolution had on the primitive materials contained within it. Here we present a model which tracks how the distribution of water changes in an evolving disk as the water-bearing species experience condensation, accretion, transport, collisional destruction, and vaporization. Because solids are transported in a disk at different rates depending on their sizes, the motions will lead to water being concentrated in some regions of a disk and depleted in others. These enhancements and depletions are consistent with the conditions needed to explain some aspects of the chemistry of chondritic meteorites and formation of giant planets. The levels of concentration and depletion, as well as their locations, depend strongly on the combined effects of the gaseous disk evolution, the formation of rapidly migrating rubble, and the growth of immobile planetesimals. Understanding how these processes operate simultaneously is critical to developing our models for meteorite parent body formation in the Solar System and giant planet formation throughout the galaxy. We present examples of evolution under a range of plausible assumptions and demonstrate how the chemical evolution of the inner region of a protoplanetary disk is intimately connected to the physical processes which occur in the outer regions.  相似文献   

12.
The interaction of dust grains with each other in a finite-temperature solar nebula are examined, taking into account the important fact that such grains would carry net steady-state charges like those of grains in interstellar clouds. This charge is given by the well-known Spitzer relation. It provides a screening mechanism that operates during accretion and results in bodies of differing compositions depending on the local temperature in the nebula. In a typical nebula, it is found that planetesimals of 0.1–102-cm size form in a time of order 106–107 years. These planetesimals are of iron and stone and mixed composition in the inner solar system, but of mixed composition only in the outer solar system. The predictions of this type of charged-dust accretion can be compared to known data on meteorites and the composition of the planets.  相似文献   

13.
We study the effect of an imposed magnetic field on the motion of charged dust particles in magnetically active regions of a protoplanetary disc. Assuming a power law structure for the vertical and the toroidal components of the magnetic field for the regions beyond magnetically dead region of the disc, the radial and the vertical velocities of the charged particles, in the asymptotic case of small particles, are calculated analytically. While grains with radii smaller than a critical radius significantly are affected by the magnetic force, motion of the particles with larger radii is independent of the magnetic field. The critical radius depends on the magnetic geometry and the charge of the grains. Assuming that a grain particle has one elementary charge and the physical properties of the disc correspond to a minimum-mass solar nebula, we show that only micron-sized grains are affected by the magnetic force. Also, charge polarity determines direction of the radial velocity. For such small particles, both the radial and the vertical velocities increase due to the magnetic force.  相似文献   

14.
In accretion disk models of the solar nebula, turbulence is driven by convective instability. This mechanism requires high opacity, which must be provided by solid grains. Evolution of the grain size distribution in a turbulent disk is computed numerically, using realistic collisional outcomes and strengths of grain aggregates, rather than an arbitrary “sticking efficiency.” The presence of turbulence greatly increases the rate of grain collisions; the coagulation rate is initially much greater than in a nonturbulent disk. Aggregates quickly reach sizes ~0.1–1 cm, but erosion and breakup in collisions prevent growth of larger bodies for plausible aggregate impact strengths. These aggregates are too small to settle to the plane of the disk, and planetesimal formation is impossible as long as the turbulence persists. However, the opacity of the disk is reduced by aggregate formation; some combinations of opacity law and surface density produce an optically thin disk, cutting off turbulent convection. The disk may experience alternating periods of turbulence and quiescence, as grains are depleted by coagulation and replenished by infall from the presolar cloud. Planetesimals can form only during the quiescent intervals; it is argued that such episodes were rare during the lifetime of the accretion disk.  相似文献   

15.
Abstract— Forty‐three corundum grains (1–11 μm in size) and 5 corundum‐hibonite grains with corundum overgrown by hibonite (4–7 μm in size), were found in the matrix of the mineralogically pristine, ungrouped carbonaceous chondrite Acfer 094 by using cathodoluminescence imaging. Some of the corundum and corundum‐hibonite grains occur as aggregates of 2 to 6 grains having similar sizes. The oxygen isotopic compositions of some of the corundum‐bearing grains suggest their solar nebula origin. 26Al‐26Mg systematics of one corundum grain showed the canonical initial 26Al/27Al ratio, also suggesting a solar nebula origin. Quantitative evaluation of condensation and accretion processes made based on the homogeneous nucleation of corundum, diffusion‐controlled hibonite formation, collisions of grains in the nebula, and critical velocity for sticking, indicates that, in contrast to the hibonite‐bearing aggregates of corundum grains, the hibonite‐free corundum aggregates could not have formed in the slowly cooling nebular region with solar composition. We suggest instead that such aggregates formed near the protosun, either in a region that stayed above the condensation temperature of hibonite for a long time or in a chemically fractionated, Ca‐depleted region, and were subsequently physically removed from this hot region, e.g., by disk wind.  相似文献   

16.
In this work, we model the expected molecular emission from protoplanetary disks, modifying different physical parameters, such as dust grain size, mass accretion rate, viscosity, and disk radius, to obtain observational signatures in these sources. Having in mind possible future observations, we study correlations between physical parameters and observational characteristics. Our aim is to determine the kind of observations that will allow us to extract information about the physical parameters of disks. We also present prospects for molecular line observations of protoplanetary disks, using millimeter and submillimeter interferometers (e.g., SMA or ALMA), based on our results.  相似文献   

17.
Dust grains that formed around ancient stars and in stellar explosions seeded the early solar protoplanetary disk. While most of such presolar grains were destroyed during solar system formation, a fraction of such grains were preserved in primitive materials such as meteorites. These grains can provide constraints on stellar origins and secondary processing such as aqueous alteration and thermal metamorphism on their parent asteroids. Here, we report on the nature of aqueous alteration in the Miller Range (MIL) 07687 chondrite through the analysis of four presolar silicates and their surrounding material. The grains occur in the Fe-rich and Fe-poor lithologies, reflecting relatively altered and unaltered material, respectively. The O-isotopic compositions of two grains, one each from the Fe-rich and Fe-poor matrix, are consistent with formation in the circumstellar envelopes of low-mass Asymptotic Giant Branch (AGB)/Red Giant Branch (RGB) stars. The other two grains, also one each from the Fe-rich and Fe-poor matrix, have O-isotopic compositions consistent with formation in the ejecta of type-II supernovae (SNe). The grains derived from AGB/RGB stars include two polycrystalline pyroxene grains that contain Fe-rich rims. The SNe grains include a polycrystalline Ca-bearing pyroxene and a polycrystalline assemblage consistent with a mixture of olivine and pyroxene. Ferrihydrite is observed in all focused ion beam sections, consistent with parent-body aqueous alteration of the fine-grained matrix under oxidizing conditions. The Fe-rich rims around presolar silicates in this study are consistent with Fe-diffusion into the grains resulting from early-stage hydrothermal alteration, but such alteration was not extensive enough to lead to isotopic equilibration with the surrounding matrix.  相似文献   

18.
High energy phenomena on the surface of the Sun are manifestations of part of the solar dynamo cycle. Convection and magnetic field give rise to unstable, twisted flux loops that become solar flares when the resistive tearing mode proceeds to the nonlinear limit. If such twisted flux loops did not dissipate rapidly due to an enhanced resistivity, then the dynamo would not work. The act of dissipation leads to intense heating and acceleration leading to X-rays and accelerated particles. The particles in turn give rise to hard X-rays, gamma rays, neutrons, and solar cosmic rays. In high-energy astrophysics such phenomena occur in accretion disks around compact objects like black holes in quasars and SS433. The resulting acceleration may explain the observed extremely high-energy cosmic rays of up to 1020 eV and the high-energy gamma rays of 1012 to 1015 eV. These high energies are more readily explained by acceleration E parallel to B as opposed to stochastic shock acceleration. The anisotropy and localization of gamma rays from solar flares potentially may indicate which mechanism is prevalent.  相似文献   

19.
The migration and growth of protoplanets in protostellar discs   总被引:1,自引:0,他引:1  
We investigate the gravitational interaction of a Jovian-mass protoplanet with a gaseous disc with aspect ratio and kinematic viscosity expected for the protoplanetary disc from which it formed. Different disc surface density distributions are investigated. We focus on the tidal interaction with the disc with the consequent gap formation and orbital migration of the protoplanet. Non-linear two-dimensional hydrodynamic simulations are employed using three independent numerical codes.
A principal result is that the direction of the orbital migration is always inwards and such that the protoplanet reaches the central star in a near-circular orbit after a characteristic viscous time‐scale of ∼104 initial orbital periods. This is found to be independent of whether the protoplanet is allowed to accrete mass or not. Inward migration is helped by the disappearance of the inner disc, and therefore the positive torque it would exert, because of accretion on to the central star. Maximally accreting protoplanets reach about 4 Jovian masses on reaching the neighbourhood of the central star. Our results indicate that a realistic upper limit for the masses of closely orbiting giant planets is ∼5 Jupiter masses, if they originate in protoplanetary discs similar to the minimum-mass solar nebula. This is because of the reduced accretion rates obtained for planets of increasing mass.
Assuming that some process such as termination of the inner disc through a magnetospheric cavity stops the migration, the range of masses estimated for a number of close orbiting giant planets as well as their inward orbital migration can be accounted for by consideration of disc–protoplanet interactions during the late stages of giant planet formation.  相似文献   

20.
Meteoritical and astrophysical models of planet formation make contradictory predictions for dust concentration factors in chondrule-forming regions of the solar nebula. Meteoritical and cosmochemical models strongly suggest that chondrules, a key component of the meteoritical record, formed in regions with solids-to-gas mass ratios orders above the solar nebula average. However, models of dust grain dynamics in protoplanetary disks struggle to surpass concentration factors of a few except during very short-lived stages in a dust grain's life. Worse, those models do not predict significant concentration factors for dust grains the size of chondrule precursors. We briefly develop the difficulty in concentrating dust particles in the context of nebular chondrule formation and show that the disagreement is sufficiently stark that cosmochemists should explore ideas that might revise the concentration factor requirements downward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号