首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Radiolarians extracted from marine siliceous sediments from the Bentong-Raub suture zone, Peninsular Malaysia have indicated a range of ages for olistostromal blocks of bedded chert, siliceous argillite and tuffaceous argillite, and chert clasts and lenses within the mélange from the suture zone. Late Devonian (Faniennian), Early Carboniferous (Tournaisian and Viséan) and Early Permian (Wolfcampian and Leonardian) ages are represented by seven radiolarian zones from ten localities along the suture zone. In stratigraphic order these include Holoeciscus 2–3 Assemblage Zones, Albaillella paradoxa Zone, Albaillella dejendrei Zone, Albaillella cartalla Zone, Pseudoalbaillella lomentaria Zone, Albaillella sinuata Zone and Pseudoalbaillella longtanensis Zone. Fifteen genera are represented by 35 species. The range of ages from Late Devonian to Early Permian suggests that an ocean existed between the Sibumasu and East Malaya terranes from at least Late Devonian to late Early Permian time and that closure of the ocean between the two terranes could not have occurred until after late Early Permian time. The range of ages and rock types from different depositional environments, indicate that the Bentong-Raub suture zone includes a disrupted accretionary complex.  相似文献   

2.
Tetsuji  Onoue  Hiroyoshi  Sano 《Island Arc》2007,16(1):173-190
Abstract   The Sambosan accretionary complex of southwest Japan was formed during the uppermost Jurassic to lowermost Cretaceous and consists of basaltic rocks, carbonates and siliceous rocks. The Sambosan oceanic rocks were grouped into four stratigraphic successions: (i) Middle Upper Triassic basaltic rock; (ii) Upper Triassic shallow-water limestone; (iii) limestone breccia; and (iv) Middle Middle Triassic to lower Upper Jurassic siliceous rock successions. The basaltic rocks have a geochemical affinity with oceanic island basalt of a normal hotspot origin. The shallow-water limestone, limestone breccia, and siliceous rock successions are interpreted to be sediments on the seamount-top, upper seamount-flank and surrounding ocean floor, respectively. Deposition of the radiolarian chert of the siliceous rock succession took place on the ocean floor in Late Anisian and continued until Middle Jurassic. Oceanic island basalt was erupted to form a seamount by an intraplate volcanism in Late Carnian. Late Triassic shallow-water carbonate sedimentation occurred at the top of this seamount. Accumulation of the radiolarian chert was temporally replaced by Late Carnian to Early Norian deep-water pelagic carbonate sedimentation. Biotic association and lithologic properties of the pelagic carbonates suggest that an enormous production and accumulation of calcareous planktonic biotas occurred in an open-ocean realm of the Panthalassa Ocean in Late Carnian through Early Norian. Upper Norian ribbon chert of the siliceous rock succession contains thin beds of limestone breccia displaced from the shallow-water buildup resting upon the seamount. The shallow-water limestone and siliceous rock successions are nearly coeval with one another and are laterally linked by displaced carbonates in the siliceous rock succession.  相似文献   

3.
The Shan-Thai Block, regarded traditionally as awhole geotectonic unit by the geologists engaged inthe study of geotectonic evolution of Southeast Asia, issituated to the west of the Ailaoshan and Nan-UttaraditSutures and to the east of the Shan Boundary Faults,and covers southwestern Yunnan, eastern Myanmar,most of Thailand, northwestern Laos, western Malay-sia, and Sumatra[1,2] (fig. 1). However, recent researchshows that it consists of two continental terranes fromGondwana and Cathay…  相似文献   

4.
The middle sector of the Yarlung Zangbo suture zone stretches over 200 km long from Ngamring through Geding to Rinbung, roughly along Yarlung Zangbo River valley (Fig. 1). This belt resulted from the closure of the Tethyan ocean and the collision be- tween Indian plate and Lhasa block[1―8]. Lots of works demonstrated that rifting of the Tethyan basin in southern Tibet started from Triassic time. Initial oce- anic crust appeared in the Late Jurassic, and then ex- perienced a rapid sprea…  相似文献   

5.
Abstract This paper contains extended abstracts of the seven papers presented at the symposium 'Radiolarians and Orogenic Belts' held at the seventh meeting of the International Association of Radiolarian Paleontologists (INTERRAD). Important results of the symposium include the following: (1) Upper Paleozoic and Mesozoic cherts are widely distributed within accretionary complexes in the circum-Pacific orogenic belt. Radiolarian dating reveals that long durations of chert sedimentation in a pelagic environment are recorded on both sides of Pacific-rim accretionary complexes (e.g. New Zealand, Japan, Russian Far East, Canadian Cordillera). (2) Triassic radiolarian faunas from New Zealand and the Omolon Massif, northeast Siberia are similar in composition and are characterized by the absence of typical Tethyan elements. This suggests that radiolarian faunal provincialism may have been established as early as the Triassic. High-latitude radiolarian taxa exhibit a bi-polar distribution pattern. (3) The Lower Triassic interval in chert dominant pelagic sequences is mechanically weaker than other levels and acted as a décollement in accretionary events. This lithologic. contrast in physical property is considered to reflect radiolarian evolution, such as the end-Permian mass extinction.  相似文献   

6.
Gaoping  Shen  Hiroshi  Ujilé Katsuo  Sashida 《Island Arc》1996,5(2):156-165
Abstract The pre-Neogene basement of the central Ryukyu Island Arc shows zonal structures analogous to those of the outer belt of southwest Japan. The innermost terrane (Iheya Zone) consists of isoclinally folded beds dipping northwestward; the anticlinal cores are composed mainly of Permian chert, whereas the synclinal parts are represented by Jurassic to Cretaceous sandstone-rich alternating siliceous shale and chert, bearing appropriate radiolarian fossils. At the east-central area of Ie Island, the basement rocks are exposed as a 172 m high peak, Tattyu. The flank area of Tattyu is composed of latest Jurassic to Berriasian siliceous shale and chert as part of an accretionary prism, while most of Tattyu is composed of a continuous and very compact sequence of Norian through Kimmeridgian (?) bedded chert which is rather gently inclined. Beyond an unexposed part below the Norian chert, Guadalupian chert is recognized. It is inferred that this pelagic chert (Tattyu sequence) was off-scraped and thrust on to the accretionary prism which developed on its flank area in an accretion process after the Early Cretaceous.  相似文献   

7.
The Yarlung–Tsangpo Suture Zone (YTSZ), as the southernmost and youngest among the sutures that subdivides the Tibetan Plateau into several east–west trending blocks, marks where the Neo‐Tethys was consumed as the Indian continent moved northward and collided against the Eurasian continent. Mélanges in the YTSZ represent the remnants of the oceanic plate through subduction and collision. Mélanges are characterized by a highly sheared volcanoclastic or siliceous mudstone matrix including blocks of chert, claystone, and basalt. Detailed radiolarian analyses are conducted on the mélange near Zhongba County. Macroscopic, mesoscopic, and microscopic observations are combined in order to elucidate the relationships among age, lithology, and structure of blocks in the mélange. Reconstructed ocean plate stratigraphy includes Lower Jurassic limestone within the chert sequence accumulated at a depth near the CCD (Unit 2), Upper Jurassic thin‐bedded chert interbedded with claystone deposited in the wide ocean basin (Unit 3), and Lower Cretaceous chert with siliceous mudstone (Units 4 and 5), representing the middle parts of ocean plate stratigraphy. The results highlight the fabric of brecciated chert on mesoscopic scale, which is thought to be due to localized overpressure. The formation of mesoscopic and microscopic block‐in‐matrix fabrics in the mélange is proposed for the chert and siliceous mudstone bearing different extents of consolidation and competence during the progressive deformation of accreted sediments at shallow‐level subduction.  相似文献   

8.
Abundant Triassic radiolarian fossils were obtained from varicolored bedded cherts exposed in the Buruocang section near Jinlu village, Zedong, southern Tibet. The radiolarian‐bearing rocks represent fragmented remnants of the Neotethys oceanic sediments belonging to the mélange complex of the east part of the Yarlung‐Tsangpo Suture Zone. Two new middle Late Anisian radiolarian assemblages recognized from this section named Oertlispongus inaequispinosus and Triassocampe deweveri, respectively, are compared with those known from Europe, Far East Russia, Japan, and Turkey. These Anisian radiolarian fossils are the first reported in southern Tibet and the oldest radiolarian record within the Yarlung‐Tsangpo Suture Zone. They improve time constraints for the evolution of Neotethys in southern Tibet.  相似文献   

9.
The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block. There is a large area of Mesozoic magmatic rocks along this orogenic belt, with emplacement ages mainly at Late Triassic, Late Jurassic and Early Cretaceous. The Late Triassic alkaline rocks and the Late Jurassic granitoids only crop out in the eastern part of the Sulu orogen, whereas the Early Cretaceous magmatic rocks occur as massive granitoids, sporadic intermedi- ate-ma...  相似文献   

10.
It is now generally accepted that Southeast Asia is composed of continental blocks which separated from Gondwana with the formation of oceanic crust during the Paleozoic, and were accreted to Asia in the Late Paleozoic or Early Mesozoic, with the subduction of the intervening oceanic crust. From east to west the Malay peninsula and Sumatra are composed of three continental blocks: East Malaya with a Cathaysian Permian flora and fauna; Sibumasu, including the western part of the Malay peninsula and East Sumatra, with Late Carboniferous–Early Permian 'pebbly mudstones' interpreted as glaciogenic diamictites; and West Sumatra, again with Cathaysian fauna and flora. A further unit, the Woyla nappe, is interpreted as an intraoceanic arc thrust over the West Sumatra block in the mid Cretaceous. There are varied opinions concerning the age of collision of Sibumasu with East Malaya and the destruction of Paleotethys. In Thailand, radiolarites have been used as evidence that Paleotethys survived until after the Middle Triassic. In the Malay peninsula, structural evidence and the ages of granitic intrusions are used to support a Middle Permian to Early Triassic age for the destruction of Paleotethys. It is suggested that the West Sumatra block was derived from Cathaysia and emplaced against the western margin of Sibumasu by dextral transcurrent faulting along a zone of high deformation, the Medial Sumatra Tectonic Zone. These structural units can be traced northwards in Southeast Asia. The East Malaya block is considered to be part of the Indochina block, Sibumasu can be traced through Thailand into southern China, the Medial Sumatra Tectonic Zone is correlated with the Mogok Belt of Myanmar, the West Burma block is the extension of the West Sumatra block, from which it was separated by the formation of the Andaman Sea in the Miocene, and the Woyla nappe is correlated with the Mawgyi nappe of Myanmar.  相似文献   

11.
Hroaki  Ishiga  Kotaro  Ishida  Kaori  Dozen Makoto  Musashino 《Island Arc》1996,5(2):180-180
Abstract Geochemical characteristics, mainly of major and trace elements and REE (rare earth elements) of bedded chert and shale/mudstone sequences, across the Permian/Triassic boundary in southwest Japan are examined. The boundary is characterized by the disappearance of bedded cherts, and the interval between the Upper Permian cherts and Lower Triassic (probably Smithian) cherts comprises siliceous shales and organic black mudstones. Bedded cherts are characterized by a gradual depletion of chemical elements from Middle to Upper Permian. However, overlying siliceous shales exhibit a clear enrichment in some elements, especially alkaline metals (such as K, Rb and Cs) and Ti, Th, Y, P2O5, and REE in comparison with elements of the PAAS (post Archean Australian shales). This indicates that average components of the upper continental crust were transported in the boundary interval, possibly caused by volcanic activity. Ce-negative shifting in NASC (North American Shales Composite)-normalized REE patterns is characteristic of this interval, and could be related to the deposition of siliceous rocks in Ce-depleted seawater. This was probably caused by an invasion of water mass with a Ce-negative anomaly into the previously existing water mass of the Paleo-Tethys. Weak negative Eu-anomalies in this interval are suggestive of plagioclase fractionation caused by acid volcanisms and the LREE/HREE ratios in the interval show a slightly light-REE enrichment. Organic black mudstones are characteristically intercalated in the interval. These rocks are usually regarded as a product of oceanic deterioration, but in pelagic conditions, organic materials were formed by high primary production that resulted from the active upwelling of ocean floor water currents with rich nutrients. This may have been caused by the inferred mixing of water masses of the Paleo-Tethys and of the Panthalassa in Early Triassic time which was regarded as an event synchronous with an increase in volcanic activity on highly matured island arcs and/or continents.  相似文献   

12.
Geodynamic evolution of Korea: A view   总被引:2,自引:0,他引:2  
Abstract Evidence for South Korean Palaeozoic geodynamic evolution is restricted to the Ogcheon Belt, which is a complex polycyclic domain forming the boundary between the Precambrian Gyeonggi Block to the northwest and the Ryeongnam Block to the southeast. Two independent sub-zones can be distinguished: the Taebaeksan Zone to the northeast and the Ogcheon Zone sensu stricto. The Taebaeksan Zone and Ryeongnam Block display characteristic features of the North China palaeocontinent. This domain remained relatively stable during the Palaeozoic. In contrast, the Ogcheon Belt s. s. is a highly mobile zone that belongs to the South China palaeocontinent and corresponds to a rift that opened during the Early Palaeozoic. In lowermost Devonian times, the rift basin was closed and the Ogcheon Belt was structured in a pile of nappes. From the lack of suture in the Ogcheon Belt it can be inferred that the Gyeonggi Block belongs to the South China palaeocontinent. Thus, the boundary between the North China and South China blocks should be located to the north of Gyeonggi Block, that is, in the Palaeozoic Imjingang Belt. From the Middle Carboniferous, sedimentation started again on a weakly subsiding paralic platform located in the hinterland of the Late Palaeozoic orogen of southwest Japan. In the Late Carboniferous, increasing subsidence recorded extensional tectonics related to the opening of the Yakuno Oceanic Basin (southwest Japan). In the Middle Permian, the end of marine influences in the platform and emplacement of terrestrial coal measures, may be correlated with the closure of the oceanic area and subsequent ophiolite obduction. In Late Permian to Early Triassic times, the Honshu Block (the eastern palaeomargin of the Yakuno Basin) collided with Sino-Korea. Post-collisional intracontinental tectonics reached the Ogcheon Belt in the Middle Triassic (Songnim tectonism). Ductile dextral shear zones associated with synkinematic granitoids were emplaced in the southwest of the belt. In the Upper Triassic, the late stages of the intracontinental transcurrent tectonics generated narrow intramontane troughs (Daedong Supergroup). The Daedong basins were deformed during two tectonic events, in the Middle (?) and Late Jurassic. The Upper Jurassic to Lower Cretaceous basins (Gyeongsang Supergroup), that are controlled by left-lateral faults, may have resulted from the same tectonic event.  相似文献   

13.
Abstract Thailand comprises two continental blocks: Sibumasu and Indochina. The clastic rocks of the Triassic Mae Sariang Group are distributed in the Mae Hong Son–Mae Sariang area, north‐west Thailand, which corresponds to the central part of Sibumasu. The clastic rocks yield abundant detrital chromian spinels, indicating a source of ultramafic/mafic rocks. The chemistry of the detrital chromian spinels suggests that they were derived from three different rock types: ocean‐floor peridotite, chromitite and intraplate basalt, and that ophiolitic rocks were exposed in the area, where there are no outcrops of them at present. Exposition of an ophiolitic complex denotes a suture zone or other tectonic boundary. The discovery of chromian spinels suggests that the Gondwana–Tethys divide is located along the Mae Yuam Fault zone. Both paleontological and tectonic aspects support this conclusion.  相似文献   

14.
Abstract The Bantimala Complex of South Sulawesi consists mainly of mélange, chert, basalt, ultramafic rocks and high pressure type metamorphic rocks. Well-preserved radiolarians were extracted from 10 samples of chert, and K-Ar age dating was done for muscovite from five samples of schist of the Bantimala Complex. The radiolarian assemblage from chert is assigned middle Cretaceous (late Albian-early Cenomanian) age, while the K-Ar age data from schist range from 132 Ma to 114 Ma except for one sample with rare muscovite. The radiolarian chert is unconformably underlain by schist in the Bantimala Complex. The stratigraphie relationship and the time lag of these two kinds of age data from chert and underlying schist suggest short-time tectonic events immediately followed by a quick waning tectonism in this region during the Albian-Cenomanian transgression.  相似文献   

15.
河南信阳古消减杂岩   总被引:4,自引:0,他引:4       下载免费PDF全文
在秦岭构造带东段大别山北麓的河南信阳附近,作者发现了一个古消减带,其中消减杂岩由蛇绿岩:混杂岩及低温高压变质带的岩石组成。推断古板块会聚边缘的构造发育史可以划分为以下三个阶段: Ⅰ、晚元古代(约800—7000百万年前),东秦岭古洋壳向北朝华北古陆之下俯冲,产生了初始的桐柏岛弧及弧后的边缘海。 Ⅱ、元古代末(约700—600百万年前),俯冲带极性反向,边缘海洋壳向南朝桐柏岛弧之下消减,从而产生了信阳消减杂岩。 Ⅲ、早古生代初(约600—500百万年前),边缘海闭合,桐柏岛弧增生于华北古陆的南缘,东秦岭古洋壳沿岛弧之南的一个新贝尼奥夫带再次向北俯冲  相似文献   

16.
在西藏冈底斯山西部措勤县打加错地区新发现一套紫红色石英砂岩、钙质粉砂岩、生物碎屑微晶灰岩夹放射虫硅质岩的地层体,在硅质岩中首次发现了晚三叠世卡尼期—诺利期放射虫动物群Pseudostylosphaera sp.,Perispongidium cf.tethys De Wever.放射虫化石的发现对冈底斯山西部打加错地区地层的划分和地质构造发展演化史的研究具有重要意义.  相似文献   

17.
本文通过处理琼东南盆地现有的重磁数据资料,得到琼东南盆地重磁特征,并采用三维Parker法进行重磁基底深度的反演,获得琼东南盆地的重力基底深度变化在1~11 km之间,磁力基底深度变化在5~11 km之间,结合地震剖面的重磁震联合反演结果和钻井资料推断琼东南盆地的基底岩性主要以酸性花岗岩和中性安山岩为主,少量陆相中生界地层.琼东南盆地的基底演化表现为早期主要与古特提斯洋的演化相关,晚期则与太平洋板块的俯冲密切相关.  相似文献   

18.
We describe the mode of occurrence and geochemical characteristics of basalts, in the Khangai–Khentei belt in Mongolia, overlain by Middle Paleozoic radiolarian chert in an extensive accretionary complex. These basalts are greatly enriched in K, Ti, Fe, P, Rb, Ba, Th, and Nb in comparison to the composition of the mid‐ocean ridge basalts, indicative of within‐plate alkaline type. Ti/Y vs Nb/Y and MnO/TiO2/P2O5 ratios of the basalts also suggest within‐plate affinities. Considering the geochemical characteristics as well as the conformable relationship with the overlying radiolarian chert, the alkaline basalts were clearly not continental but formed a pelagic oceanic island. The mode of occurrence and geochemistry of the basalts show that the alkaline basaltic volcanic activity had taken place to form an oceanic island in the Paleozoic pelagic region sufficiently far from continents to allow radiolarian ooze accumulation.  相似文献   

19.
Masao  Kametaka  Hiromi  Nagai  Sizhao  Zhu  Masamichi  Takebe 《Island Arc》2009,18(1):108-125
The biostratigraphy of the Middle Permian Gufeng Formation in the northeastern Yangtze platform is examined based on radiolarians. This study is concentrated on the Anmenkou section in the Chaohu area of Anhui Province, China. The Gufeng Formation is divided into the Phosphate Nodule-bearing Mudstone Member (PNMM) and the Siliceous Rock Member (SRM) in ascending order. The former primarily consists of mudstone including abundant phosphate nodules, and the latter consists mainly of alternating beds of chert, siliceous mudstone and mudstone, with intercalations of porous chert. Ammonoids in the mudstone of the lower PNMM are Wordian. Chert, siliceous mudstone and mudstone of the SRM include abundant radiolarians with sponge spicule assemblages suggestive of the Wordian–Capitanian. Albaillellaria are predominant in the lower SRM, while Entactinaria and Spumellaria are predominant in the middle and upper SRM. These radiolarians correspond to three radiolarian assemblage zones: Pseudoalbaillella longtanensis – Pseudoalbaillella fusiformis , Follicucullus monacanthus , and Follicucullus scholasticus – Ruzhencevispongus uralicus . The assemblage of radiolarians and sponge spicule fauna suggests a depositional depth of 150–500 m. The radiolarian fauna of the Gufeng Formation is considered to be representative of the relatively shallow, tropical radiolarian fauna of the Middle Permian eastern Paleotethys.  相似文献   

20.
Alternating chert–clastic sequences juxtaposed with limestone blocks, which are units typical of accretionary complexes, constitute the Buruanga peninsula. New lithostratigraphic units are proposed in this study: the Unidos Formation (Jurassic chert sequence), the Saboncogon Formation (Jurassic siliceous mudstone–terrigenous mudstone and quartz‐rich sandstone), the Gibon Formation (Jurassic(?) bedded pelagic limestone), the Libertad Metamorphics (Jurassic–Cretaceous slate, phyllite, and schist) and the Buruanga Formation (Pliocene–Pleistocene reefal limestone). The first three sedimentary sequences in the Buruanga peninsula show close affinity with the ocean plate stratigraphy of the North Palawan terrane in Busuanga Island: Lower–Middle Jurassic chert sequences overlain by Middle–Upper Jurassic clastics, juxtaposed with pelagic limestone. Moreover, the JR5–JR6 (Callovian to Oxfordian) siliceous mudstone of the Saboncogon Formation in the Buruanga peninsula correlates with the JR5–JR6 siliceous mudstone of the Guinlo Formation in the Middle Busuanga Belt. These findings suggest that the Buruanga peninsula may be part of the North Palawan terrane. The rocks of the Buruanga peninsula completely differ from the Middle Miocene basaltic to andesitic pyroclastic and lava flow deposits with reefal limestone and arkosic sandstone of the Antique Range. Thus, the previously suggested boundary between the Palawan microcontinental block and the Philippine Mobile Belt in the central Philippines, which is the suture zone between the Buruanga peninsula and the Antique Range, is confirmed. This boundary is similarly considered as the collision zone between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号