首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

2.
The earthquake hazard in Jordan and its vicinity is assessed on the basis of probabilistic methods. For this purpose, an updated earthquake catalog is compiled which covers the period between AD 1–1989. The earthquakes lie between latitudes 27.0°-35.5° N and longitudes 32.0°-39.0° E. Thirteen seismic zones are defined on a regional seismic and tectonic map presented for the area. Point-source and line-source models are used. The seismic hazard parameters, namely, theb-parameter (of the Gutenberg-Richter relation),m 1 (the upper bound magnitude), and 4 (the annual rate of occurrence of earthquakes with local magnitudeM L 4.0) are calculated for each zone. The results of the seismic hazard assessment are displayed as iso-acceleration contours expected to be exceeded during typical economic life times of structures, i.e. 50 and 100 years. For each model, two seismic hazard maps are derived. In order to determine the importance of the South-eastern Mediterranean zone and the north part of the Red Sea zone from a seismic hazard point of view for Jordan, one seismic hazard map which corresponds to 50 years' economic life for every model, excluding the seismicity of these zones, is derived.  相似文献   

3.
Kijko  A.  Retief  S. J. P.  Graham  G. 《Natural Hazards》2002,26(2):175-201
In this part of our study the probabilistic seismic hazard analysis (PSHA) for Tulbagh was performed. The applied procedure is parametric and consists essentially of two steps. The first step is applicable to the area in the vicinity of Tulbagh and requires an estimation of the area-specific parameters, which, in this case, is the mean seismic activity rate, , the Gutenberg-Richter parameter, b, and the maximum regional magnitude, mmax. The second step is applicable to the Tulbagh site, and consists of parameters of distribution of amplitude of the selected ground motion parameter. The current application of the procedure provides an assessment of the PSHA in terms of peak ground acceleration (PGA) and spectral acceleration (SA). The procedure permits the combination of both historical and instrumental data. The historical part of the catalogue only contains the strongest events, whereas the complete part can be divided into several subcatalogues, each assumed complete above a specified threshold of magnitude. In the analysis, the uncertainty in the determination of the earthquake was taken into account by incorporation of the concept of `apparent magnitude'. The PSHA technique has been developed specifically for the estimation of seismic hazard at individual sites without the subjective judgement involved in the definition of seismic source zones, when the specific active faults have not been mapped or identified, and where the causes of seismicity are not well understood. The results of the hazard assessment are expressed as probabilities that specified values of PGA will be exceeded during the chosen time intervals, and similarly for the spectral accelerations. A worst case scenario sketches the possibility of a maximum PGA of 0.30g. The results of the hazard assessment can be used as input to a seismic risk assessment.  相似文献   

4.
A seismic hazard map of Kanpur city has been developed considering the region-specific seismotectonic parameters within a 500-km radius by deterministic and probabilistic approaches. The maximum probable earthquake magnitude (M max) for each seismic source has been estimated by considering the regional rupture characteristics method and has been compared with the maximum magnitude observed \(\left ({M_{\max }^{\text {obs}}}\right )\), \(M_{\max }^{\text {obs}} +0.5\) and Kijko method. The best suitable ground motion prediction equations (GMPE) were selected from 27 applicable GMPEs based on the ‘efficacy test’. Furthermore, different weight factors were assigned to different M max values and the selected GMPE to calculate the final hazard value. Peak ground acceleration and spectral acceleration at 0.2 and 1 s were estimated and mapped for worst-case scenario and 2 and 10% probability of exceedance for 50 years. Peak ground acceleration (PGA) showed a variation from 0.04 to 0.36 g for DSHA, from 0.02 to 0.32 g and 0.092 to 0.1525 g for 2 and 10% probability in 50 years, respectively. A normalised site-specific design spectrum has been developed considering three vulnerable sources based on deaggregation at the city center and the results are compared with the recent 2011 Sikkim and 2015 Nepal earthquakes, and the Indian seismic code IS 1893.  相似文献   

5.
Acceleration and velocity data of large earthquakes recorded by the Mexican National Broadband Seismological Network were used to generate isoseismal maps for Mexico. The seismic data consist of 99 events recorded at 27 seismic stations located in the southern and northern regions of Mexico from 2004 to 2009. The magnitude (Mw) of these events ranged from 4.1 to 7.1. Peak ground velocity values (PGV) and peak ground accelerations (PGA) were estimated, and velocity-derived peak ground accelerations (PGAv) were calculated. No important differences between PGAv and PGA values were found; thus, both parameters were used in the isoseismal determination. The generated synthetic isoseismal maps were compared with those from an existing catalog for large earthquakes in Mexico. Using empiric relations between PGA and MMI (modified Mercalli intensity) and PGV and MMI, the obtained simulated intensity maps showed similar behavior to those reported in the catalog. The results indicate that the PGAv values can be used to determine intensities when acceleration records (PGA) are unavailable.  相似文献   

6.
In this study, stochastic finite fault modeling is used to simulate Uttarkashi (1991) and Chamoli (1999) earthquakes using all available source, path, and site parameters available for the region. These two moderate earthquakes are recorded at number of stations of a strong motion network. The predicted peak ground accelerations at these stations are compared with the observed data and the ground motion parameters are constrained. The stress drop of Uttarkashi and Chamoli earthquakes is constrained at 77 and 65?bars, respectively, whereas the quality factor Q C is 112 $ f^{0.97} $ and 149 $ f^{0.95} $ for these two regions. The high-frequency attenuation parameter Kappa is in the range 0.04?C0.05. The constrained ground motion parameters are then used to simulate Mw 8.5 earthquake in central seismic gap region of Himalaya. Two scenarios are considered with epicenter of future great earthquake at locations of Uttarkashi and Chamoli earthquakes using above constrained parameters. The most vulnerable towns are the towns of Dehradun and Almora where expected PGA is in excess of 600?cm/s2 at VS30 520?m/s when the epicenter of the great earthquake is at the location of Uttarkashi (1991) earthquake. The towns of Shimla and Chandigarh can expect PGA close to 200?cm/s2. Whereas when the epicenter of the great earthquake is at the location of Chamoli (1999) earthquake, the towns of Dehradun and Almora can expect PGA of around 500 and 400?cm/s2, respectively, at VS30 620?m/s. The National Capital Region, Delhi can expect accelerations of around 80?cm/s2 in both the cases. The PGA contour maps obtained in this study can be used to assess the seismic hazard of the region and identify vulnerable areas in and around central Himalaya from a future great earthquake.  相似文献   

7.
Kahramanmaras and its surroundings are under the influence of East Anatolian and Dead Sea fault zones which have significance in the tectonics of Turkey. The long-term energy accumulation in these zones creates a very high risk level in terms of seismic hazard. In this study, the seismic hazard of Kahramanmaras Province and its vicinity was tried to be determined by using the probabilistic seismic hazard method approach. The earthquake catalog used in the study comprises 424 earthquakes equal or greater than M w ?=?4.0, covering a time period between 1 January 1900 and 1 January 2015. The earthquake data have been compiled from the catalogs of the International Seismological Center (ISC), Republic of Turkey Prime Ministry Disaster and Emergency Management Precidency (RTPMDEMP), Bogazici University Kandilli Observatory and Earthquake Research Institute. Seismic sources that could affect the study area have been identified according to the Earthquake Model of the Middle East (EMME). Seismic hazard parameters and peak horizontal acceleration values were obtained by using the selected attenuation relationships, and the results were given with iso-acceleration maps corresponding to a recurrence period of 475 years. The calculated peak horizontal acceleration values are generally varying between 0.21 and 0.41 in the study area. The result of this study shows that the southeastern parts of the study area have a greater seismic hazard compared with other parts.  相似文献   

8.
Multiple approaches are used to study the potential seismic hazard in the North China Craton (NCC, or North China Plain), where approximately 15 % of the Chinese population resides and under which active faults are located. In this study, we develop a new modified Mercalli intensity (MMI) attenuation relationship for the NCC using intensity data from 10 instrumentally recorded events. We then utilize this relationship to infer the magnitude and epicentral location of historic events based on the method proposed by Bakun and Wentworth (Bull Seismol Soc Am 87(6):1502–1521, 1997). In addition, a modified stochastic finite fault model is employed to simulate the strong ground motions caused by these historic events. The simulated peak ground accelerations and velocities are then converted into regional MMI distributions through empirical relationships, and these synthetic MMI maps are compared to field observations. The resultant MMI attenuation versus distance models of the 1976 M w 7.6 Tangshan event and the 1679 M 8.0 Sanhe-Pinggu event are consistent with the empirical attenuation relationships, and the location and size of the meizoseismal area (>VIII) are consistent with observations. The successful modeling of these historic events indicates that a stochastic finite fault model constrained by the regional MMI attenuation relationship can be used to evaluate a wide range of scenarios based on modern computational simulations. These findings may also provide useful information for the estimation and mitigation of potential seismic hazards in this region.  相似文献   

9.
The need to revise the current Indonesian Seismic Hazard Map contained in Indonesian Earthquake Resistant Building Code SNI 03-1726-2002 which partially adopts the concept of UBC 1997, was driven among others by the desire to better reflect the potential larger earthquake disasters faced by the nation in the future. The much larger than maximum predicted Aceh Earthquake (M w 9.0–9.3) of 2004, followed by the destruction observed during the 2005 Nias Earthquake (M w 8.7) urgently underline to need to consider the new conceptual approach and technological shift shown in the transition of UBC 1997 to IBC 2006. This paper presents research works for developing spectral hazard maps for Indonesia. Some improvements in seismic hazard analysis were implemented using recent seismic records. Seismic sources were modeled by background, fault, and subduction zones by considering a truncated exponential model, pure characteristic model or both models. A logic tree method was performed to account for the epistemic uncertainty and several attenuation functions were selected. Maps of PGA and spectral accelerations for a short period (0.2 s) and for a 1-s period were then developed using a probabilistic approach. The maps will be proposed as a revision for the current seismic hazard map in the Indonesian Seismic Building Code.  相似文献   

10.
The seismic hazard for the Lake Van basin is computed using a probabilistic approach, along with the earthquake data from 1907 to present. The spatial distribution of seismic events between the longitudes of 41–45° and the latitudes of 37.5–40°, which encompasses the region, indicates distinct seismic zones. The positions of these zones are well aligned with the known tectonic features such as the Tutak-Çald?ran fault zone, the Özalp fault zone, the Geva? fault zone, the Bitlis fault zone and Karl?ova junction where the North Anatolian fault zone and East Anatolian fault zone meet. These faults are known to have generated major earthquakes which strongly affected cities and towns such as Van, Mu?, Bitlis, Özalp, Muradiye, Çald?ran, Erci?, Adilcevaz, Ahlat, Tatvan, Geva? and Gürp?nar. The recurrence intervals of M s ≥ 4 earthquakes were evaluated in order to obtain the parameters of the Gutenberg–Richter measurements for seismic zones. More importantly, iso-acceleration maps of the basin were produced with a grid interval of 0.05 degrees. These maps are developed for 100- and 475- year return periods, utilizing the domestic attenuation relationships. A computer program called Sistehan II was utilized to generate these maps.  相似文献   

11.
We apply the general concept of seismic risk analysis based on morphostructural analysis of the territory, pattern recognition of earthquake-prone nodes, and the Unified Scaling Law for Earthquakes, USLE, in another seismic region of Russia to the west from Lake Baikal, i.e., Altai–Sayan Region. The USLE generalizes the empirical Gutenberg–Richter relationship making use of apparently fractal distribution of earthquake sources of different size: \( \log_{10} N\left( {M,L} \right)\, = \,A\, + \,B \cdot \left( {5\, - \,M} \right)\, + \,C \cdot \log_{10} L, \) where N (M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The local estimates of A, B, and C allow determination of the expected maximum credible magnitude in a given time interval and the associated spread around ground shaking parameters (e.g., peak ground acceleration, PGA, or macroseismic intensity, I0). Compilation of the corresponding seismic hazard map of Altai–Sayan Region and its rigorous testing against the available seismic evidences in the past is used to model regional maps of specific earthquake risks for population, cities, and infrastructures.  相似文献   

12.
This article presents probabilistic seismic hazard analyses of northern Pakistan region carried out to produce macro-seismic hazard maps for the region that define new regional ground motion design parameters for 95-, 475-, 975- and 2475-year return period earthquakes as regional contour maps and horizontal uniform hazard at important cities. The Cornell–McGuire approach (Cornell in Bull Seismol Soc Am 58(05):1583–1606, 1968; McGuire in FORTRAN computer program for seismic risk analysis. US Geological Survey, Open file Report, 76-6768, 1976) is used to carry out the analyses at 0.1° rectangular grid. The seismotectonic model of the region used in analysis consists of shallow and deep area zones differentiated based on the focal depths of the earthquakes. Earthquake catalogue compiled and used in the analysis is a composite catalogue composed of 19,373 events. Ground motion prediction equations (GMPEs) used are calibrated using goodness-of-fitness measures and visual inspection with local strong motion data. Epistemic uncertainty in the GMPEs is taken into account through the logic tree approach. Comparison of ground motions due to deep earthquakes is made for the first time for the region. The comparison between ground motion due to shallow and deep earthquakes indicates that the seismic hazard would be underestimated if the deep earthquakes are excluded. Ground motion values obtained in this study considering all the earthquakes suggest ground motions are dominant towards the north east of the region. The proposed study indicates that the ground motion hazard values suggested by the current Building Code of Pakistan underestimate the seismic hazard. Final results of this study are in close agreement with the recent studies on the region.  相似文献   

13.
Seismic hazard in terms of peak ground acceleration (PGA) has been evaluated in northern Algeria using spatially smoothed seismicity data. We present here a preliminary seismic zoning in northern Algeria as derived from the obtained results.Initially, we have compiled an earthquake catalog of the region taking data from several agencies. Afterwards, we have delimited seismic areas where the b and mmax parameters are different. Finally, by applying the methodology proposed by Frankel [Seismol. Res. Lett. 66 (1995) 8], and using four complete and Poissonian seismicity models, we are able to compute the seismic hazard maps in terms of PGA with 39.3% and 10% probability of exceedance in 50 years.A significant result of this work is the observation of mean PGA values of the order of 0.20 and 0.45 g, for return periods of 100 and 475 years, respectively, in the central area of the Tell Atlas.  相似文献   

14.
A comprehensive analytical as well as numerical treatment of seismological, geological, geomorphological and geotechnical concepts has been implemented through microzonation projects in the northeast Indian provinces of Sikkim Himalaya and Guwahati city, representing cases of contrasting geological backgrounds — a hilly terrain and a predominantly alluvial basin respectively. The estimated maximum earthquakes in the underlying seismic source zones, demarcated in the broad northeast Indian region, implicates scenario earthquakes of M W 8.3 and 8.7 to the respective study regions for deterministic seismic hazard assessments. The microzonation approach as undertaken in the present analyses involves multi-criteria seismic hazard evaluation through thematic integration of contributing factors. The geomorphological themes for Sikkim Himalaya include surface geology, soil cover, slope, rock outcrop and landslide integrated to achieve geological hazard distribution. Seismological themes, namely surface consistent peak ground acceleration and predominant frequency were, thereafter, overlaid on and added with the geological hazard distribution to obtain the seismic hazard microzonation map of the Sikkim Himalaya. On the other hand, the microzonation study of Guwahati city accounts for eight themes — geological and geomorphological, basement or bedrock, landuse, landslide, factor of safety for soil stability, shear wave velocity, predominant frequency, and surface consistent peak ground acceleration. The five broad qualitative hazard classifications — ‘low’, ‘moderate’, ‘high’, ‘moderate high’ and ‘very high’ could be applied in both the cases, albeit with different implications to peak ground acceleration variations. These developed hazard maps offer better representation of the local specific seismic hazard variation in the terrain.  相似文献   

15.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

16.
The preparation of the preliminary seismic hazard maps of the territory of Slovenia has been based on an expansion of the basic approach laid out by Cornell in 1968. Three seismic source models were prepared. Two of them are based mainly on the earthquake catalogue using the Poissonian probability model. A map of seismic energy release and a map of earthquake epicenter density are used to delineate seismic sources in these models. The geometry of the third model which is based on a rough estimate of seismotectonic setting is taken from the probabilistic seismic hazard analysis of a nuclear power plant in Slovenia. Published ground motion attenuation models based on strong motion records of recent strong earthquakes in Italy are used. Test maps for variable and uniform b-values are presented. The computer program, Seisrisk III, developed by the U.S. Geological Survey is used.  相似文献   

17.
Rigorous and objective testing of seismic hazard assessments against the real seismic activity must become the necessary precondition for any responsible seismic risk estimation. Because seismic hazard maps seek to predict the shaking that would actually occur, the reference hazard maps for the Italian seismic code, obtained by probabilistic seismic hazard assessment (PSHA), and the alternative ground shaking maps based on the neo-deterministic approach (NDSHA), are cross-compared and tested against the real seismicity for the territory of Italy. The comparison between predicted intensities and those reported for past earthquakes shows that models generally provide rather conservative estimates, except for PGA with 10 % probability of being exceeded in 50 years, which underestimates the largest earthquakes. In terms of efficiency in predicting ground shaking, measured accounting for the rate of underestimated events and for the territorial extent of areas characterized by high seismic hazard, the NDSHA maps appear to outscore the PSHA ones.  相似文献   

18.
Probabilistic seismic hazard analysis for Bangalore   总被引:5,自引:3,他引:2  
This article presents the results of probabilistic seismic hazard analysis (PSHA) for Bangalore, South India. Analyses have been carried out considering the seismotectonic parameters of the region covering a radius of 350 km keeping Bangalore as the center. Seismic hazard parameter ‘b’ has been evaluated considering the available earthquake data using (1) Gutenberg–Richter (G–R) relationship and (2) Kijko and Sellevoll (1989, 1992) method utilizing extreme and complete catalogs. The ‘b’ parameter was estimated to be 0.62 to 0.98 from G–R relation and 0.87 ± 0.03 from Kijko and Sellevoll method. The results obtained are a little higher than the ‘b’ values published earlier for southern India. Further, probabilistic seismic hazard analysis for Bangalore region has been carried out considering six seismogenic sources. From the analysis, mean annual rate of exceedance and cumulative probability hazard curve for peak ground acceleration (PGA) and spectral acceleration (Sa) have been generated. The quantified hazard values in terms of the rock level peak ground acceleration (PGA) are mapped for 10% probability of exceedance in 50 years on a grid size of 0.5 km × 0.5 km. In addition, Uniform Hazard Response Spectrum (UHRS) at rock level is also developed for the 5% damping corresponding to 10% probability of exceedance in 50 years. The peak ground acceleration (PGA) value of 0.121 g obtained from the present investigation is slightly lower (but comparable) than the PGA values obtained from the deterministic seismic hazard analysis (DSHA) for the same area. However, the PGA value obtained in the current investigation is higher than PGA values reported in the global seismic hazard assessment program (GSHAP) maps of Bhatia et al. (1999) for the shield area.  相似文献   

19.
Probabilistic methods are used to quantify the seismic hazard in Jordan and neighbouring regions. The hazard model incorporates the uncertainties associated with the seismicity parameters and the attenuation equation. Seven seismic sources are identified in the region and the seismicity parameters of these sources are estimated by making use of all the available information. Seismic hazard computations and the selection of peak ground acceleration and modified Mercalli intensity values at the nodes of a 25 × 25 km mesh covering the region under study are carried out by two different computer programs.The results of the study are presented through a set of seismic hazard maps displaying iso-acceleration and iso-intensity contours corresponding to specified return periods. The first set of maps is derived based on the seismicity data assessed in this study and display our best estimate of the seismic hazard for Jordan and the neighbouring areas. The second set of maps which shows the alternative estimate of seismic hazard is based solely on the seismicity parameters reported by other researchers. The third set of maps, called the Bayesian estimate of seismic hazard, reflects the influence of expert opinion involving more conservative assumptions regarding the Red Sea and Araba faults.  相似文献   

20.
Earthquake Hazard Assessment in the Oran Region (Northwest Algeria)   总被引:4,自引:1,他引:4  
Bouhadad  Youcef  Laouami  Nasser 《Natural Hazards》2002,26(3):227-243
This paper deals with the probabilistic seismic hazard analysis carried out in the Oran region, situated in the Northwest of Algeria. This part of Algeriawas historically struck by strong earthquakes. It was particularly affected during theOctober 9, 1790 Oran earthquake of intensity X. The main purpose of this work is to assessseismic hazard on rocks in order to provide engineers and planners with a basic tool for seismicrisk mitigation. The probabilistic approach is used in order to take into account uncertaintiesin seismic hazard assessment. Seismic sources are defined in the light of the most recentresults obtained from seismotectonics analyses carried out in North Algeria.Source parameters such as b-values, slip rate and maximum magnitude are assessed for eachseismic source. The attenuation of ground shaking motion with distance is estimated byusing attenuation relationships developed elsewhere throughout the world (Sadigh et al., 1993; Ambraseys and Bommer, 1991). The two relationships agree well with the local data. Differentchoices of source parameter values and attenuation relationships are assigned weights in alogic tree model. Results are presented as relationships between values of peak groundacceleration (PGA) and annual frequency of exceedance, and maps of hazard for returnperiods of 200 years and 500 years. A maximum peak ground acceleration of 0.42 g is obtainedfor the Oran site for a return period of 500 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号