首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

This paper identifies the drivers of the phenomenal growth in productivity in hydraulically fractured horizontal oil wells producing from the middle member of the Bakken Formation in North Dakota. The data show a strong underlying spatial component and somewhat weaker temporal component. Drivers of the spatial component are favorable reservoir conditions. The temporal component of well productivity growth is driven by increasing the number of fracture treatments and by increasing the volume of proppant and injection fluids used on a per fracture treatment basis. Random Forest, a nonparametric modeling procedure often applied in the context of machine learning, is used to identify the relative importance of geologic and well completion factors that have driven the growth in Bakken well productivity. The findings of this study suggest that a significant part of the well productivity increases during the period from 2010 to 2015 has been the result of improved well site selection. For the more recent period, that is, from 2015 through 2017, part of the improved well productivity has resulted from substantial increases in the proppant and injection fluids used per stage and per well.

  相似文献   

2.
This paper evaluates the application of geothermal energy by numerically modeling the heat extraction that would result from the injection of cold water into an artificially fractured hot dry rock (HDR). The HDR that would be utilized in Alberta is expected to be granite with a network of pre-existing natural fractures. However, to ensure a continued flow of injected water from the reservoir to the production wells, creation of additional fractures is required. Thus, the properties of these fractures are of prime importance to the efficiency of geothermal energy production. The fracture networks for the simulations were created using a numerical code and were converted into a grid format to be used in a commercial thermal simulator. A new approach to embed a complex fracture system into the numerical model was applied. Various properties of the fractures such as aperture, length, and spacing were changed and their absolute and relative effects on energy production were quantified and the results are presented in this paper. This modeling technique was also verified by comparison with the conventional dual porosity model and by performing a history match with real field data obtained from literature. The applicability of this approach to provide heat for oil sands extraction was investigated using the volumes of water currently needed in northern Alberta. Based on these constraints, numerical simulations were run to evaluate the optimum well spacing that would be required using a three-well configuration. In this simulation, the fracture parameters (density and aperture) were kept fixed assuming that they are not affected by cold water injection. The results of this study suggest that geothermal energy has a potential to be a sustainable form of thermal energy for oil sands extraction in northern Alberta.  相似文献   

3.
Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U.S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer.  相似文献   

4.
This report contains nine unconventional energy resource commodity summaries prepared by committees of the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and uranium resources. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report. Coal and uranium are expected to supply a significant portion of the world’s energy mix in coming years. Coalbed methane continues to supply about 9% of the U.S. gas production and exploration is expanding in other countries. Recently, natural gas produced from shale and low-permeability (tight) sandstone has made a significant contribution to the energy supply of the United States and is an increasing target for exploration around the world. In addition, oil from shale and heavy oil from sandstone are a new exploration focus in many areas (including the Green River area of Wyoming and northern Alberta). In recent years, research in the areas of geothermal energy sources and gas hydrates has continued to advance. Reviews of the current research and the stages of development of these unconventional energy resources are described in the various sections of this report.  相似文献   

5.
This paper summarizes five 2007–2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.
  相似文献   

6.
This report contains nine unconventional energy resource commodity summaries and an analysis of energy economics prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight-gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and U and Th resources and associated rare earth elements of industrial interest. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report.  相似文献   

7.
Geothermal resources hosted within sedimentary basins with high natural permeability have been targeted for the production of energy in Australia. The Hutton Sandstone (Cooper‐Eromanga Basin) – a prolific oil and gas producer known to have good reservoir quality and high reservoir volume – was recently tested for its geothermal potential in the Cooper Region. However, recent exploratory drilling did not produce the anticipated flow rates, raising the question of the impact of diagenesis on the reservoir quality of this sedimentary formation. The combined characterization of the petrology, diagenesis and petrophysical properties of the Hutton Sandstone at Celsius‐1 and other surrounding wells indicates variable reservoir properties in the Cooper Region. This integrated study demonstrates that low formation permeability occurs at geothermal target depth and explains the negligible flow rates obtained at Celsius‐1. These low permeabilities are the results of the preservation of widespread detrital clayey matrix and the extensive occurrence of authigenic kaolinite, illite and silica cements at the top and base of the Hutton Sandstone. This aspect is confirmed by NMR T2 transversal relaxation time becoming shorter at similar depths. Petrography analysis also reveals that sandstones are affected by diagenetic processes of the eogenetic and mesogenetic phases. However, the Hutton Sandstone at Celsius‐1 is presently at pressure‐temperature conditions that are below the mesogenetic conditions, which suggests a late episode of uplift and cooling from maximum palaeotemperatures.  相似文献   

8.
利用大量的地热流体化学成分及环境同位素(δD、δ18O、14C)测试数据,深入分析了隆起山地 构造对流型、沉降盆地传导型地热流体的化学特征及分布规律,进而对地热流体的环境同位素分 布特征及形成年龄进行了梳理总结,得出了明确的结论。结果表明:隆起山地构造对流型地热田 地热流体主要以断裂上升泉的形式出露,分布于西秦岭-祁连造山带,补给来源为当地及周边大气 降水入渗,地热流体形成年龄一般小于 5 000 ~ 30 000 a,水质较好,属“开启型”的地热系统;热储层 岩性、断裂规模及水热循环方式和深度等明显控制着地热流体化学类型、环境同位素特征和形成 年龄。沉降盆地传导型地热田地热流体主要以管井开采的方式出露;热储埋藏深度小于 1 600 m 的 地热井,地热流体补给来源为当地及周边大气降水入渗,形成年龄一般小于 5 000 ~ 30 000 a,水质 相对较好,属“半开启-半封闭型”的地热系统;热储埋藏深度介于 1 600 ~ 2 600 m 之间的地热开采 井,主要为地质历史时期逐步形成的“古水”,水化学类型复杂且水质较差,地热流体形成年龄介于 30 000 ~ 50 000 a,属“封闭型”的地热系统;热储层岩性、埋藏深度、地下水在岩层中的滞留时间与循 环深度等明显控制着地热流体化学类型、环境同位素富集程度和形成年龄。  相似文献   

9.
西宁市海湖新区地下热水形成的机理   总被引:1,自引:0,他引:1       下载免费PDF全文
合理开发地热资源可以节约能源、改善环境,在海湖新区利用地热资源可直接推动社会、经济、环境的发展,为打造生态文明新城区提供有力保障。通过对西宁市海湖新区已有的钻孔、泉点的地质、水文地质及地热地质、物探等资料的分析,从海湖新区地热资源形成的热源、热储层、盖层和地下热水流体通道等角度,较系统地阐释了西宁市海湖新区地下热水的形成机理,为西宁市海湖新区地下热水合理开发利用奠定了理论基础。  相似文献   

10.

Waterflooding is one of the most common secondary recovery methods in the oil and gas industry. Globally, this process sometimes suffers a technical failure and inefficiency. Therefore, a better understanding of geology, reservoir characteristics, rock typing and discrimination, hydraulic flow units, and production data is essential to analyze reasons and mechanisms of water injection failure in the injection wells. Water injection failure was reported in the Middle Miocene Hammam Faraun reservoir at El Morgan oil field in the Gulf of Suez, where two wells have been selected as injector’s wells. In the first well (A1), the efficiency of injection was not good, whereas in the other analog A2 well good efficiency was assigned. Therefore, it is required to assess the injection loss in the low efficiency well, where all aspects of the geological, reservoir and production data of the studied wells were integrated to get a complete vision for the reasons of injection failure. The available data include core analysis data (vertical and horizontal permeabilities, helium porosity, bulk density, and water and oil saturations), petrographical studies injection and reservoir water chemistry, reservoir geology, production, and injection history. The quality of the data was examined and a set of reliable XY plots between the available data were introduced and the reservoir quality in both wells was estimated using reservoir quality index, normalized porosity index, and flow zone indicator. Integration and processing of the core and reservoir engineering data indicate that heterogeneity of the studied sequence was the main reason for the waterflooding inefficiency at the El Morgan A1 well. The best reservoir quality was assigned to the topmost part of the reservoir, which caused disturbance of the flow regime of reservoir fluids. Therefore, it is clearly indicated that rock typing and inadequate injection perforation strategy that has not been aligned with accurate hydraulic flow units are the key control parameters in the waterflooding efficiency.

  相似文献   

11.
程文汉 《热带地理》2013,33(5):617-620
广东省英德市横石塘地区的地热田属于碳酸盐岩型地热资源。文章根据钻孔测温资料,结合区域地质资料,分析了该地热田的地温场特征、埋藏条件、补径排条件等。该地热田主要热储层为泥盆―石炭系碳酸盐岩,热水径流特征和地温场特征受吴川―四会深断裂带的一系列构造控制。测温曲线显示:地温场形态呈不规则长椭圆形,长轴方向近北西向,可以推断地温场变化与岩石的断裂、裂隙和溶蚀程度有关。本区无附加型热源,深循环为该区热水的主要形成原因。  相似文献   

12.
青海盐湖锂资源开发现状及对提锂产业发展建议   总被引:4,自引:4,他引:0  
中国正处在环境污染治理和产业结构调整的关键时期,发展新能源产业是应对能源和环境危机的必然选择;同时,锂资源储备和提锂技术直接影响到国家能源战略安全。中国科学院青海盐湖所经过二十年开发,目前已形成一套成熟的选择性离子迁移分离提锂技术,并经过了产业化和工业应用验证,核心技术达到国际领先水平。该产业化具有绿色、高效、低能耗、低物耗、低产品成本、高纯度等特点,技术通用性好,可推广应用到青海、西藏高海拔生态脆弱地区以及南美玻利维亚、阿根廷、智利等高镁锂比盐湖中锂的分离提取,在高钙镁地热水、油(气)田水提锂方面也有一定的应用潜力。  相似文献   

13.

The potential for mining hydrothermal mineral deposits on the seafloor, such as seafloor massive sulfides, has become technically possible, and some companies (currently not many) are considering their exploration and development. Yet, no present methodology has been designed to quantify the ore potential and assess the risks relative to prospectivity at prospect and regional scales. Multi-scale exploration techniques, similar to those of the play analysis that are used in the oil and gas industry, can help to fulfill this task by identifying the characteristics of geologic environments indicative of ore-forming processes. Such characteristics can represent a combination of, e.g., heat source, pathway, trap and reservoir that all dictate how and where ore components are mobilized from source to deposition. In this study, the understanding of these key elements is developed as a mineral system, which serves as a guide for mapping the risk of the presence or absence of ore-forming processes within the region of interest (the permissive tract). The risk analysis is carried out using geoscience data, and it is paired with quantitative resource estimation analysis to estimate the in-place mineral potential. Resource estimates are simulated stochastically with the help of available data (bathymetric features in this study), conventional grade–tonnage models and Monte Carlo simulation techniques. In this paper, the workflow for a multi-scale quantitative risk analysis, from the definition to the evaluation of a permissive tract and related prospect(s), is described with the help of multi-beam data of a known hydrothermal vent site.

  相似文献   

14.

The temperature distribution at depth is a key variable when assessing the potential of a supercritical geothermal resource as well as a conventional geothermal resource. Data-driven estimation by a machine-learning approach is a promising way to estimate temperature distributions at depth in geothermal fields. In this study, we developed two methodologies—one based on Bayesian estimation and the other on neural networks—to estimate temperature distributions in geothermal fields. These methodologies can be used to supplement existing temperature logs, by estimating temperature distributions in unexplored regions of the subsurface, based on electrical resistivity data, observed geological/mineralogical boundaries, and microseismic observations. We evaluated the accuracy and characteristics of these methodologies using a numerical model of the Kakkonda geothermal field, Japan, where a temperature above 500 °C was observed below a depth of about 3.7 km. When using geological and geophysical knowledge as prior information for the machine learning methods, the results demonstrate that the approaches can provide subsurface temperature estimates that are consistent with the temperature distribution given by the numerical model. Using a numerical model as a benchmark helps to understand the characteristics of the machine learning approaches and may help to identify ways of improving these methods.

  相似文献   

15.
Unconventional Energy Resources and Geospatial Information: 2006 Review   总被引:1,自引:1,他引:0  
This article contains a brief summary of some of the 2006 annual committee reports presented to the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. The purpose of the reports is to advise EMD leadership and members of the current status of research and developments of energy resources (other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks), energy economics, and geospatial information. This summary presented here by the EMD is a service to the general geologic community. Included in this summary are reviews of the current research and activities related to coal, coalbed methane, gas hydrates, gas shales, geospatial information technology related to energy resources, geothermal resources, oil sands, and uranium resources.
American Association of Petroleum Geologists, Energy Minerals DivisionEmail:
  相似文献   

16.

Incised valleys form excellent stratigraphic pinch-out traps. Traditional seismic data analysis techniques fail to predict quantitatively the porous and low-velocity sand-fills for incised valleys. The 3D quantitative seismic inverted porosity–velocity (3DQSIPV) analysis was applied in the Indus Basin, SW Pakistan. The reflection strength attribute better portrayed the reservoir sandstone and faults compared to seismic amplitude attribute. The sweetness-based continuous wavelet transform authenticated the development of the stratigraphic play. The 17 Hz amplitude delineated the non-porous seal and porous reservoirs of sand-filled incised valley and strand plain, and faults. The integrated model of seismic attributes categorizes the reservoir and seal constituents. The petrophysical modeling corroborated the gas-bearing “sweet-spots” within the stratigraphic-based dynamical system. The facies modeling predicted the for coarse-grained sandstone and fine-grained shales, depositional environments, fluctuations of sea level and their impacts on the overall development of stratigraphic plays. The predicted density and P-wave velocity for the sandstone-filled incised valley of the lowstand system tract were?~?1.4–1.75 g/cc and?~?3217–3802 m/s, respectively. The predicted density and P-wave velocity for the sealing shales facies of strand plain of transgressive system tract were?~?1.9–2.1 g/cc and 2.55–2.7 g/cc and 3900–4700 m/s, respectively. The 3DQSIPV predicted?>?25% porosity and?~?3300 m/s velocity of reservoirs in the west. The eastern zones shows?<?12% porosity and high velocity of?~?4580 m/s. Cross-plots of porosity, velocity, and thickness showed correlation coefficients of R2?>?0.90 for inverted velocity. This workflow may serve as an analogue for the remaining oil and gas fields of the Indus Basins of Pakistan and similar geological settings of divergent plate margins.

  相似文献   

17.
Introducing and applying an appropriate strategy for reservoir modeling in strongly heterogeneous and fractured reservoirs is a controversial issue in reservoir engineering. Various integration approaches have been introduced to combine different sources of information and model building techniques to handle heterogeneity in geological complex reservoir. However, most of these integration approaches in several studies fail on modeling strongly fractured limestone reservoir rocks of the Zagros belt in southwest Iran. In this study, we introduced a new strategy for appropriate modeling of a production formation fractured rock. Firstly, different rock types in the study area were identified based on well log data. Then, the Sarvak Formation was divided into nine zones, and the thinner subzones were used for further fine modeling procedure. These subzones were separated based on different fracture types and fracture distribution in each zone. This strategy provided sophisticated distribution of petrophysical parameters throughout the grids of the model, and therefore, it can handle strong heterogeneity of the complex reservoir. Afterward, petrophysical parameters were used to produce an up-scaled 3D gridded petrophysical model. Subsequently, maps of petrophysical properties were derived for each zone of the Sarvak Formation. Evidences achieved in this study indicates Sarvak Formation zone 2 as the target production zone with better performance of reservoir rock and the southwestern part of the field as area of maximum porosity.  相似文献   

18.
中国与中亚地区油气资源合作开发模式与前景分析   总被引:3,自引:0,他引:3  
国际合作是全球化时代的重要特征,国际能源合作是国际合作的重要组成部分。本文以中国与中亚地区的油气资源合作开发为载体,研究双方在油气资源合作开发方面的基础、现状、模式及前景,认为双方存在着供需互补的合作基础;将已有合作归结为油气资源开发的合作与修建油气运输管线的合作两类,按国别主要分为哈萨克斯坦、土库曼斯坦和乌兹别克斯坦三国;总结了双方在合作中存在的模式,主要包括产量分成模式、联合经营模式、技术服务模式等三种;最后,以双方互补的资源格局、良好的政治环境、毗邻的地理位置及其他领域的合作为依据,展望了双方在油气资源开发领域合作的广阔前景。  相似文献   

19.
We utilized carbonate clumped isotope thermometry to explore the thermal history of the Delaware Basin, West Texas, USA. Carbonate wellbore cuttings from five oil/gas wells across the basin yielded clumped isotope temperatures (T(Δ47)) ranging from 27°C to 307°C, interpreted to reflect a combination of initial precipitation/recrystallization temperature and solid-state C-O bond reordering during burial. Dolomite samples generally record lower apparent T(Δ47)s than calcite, reflecting greater resistance to reordering in dolomite. In all five wells, clumped isotope temperatures exceed modern downhole temperature measurements, indicating higher heat flow in the past. Using modelled burial curves based on sedimentological history, we created unique time-temperature histories by linearly applying a geothermal gradient. Applying two different thermal history reordering models, we modelled the extent of solid-state C–O bond reordering to iteratively find the time-averaged best-fit geothermal gradients for each of the five wells. Results of this modelling suggest that the shallower, southwestern portion of the study area experienced higher geothermal gradients throughout the sediment history (~45°C/km) than did the deeper, southeastern portion (~32°C/km), with the northern portion experiencing intermediate geothermal gradients (~35–38°C/km). This trend is in agreement with the observed gas/oil ratios of the Delaware Basin, increasing from east to west. Furthermore, our clumped isotope temperatures agree well with previously published vitrinite reflectance data, confirming previous observations and demonstrating the utility of carbonate clumped isotope thermometry to reconstruct basin thermal histories.  相似文献   

20.
中国与全球能源网络的互动逻辑与格局转变   总被引:1,自引:0,他引:1  
杨宇 《地理学报》2022,77(2):295-314
当前中国正处于从油气时代向可再生能源时代转变的关键时期,中国能源需求结构和能源利用形式的变化决定了中国与全球能源的互动逻辑发生了深刻转变。为更好理解中国与全球的能源互动过程,本文探讨了全球能源互动的基本理论认知,并借助复杂网络、投入产出分析等技术方法分析了中国与全球能源互动格局及其变化。研究发现中国与全球能源互动的范围不断扩大,程度不断加深,从油气贸易到可再生能源贸易,从油气为主的投资到多元化能源品种的投资,从传统能源贸易到隐含能源贸易等方面,中国逐渐塑造了多元化的全球能源格局。主要结论为:① “多煤少油缺气”的能源生产结构和巨大的油气需求,决定了保障海外油气供应是中国与全球能源互动最直接的逻辑,互动区域主要集中在油气富集的国家和地区。② 随着可再生能源的发展,中国与全球能源互动逻辑从单纯的油气贸易转变为涉及可再生能源相关产品的贸易,凭借制造业优势,互动范围从油气富集的国家和地区拓展到全球拥有可再生能源发展和装机需求的国家,形成了覆盖全球主要国家和地区的可再生能源贸易新格局。③ 中国的海外能源投资目标从有限数量的东道国扩展到欧洲、东南亚等国家和地区,投资业务不仅局限在油气领域,也扩大到太阳能、风能和水能等可再生能源发电项目及电网等基础设施建设投资。④ 中国作为全球制造业大国和贸易大国,在全球化程度加深的背景下,部分能源隐含于全球生产网络和贸易网络中进行二次分配,中国与全球能源互动范围进一步拓展到与中国具有一般商品贸易关系的国家和地区,形成了全球“能源中枢”的功能。本文可为深刻认识中国与全球的能源互动关系,维护国家能源安全和参与全球能源经济治理提供理论视角与决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号