首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A 22-member ensemble from CMIP6 is used to analyze the projected changes and seasonal behavior in surface air temperature over South America during the twenty-first century. In the future projections, CMIP6 models shown a high dependency to the socioeconomic pathway over each country of South America. The multimodel ensemble projects a continuous increase in the annual mean temperature over South America during the twenty-first century under the three future scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5). Besides, it was possible to identify consistent positive trends across all the models, with values between 0.45 ± 0.05 and 2.05 ± 0.31 °C cy−1 under the historical experiment, however largest trends occurs for the projection periods (near, mid and far future), with values between − 0.87 ± 0.84 to 2.88 ± 0.60 °C cy−1 (SSP1-2.6), 1.41 ± 0.88 to 5.32 ± 0.81 °C cy−1 (SSP2-4.5) and 4.75 ± 0.58 to 8.76 ± 0.74 °C cy−1 (SSP5-8.5) with maximum values at Bolivia, Brasil, Paraguay and Venezuela whilst minimum values for Argentina and Uruguay, regardless of the SSP scenario used. From the seasonal behavior analysis was possible to identify maximum values between January and March whilst minimum between June and July, except in Brasil, Venezuela and Guyana–Surinam–French Guayana, with annual range decreasing as the latidude decreases. By the end of the twenty-first century the annual mean temperature over South america is projected to increase between 0.92–2.11 °C, 0.97–3.37 °C and 1.27–6.14 °C under SSP1-2.6, SSP2-4.5 and SSP5-8.5 projection scenarios respectively. This projected increase of temperature across the continent will produce negative repercussions in the social, economic and political spheres. The results obtained in this study provide insights about the CMIP6 performance over this region, which can be used to develop adaptation strategies and might be useful for the adaptation to the climate change.

  相似文献   

2.
In this study, the future landslide population amount risk (LPAR) is assessed based on integrated machine learning models (MLMs) and scenario simulation techniques in Shuicheng County, China. Firstly, multiple MLMs were selected and hyperparameters were optimized, and the generated 11 models were cross-integrated to select the best model to calculate landslide susceptibility; by calculating precipitation for different extreme precipitation recurrence periods and combining the susceptibility results to assess the landslide hazard. Using the town as the basic unit, the exposure and vulnerability of the future landslide population under different Shared Socioeconomic Pathways (SSPs) scenarios in each town were assessed, and then combined with the hazard to estimate the LPAR in 2050. The results showed that the integrated model with the optimized random forest model as the combination strategy had the best comprehensive performance in susceptibility assessment. The distribution of hazard classes is similar to susceptibility, and with an increase in precipitation, the low-hazard area and high-hazard decrease and shift to medium-hazard and very high-hazard classes. The high-risk areas for future landslide populations in Shuicheng County are mainly concentrated in the three southwestern towns with high vulnerability, whereas the northern towns of Baohua and Qinglin are at the lowest risk class. The LPAR increased with the intensity of extreme precipitation. The LPAR differs significantly among the SSPs scenarios, with the lowest in the “fossil-fueled development (SSP5)” scenario and the highest in the “regional rivalry (SSP3)” scenario. In summary, the landslide susceptibility model based on integrated machine learning proposed in this study has a high predictive capability. The results of future LPAR assessment can provide theoretical guidance for relevant departments to cope with future socioeconomic development challenges and make corresponding disaster prevention and mitigation plans to prevent landslide risks from a developmental perspective.  相似文献   

3.
Potassium has been extracted successfully from biotite by Ba2+/K+ ion exchange. The potassium release rate increased along S-curve versus reaction time. The maximum of potassium release rate was about 96 %. Powder X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy were used to characterize the obtained samples to reveal the exchanging behavior and structural transformation. The results showed that after treated with Ba(NO3)2 four times the original biotite transformed to vermiculite-type hydrated Ba-mica. The (001) basal plane was expanded from 1.000 nm of biotite to 1.221 nm of hydrated Ba-mica. Because of the “vacancy effect,” the Ba2+ has two different statuses, causing the structural water vibration of vermiculite-type hydrated Ba-mica split. The edge of vermiculite-type hydrated Ba-mica was crimped compared with the flat edge of original biotite. The (001) basal plane of dehydrated Ba-mica was also split, supporting the “vacancy effect.”  相似文献   

4.
Sized aggregates of glasses (47–84 wt% SiO2) were fused from igneous-derived cohesive fault rock and igneous rock, and step-heated from ~400 to >1,200 °C to obtain their 39Ar diffusion properties (average E=33,400 cal mol?1; D o=4.63×10?3 cm2 s?1). At T<~1,000 °C, glasses containing <~69 wt% SiO2 and abundant network-forming cations (Ca, Fe, Mg) reveal moderate to strong non-linear increases in D and E, reflecting structural modifications as the solid transitions to melt. Extrapolation of these Arrhenius properties down to typical geologic T-t conditions could result in a 1.5 log10 unit underestimation in the diffusion rate of Ar in similar materials. Numerical simulations based upon the diffusion results caution that some common geologic glasses will likely yield 40Ar/39Ar cooling ages rather than formation ages. However, if cooling rates are sufficiently high, ambient temperatures are sufficiently low (e.g., <65–175 °C), and coarse particles (e.g., radius (r) >~1 mm) are analyzed, glasses with compositions similar to ours may preserve their formation ages.  相似文献   

5.
The 12 May 2008 Wenchuan earthquake (Ms 8.0) in China, produced an estimated volume of 28 × 108 m3 loosened material, which led to debris flows after the earthquake. Debris flows are the dominant mountain hazards, and serious threat to lives, properties, buildings, traffic, and post-earthquake reconstruction in the earthquake-hit areas. It is very important to understand the debris flow initiation processes and characteristics, for designing debris flow mitigation. The main objective of this article is to examine the different debris flow initiation processes in order to identify suitable mitigation strategies. Three types of debris flow initiation processes were identified (designated as Types A, B, and C) by field survey and experiments. In “A” type initiation, the debris flow forms as a result of dam failure in the process of rill erosion, slope failure, landslide dam, or dam failure. This type of debris flow occurs at the slope of 10 ± 2°, with a high bulk density, and several surges following dam failure. “B” type initiation is the result of a gradual increase in headward down cutting, bank and lateral erosion, and then large amount of loose material interfusion into water flow, which increases the bulk density, and forms the debris flow. This type of debris flow occurs mainly on slopes of 15 ± 3° without surges. “C” type debris flow results from slope failures by surface flow, infiltration, loose material crack, slope failure, and fluidization. This type of debris flow occurs mainly on slopes of 21 ± 4°, and has several surges of debris flow following slope failure, and a high bulk density. To minimize the hazards from debris flows in areas affected by the Wenchuan earthquake, the erosion control measures, such as the construction of grid dams, slope failure control measures, the construction of storage sediment dams, and the drainage measures, such as construction of drainage ditches are proposed. Based on our results, it is recommend that the control measures should be chosen based on the debris flow initiation type, which affects the peak discharge, bulk density and the discharge process. The mitigation strategies discussed in this paper are based on experimental simulations of the debris flows in the Weijia, Huashiban, and Xijia gullies of old Beichuan city. The results are useful for post-disaster reconstruction and recovery, as well as for preventing similar geohazards in the future.  相似文献   

6.
基于第六次国际耦合模式比较计划(CMIP6)的22个地球气候/系统模式模拟数据,分析了1961—2100年期间青藏高原年均地表气温在不同情景下的时空变化。结果表明,多模式集合平均的模拟结果优于大多数单个模式。由于共享社会经济路径(SSP)和辐射强迫的不同,在SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5四种情景下,2015—2100年间青藏高原年均地表气温的增温趋势分别为0.10 ℃·(10a)-1、0.29 ℃·(10a)-1、0.53 ℃·(10a)-1和0.69 ℃·(10a)-1,帕米尔高原、藏北高原中西部和巴颜喀拉山区为三个升温中心。相对于1995—2014年参考时段,到本世纪中期(2041—2060年),青藏高原区域年均地表气温将分别增加1.37 ℃、1.72 ℃、1.98 ℃和2.30 ℃,而到本世纪末期(2081—2100年),年均地表气温将分别增加1.42 ℃、2.65 ℃、4.28 ℃和5.38 ℃。与《巴黎协定》提出的到本世纪末全球平均气温升高不超过2 ℃目标相比,无论在哪种情景下,到本世纪中期时青藏高原年均地表气温相对于工业革命前均升高超过2 ℃,这会造成极大的气候生态环境问题。  相似文献   

7.
In this study, the hydro-climatic trends (1964–2006) of Tangwang River basin (TRB) were examined using the Kendall’s test. Moreover, the impacts of climate variability and land use change on streamflow in each sub-basin were assessed using the Soil and Water Assessment Tools (SWAT) model. The results indicated that annual mean flow and peak flow showed insignificant decreasing trends (?0.14 m3 s?1 year?1, 1 %; ?8.67 m3 s?1 year?1, 40 %), while annual low flow exhibited a slightly increasing trend (0.02 m3 s?1 year?1, 11 %). Correspondingly, the annual precipitation for the entire basin decreased by 0.02 mm year?2, while the annual means of daily mean, maximum and minimum temperature increased significantly by 0.07, 0.10 and 0.02 °C year?1, respectively. On the other hand, with the implementation of “Natural Forest Protection Project” and “Grain for Green Project”, the forests in TRB totally increased by 744.5 km2 (4.00 %) from 1980 to 2000. Meanwhile, the grasslands and the farmlands decreased by 378.0 km2 (?1.98 %) and 311.9 km2 (?1.63 %), respectively. Overall, land use changes played a more important role for the streamflow reduction than climate change for SUB1, SUB2 and SUB3, in which the primary conversions were from grassland, farmland and bare land to forests. Conversely, in SUB4, the influence of climate variability was predominant. The results obtained could be a reference for water resources planning and management under changing environment.  相似文献   

8.
Direct information about climate change from meteorological surface air temperature records are available in India only since 1901 A.D. Meteorological surface air temperature (SAT) data for the period 1901–2006 from 49 sites in peninsular India have been combined with the geothermal data from 146 sites to extract a baseline (or pre-observational mean, POM) surface temperature prior to the existence of the observational record in the region. Periodicities of 5, 11 and 22 years in the SAT time series have little influence on the combined analysis to infer long-term climate change. The best estimate of the long-term average temperature for the 19th Century is 0.7 °C lower than the 1961–1990 mean temperature. Considering the additional warming of 0.38°C relative to the 1961–1990 mean over a 10-year window centred on the year 2000, the hybrid POM-SAT method suggests that the total surface warming in peninsular India from mid-1800s to early- 2000s is about 1.1 °C. The study provides new evidence for significant warming prior to the establishment of widespread meteorological stations in peninsular India.  相似文献   

9.
Single crystals of B2O3 are needed for the precise determination of the refractive indices used to calculate the electronic polarizability α of 3-coordinated boron. The α(B) values in turn are used to predict mean refractive indices of borate minerals. Since the contribution of boron to the total polarizability of a mineral is very low, the synthetic compound B2O3 represents an ideal model system because of its high molar content of boron. Millimeter-sized crystals were synthesized at 1 GPa in a piston-cylinder apparatus. The samples were heated above the liquidus (800 °C), subsequently cooled at 15 °C/h to 500 °C and finally quenched. The refractive indices were determined by the immersion method using a microrefractometer spindle stage. The refractive indices n o = 1.653 (3) and n e = 1.632 (3) correspond to a total polarizability for B2O3 of α = 4.877 Å3. These values were used to determine the electronic polarizability of boron of α(B) = 0.16 Å3. Although the surface of the B2O3 crystals was coated with a hydrous film immediately after being exposed to air, its bulk crystallinity is retained for a period of at least 2 months.  相似文献   

10.
Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C ? 3.5 to ? 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C ?5.2 to ?6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.  相似文献   

11.
Noblesse multi-collector noble gas mass spectrometer is specially designed for multi-collection of Ar isotopes with different beam sizes, especially for small ion beams, precisely, and hence is perfectly suitable for 40Ar/39Ar geochronology. We have analyzed widely used sanidine, muscovite, and biotite standards with recommended ages of ~ 1.2–133 Ma, with the aim to assess the reliability of Noblesse for 40Ar/39Ar dating. An ESI MIR10 30W CO2 laser was used for total fusion or incremental heating samples. Extracted gases were routinely purified by four SAES NP10 getters (one at ~ 400 °C and others at room temperature). A GP50 getter and a metal cold finger cooled by liquid N (? 196 °C) were also attached for additional purification if necessary. The Ar isotopes were then measured by Noblesse using Faraday or multiplier according to the signal intensities. Over a period of 1.5 months 337 air calibrations produced a weighted mean 40Ar/36Ar of 296.50 ± 0.08 (2σ, MSWD = 4.77). Fish Canyon sanidine is used to calculate J-values, which show good linear relationship with position in irradiation. The age of four mineral standards (Alder Creek sanidine, Brione muscovite, Yabachi sanidine, and Fangshan biotite) are within error of the accepted ages. Five Alder Creek sanidine aliquots yielded an age range of 1.174–1.181 ± 0.013 Ma (2σ) which broadly overlaps the established age of the standard and the uncertainty approaches those of the foremost Ar/Ar laboratories in the world. The weighted mean ages of four Brione muscovite aliquots (18.75 ± 0.16 Ma, 2σ), five Yabachi sanidine aliquots (29.50 ± 0.19 Ma, 2σ), and three Fangshan biotite aliquots (133.0 ± 0.76 Ma, 2σ) are consistent with the recommended values of these standards, and the uncertainties are typical of modern Ar/Ar laboratories world-wide.  相似文献   

12.
Climate change presents a threat to the sustainability of cities and their societies, and must be adequately addressed. Urban environments (cities) are responsible for the creation of a significant amount of greenhouse gas emissions which are the source of climate change. Cities have been increasingly the focus of action to address climate change, yet emissions are not significantly reducing. Additionally, there a lack of integration between adaptation and mitigation. This prevents responses adequate to limit global warming to 1.5OC, and to be well adapted to anticipated changes. This paper critically analyses existing definitions and typologies of climate change actions. A definition of ‘climate change transformation’ is proposed which includes the integration of adaptation and mitigation goals to enable a new regime in which global warming is limited to 1.5OC. A new three-part typology: ‘coping, malaction and transformation,’ is presented for categorising climate change actions by the extent to which they integrate adaptation and mitigation, and define a new regime. The typology is accompanied by illustrations to demonstrate the relationship between adaptation and mitigation. The definition, typology and illustration serve to guide effective climate change decision making, and provides principles to guide application in urban environments.  相似文献   

13.
Climate change presents a threat to the sustainability of cities and their societies, and must be adequately addressed. Urban environments (cities) are responsible for the creation of a significant amount of greenhouse gas emissions which are the source of climate change. Cities have been increasingly the focus of action to address climate change, yet emissions are not significantly reducing. Additionally, there a lack of integration between adaptation and mitigation. This prevents responses adequate to limit global warming to 1.5OC, and to be well adapted to anticipated changes. This paper critically analyses existing definitions and typologies of climate change actions. A definition of ‘climate change transformation’ is proposed which includes the integration of adaptation and mitigation goals to enable a new regime in which global warming is limited to 1.5OC. A new three-part typology: ‘coping, malaction and transformation,’ is presented for categorising climate change actions by the extent to which they integrate adaptation and mitigation, and define a new regime. The typology is accompanied by illustrations to demonstrate the relationship between adaptation and mitigation. The definition, typology and illustration serve to guide effective climate change decision making, and provides principles to guide application in urban environments.  相似文献   

14.
Climate change presents a threat to the sustainability of cities and their societies, and must be adequately addressed. Urban environments (cities) are responsible for the creation of a significant amount of greenhouse gas emissions which are the source of climate change. Cities have been increasingly the focus of action to address climate change, yet emissions are not significantly reducing. Additionally, there a lack of integration between adaptation and mitigation. This prevents responses adequate to limit global warming to 1.5OC, and to be well adapted to anticipated changes. This paper critically analyses existing definitions and typologies of climate change actions. A definition of ‘climate change transformation’ is proposed which includes the integration of adaptation and mitigation goals to enable a new regime in which global warming is limited to 1.5OC. A new three-part typology: ‘coping, malaction and transformation,’ is presented for categorising climate change actions by the extent to which they integrate adaptation and mitigation, and define a new regime. The typology is accompanied by illustrations to demonstrate the relationship between adaptation and mitigation. The definition, typology and illustration serve to guide effective climate change decision making, and provides principles to guide application in urban environments.  相似文献   

15.
Climate change presents a threat to the sustainability of cities and their societies, and must be adequately addressed. Urban environments (cities) are responsible for the creation of a significant amount of greenhouse gas emissions which are the source of climate change. Cities have been increasingly the focus of action to address climate change, yet emissions are not significantly reducing. Additionally, there a lack of integration between adaptation and mitigation. This prevents responses adequate to limit global warming to 1.5OC, and to be well adapted to anticipated changes. This paper critically analyses existing definitions and typologies of climate change actions. A definition of ‘climate change transformation’ is proposed which includes the integration of adaptation and mitigation goals to enable a new regime in which global warming is limited to 1.5OC. A new three-part typology: ‘coping, malaction and transformation,’ is presented for categorising climate change actions by the extent to which they integrate adaptation and mitigation, and define a new regime. The typology is accompanied by illustrations to demonstrate the relationship between adaptation and mitigation. The definition, typology and illustration serve to guide effective climate change decision making, and provides principles to guide application in urban environments.  相似文献   

16.
Climate change presents a threat to the sustainability of cities and their societies, and must be adequately addressed. Urban environments (cities) are responsible for the creation of a significant amount of greenhouse gas emissions which are the source of climate change. Cities have been increasingly the focus of action to address climate change, yet emissions are not significantly reducing. Additionally, there a lack of integration between adaptation and mitigation. This prevents responses adequate to limit global warming to 1.5OC, and to be well adapted to anticipated changes. This paper critically analyses existing definitions and typologies of climate change actions. A definition of ‘climate change transformation’ is proposed which includes the integration of adaptation and mitigation goals to enable a new regime in which global warming is limited to 1.5OC. A new three-part typology: ‘coping, malaction and transformation,’ is presented for categorising climate change actions by the extent to which they integrate adaptation and mitigation, and define a new regime. The typology is accompanied by illustrations to demonstrate the relationship between adaptation and mitigation. The definition, typology and illustration serve to guide effective climate change decision making, and provides principles to guide application in urban environments.  相似文献   

17.
Climate change presents a threat to the sustainability of cities and their societies, and must be adequately addressed. Urban environments (cities) are responsible for the creation of a significant amount of greenhouse gas emissions which are the source of climate change. Cities have been increasingly the focus of action to address climate change, yet emissions are not significantly reducing. Additionally, there a lack of integration between adaptation and mitigation. This prevents responses adequate to limit global warming to 1.5OC, and to be well adapted to anticipated changes. This paper critically analyses existing definitions and typologies of climate change actions. A definition of ‘climate change transformation’ is proposed which includes the integration of adaptation and mitigation goals to enable a new regime in which global warming is limited to 1.5OC. A new three-part typology: ‘coping, malaction and transformation,’ is presented for categorising climate change actions by the extent to which they integrate adaptation and mitigation, and define a new regime. The typology is accompanied by illustrations to demonstrate the relationship between adaptation and mitigation. The definition, typology and illustration serve to guide effective climate change decision making, and provides principles to guide application in urban environments.  相似文献   

18.
Climate change presents a threat to the sustainability of cities and their societies, and must be adequately addressed. Urban environments (cities) are responsible for the creation of a significant amount of greenhouse gas emissions which are the source of climate change. Cities have been increasingly the focus of action to address climate change, yet emissions are not significantly reducing. Additionally, there a lack of integration between adaptation and mitigation. This prevents responses adequate to limit global warming to 1.5OC, and to be well adapted to anticipated changes. This paper critically analyses existing definitions and typologies of climate change actions. A definition of ‘climate change transformation’ is proposed which includes the integration of adaptation and mitigation goals to enable a new regime in which global warming is limited to 1.5OC. A new three-part typology: ‘coping, malaction and transformation,’ is presented for categorising climate change actions by the extent to which they integrate adaptation and mitigation, and define a new regime. The typology is accompanied by illustrations to demonstrate the relationship between adaptation and mitigation. The definition, typology and illustration serve to guide effective climate change decision making, and provides principles to guide application in urban environments.  相似文献   

19.
Climate change presents a threat to the sustainability of cities and their societies, and must be adequately addressed. Urban environments (cities) are responsible for the creation of a significant amount of greenhouse gas emissions which are the source of climate change. Cities have been increasingly the focus of action to address climate change, yet emissions are not significantly reducing. Additionally, there a lack of integration between adaptation and mitigation. This prevents responses adequate to limit global warming to 1.5OC, and to be well adapted to anticipated changes. This paper critically analyses existing definitions and typologies of climate change actions. A definition of ‘climate change transformation’ is proposed which includes the integration of adaptation and mitigation goals to enable a new regime in which global warming is limited to 1.5OC. A new three-part typology: ‘coping, malaction and transformation,’ is presented for categorising climate change actions by the extent to which they integrate adaptation and mitigation, and define a new regime. The typology is accompanied by illustrations to demonstrate the relationship between adaptation and mitigation. The definition, typology and illustration serve to guide effective climate change decision making, and provides principles to guide application in urban environments.  相似文献   

20.
With its amplification simultaneously emerging in cryospheric regions, especially in the Tibetan Plateau, global warming is undoubtedly occurring. In this study, we utilized 28 global climate models to assess model performance regarding surface air temperature over the Tibetan Plateau from 1961 to 2014, reported spatiotemporal variability in surface air temperature in the future under four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), and further quantified the timing of warming levels (1.5, 2, and 3 °C) in the region. The results show that the multimodel ensemble means depicted the spatiotemporal patterns of surface air temperature for the past decades well, although with differences across individual models. The projected surface air temperature, by 2099, would warm by 1.9, 3.2, 5.2, and 6.3 °C relative to the reference period (1981–2010), with increasing rates of 0.11, 0.31, 0.53, and 0.70 °C/decade under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios for the period 2015–2099, respectively. Compared with the preindustrial periods (1850–1900), the mean annual surface air temperature over the Tibetan Plateau has hit the 1.5 °C threshold and will break 2 °C in the next decade, but there is still a chance to limit the temperature below 3 °C in this century. Our study provides a new understanding of climate warming in high mountain areas and implies the urgent need to achieve carbon neutrality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号