首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wave induced forces around buried pipelines   总被引:1,自引:0,他引:1  
This work refers to an experimental investigation carried out to analyze wave induced pressures on a pipeline buried in a permeable seabed. In this investigation, the model tests were performed on a pipeline buried in the soil test bed. The wave flume used was 30 m long, 2 m wide and 1.7 m deep, 96 number of tests were conducted with waves generated for different wave heights. A pipeline 200 mm in diameter was buried in the sandy bed at different burial depth ratios. The pipeline was laid perpendicular to the wave direction, pressure was measured with 12 transducers along the outer circumference of the pipeline. The results show that wave induced pressures are significantly controlled by the wave period analyzed in terms of the scattering parameter (ka). Higher pressures were recorded at the top and the lower pressures were recorded at the bottom.  相似文献   

2.
Abstract

Pipes buried in soft ground can be damaged due to the vertical and lateral movement of the ground during the construction of the embankment. To investigate such a movement of the soft ground, full-scale tests using embankment piles and stabilizing piles were conducted for 70?days. A pile-supported embankment has been used to reduce the deformation of soft ground by transferring the embankment load through piles to the firm layer below the soft ground, whereas stabilizing piles have been employed to resist the lateral earth pressure that is induced in soft ground by embankment loads. The Coupling Area (CA), which was defined as the quantitative index to determine the resistance effect of both settlement and lateral flow of the soft ground when the embankment was reinforced, is adapted. The analysis results of the CA indicate that the piled embankment was more effective for preventing the damage to buried pipe installed near the embankment, while the stabilizing piles had almost the same effect as the piled embankment when the pipe was buried far away from the embankment.  相似文献   

3.
Lateral flow of soft ground occurs when embankment filling is performed on reclaimed land of foreshore. If a utility pipe is buried in soft ground undergoing the lateral flow, severe damage to the pipe can be caused. A pile-supported embankment has been used to support embankment to minimize lateral flow of the soft soil by transferring the embankment loads through the piles to the firm layer. To prevent damage to the buried pipe subjected to lateral force of the soft ground, full-scale field experiments on the piled embankment were conducted for 70 days. The test results show that the piled embankment effectively reduces both the settlements of the ground and the lateral displacements of the buried pipe. Although additional load was not imposed on the embankment after finishing embankment filling, the settlement and lateral displacement of soft ground simultaneously increased. This coupling behavior was observed at the toe of the embankment and the back of the buried pipe. To quantitatively evaluate the coupling effect of the movement, the coupling area (CA) was coined and analyzed with the efficiency of load transfer. The efficiency evaluated by the CA was in good agreement with the efficiency by the soil arching mechanism.  相似文献   

4.
Two marine calcareous deposits as crushable soils and a siliceous sand as a noncrushable soil were used in this study to compare their monotonic response. Undrained monotonic triaxial tests were conducted on samples, which were prepared in different relative densities and consolidated under various confining pressures. The location of phase transformation point in undrained response of the sands in different initial conditions was evaluated. The effect of important parameters including relative density, confining pressure, particle shape, and particle breakage on phase transformation point was assessed. The input energy applied per unit volume of the soils was used to interpret the shearing response of crushable and noncrushable soils. The results showed that calcareous sands have more tendencies in contraction. Particle shape and breakage play a key role in engineering behavior of crushable soils.  相似文献   

5.
Abstract

This paper presents the results of a series of model tests performed to study the shaft capacity of pre-bored grouted planted nodular (PGPN) pile in dense sand. The influence of the vertical overburden pressure on the shaft capacity of the PGPN pile is also investigated based on the test results. The test piles were equipped with strain gauges to measure the axial loads during the loading process, moreover, a foam plate was buried beneath pile tip to eliminate the influence of tip resistance on the shaft capacity. Some conclusions can be drawn based on the test results: the peak skin friction of PGPN pile increases with the increase of vertical overburden pressure applied on the foundation soil, while the rate of increase decreases with the increasing overburden pressure; the surface of the pile–soil interface of PGPN pile is relatively rough, and significant dilatant increase in lateral stress occurs during the loading process.  相似文献   

6.
A series of regular wave experiments have been done in a large-scale wave flume to investigate the wave-induced pore pressure around the submarine shallowly embedded pipelines.The model pipelines are buried in three kinds of soils,including gravel,sand and silt with different burial depth.The input waves change with height and period.The results show that the amplitudes of wave-induced pore pressure increase as the wave period increase,and decay from the surface to the bottom of seabed.Higher pore pressures are recorded at the pipeline top and the lower pore pressures at the bottom,especially in the sand seabed.The normalized pressure around pipeline decreases as the relative water depth,burial depth or scattering parameters increase.For the silt seabed,the wavelet transform has been successfully used to analyze the signals of wave-induced pore pressure,and the oscillatory and residual pore pressure can be extracted by wavelet analysis.Higher oscillatory pressures are recorded at the bottom and the lower pressures at the top of the pipeline.However,higher residual pressures are recorded at the top and the lower pressures at the bottom of the pipeline.  相似文献   

7.
Calcareous sand, widely spread on coral reefs in Nansha Islands, South China Sea, will be used as backfill material in oceanic engineering, but its engineering property is still elusive. It's difficult and extremely costly to conduct in-situ plate load tests to investigate the bearing capacities of calcareous soils foundation because the coral reefs are too far from the mainland and located in tidal zone. In order to study the bearing capacity and deformation behavior of calcareous soils, the authors designed an apparatus to carry out laboratory tests. The apparatus has the advantages as listed: (1) estimating the bearing capacity and deformation of soil foundation; (2) measuring the soil pressures and settlements at diffirent depths; (3) investigating the load transmission depth. Test results of calcareous sand indicate that the apparatus is suitable to test the engineering behavior of soil in laboratory.  相似文献   

8.
Until now more than 14 subway lines are in operation and some new lines are being built in the coastal city Shanghai. The longitudinal settlement of shield tunnel has significant effect on the safety of the subway operation. In this paper, the deformation of the shield tunnel and the surrounding soil were analyzed by the establishment of a three-dimensional model. The vertical displacements of four paths (Path 1 is on the ground; Path 2 is at the top of the tunnel; Path 3 is in the middle of the tunnel; Path 4 is at the bottom of the tunnel) are affected by the nature of the soil. The horizontal displacement is smaller than the vertical displacement and horizontal displacement of the clay is larger than that of the sand. The distribution of the pore pressure changes with soil properties around the tunnel. The pore pressure of the sand layer is larger than that of the clay layer at the same depth of underlying soil.  相似文献   

9.
Model tests were conducted to investigate the behaviour of caisson breakwater resting on sand beds subject to impacts due to wave breaking. The centrifuge modelling technique was employed to simulate the prototype stress levels in the foundation soil as the behaviour of sand is highly stress dependent. A wave actuator was developed to simulate the wave-breaking impact loads on the caisson during centrifuge flight. The test results reveal that the vertical and horizontal movements and tilt of the caisson breakwater increase progressively with the number of breaking-wave impacts. The excess pore pressures developed in the foundation sand under non-reversal loading are generally small and appear insignificant. The results of the parametric studies conducted to examine the effects of impact-load pattern, caisson width, rock berm beneath caisson, wave slamming on top slab of caisson and cyclic preloading on the performance of caisson breakwater are also presented. The practical implications of the experimental findings in the present study are also highlighted in this paper.  相似文献   

10.
ABSTRACT

The behavior of loose anisotropically consolidated calcareous sand obtained from an island in the South China Sea was investigated under undrained monotonic and cyclic loading in a hollow cylinder torsional apparatus. The tests were conducted on specimens which consolidated under various initial effective confining pressures and consolidation stress ratios. The monotonic test results show that the failure and phase transformation line are essentially independent of the consolidation conditions, while the initial contractive tendency of the specimens decreases with an increasing consolidation stress ratio. During monotonic loading of the anisotropically consolidated specimens, a same major principal stress direction is observed at the constant stress ratio lines up to the phase transformation line, irrespective of initial effective confining pressure. The cyclic strength of the sand increases with an increasing consolidation stress ratio. Moreover, a pronounced stress dependence is observed in the sand with higher consolidation stress ratio. During cyclic loading, the generated excess pore water pressure presents considerable fluctuations. The normalized terminal excess pore water pressure is described as a function of consolidation stress ratio. The tests show that the particle shape, rather than particle crushing, plays an important role in the monotonic and cyclic behaviors of the calcareous sand.  相似文献   

11.
Experiments on three types of soil (d50=0.287, 0.057 and 0.034 mm) with pipeline(D=4 cm) either half buried or resting on the seabed under regular wave or combined with current actions were conducted in a large wave flume to investigate characteristics of soil responses. The pore pressures were measured through the soil depth and across the pipeline. When pipeline is present the measured pore pressures in sandy soil nearby the pipeline deviate considerably from that predicted by the poro-elasticity theory. The buried pipeline seems to provide a degree of resistance to soil liquefaction in the two finer soil seabeds. In the silt bed, a negative power relationship was found between maximum values of excess pore pressure pmax and test intervals under the same wave conditions due to soil densification and dissipation of the pore pressure. In the case of wave combined with current, pore pressures in sandy soil show slightly decrease with time, whereas in silt soil, the current causes an increase in the excess pore pressure build-up, especially at the deeper depth. Comparing liquefaction depth with scour depth underneath the pipeline indicates that the occurrence of liquefaction is accompanied with larger scour depth under the same pipeline-bed configuration.  相似文献   

12.
未胶结钙质砂静力和循环强度的单剪试验研究   总被引:1,自引:1,他引:0  
王晓丽  裴会敏  王栋 《海洋工程》2018,36(6):124-129
通过等体积的单调和循环单剪试验研究南海未胶结钙质砂的静、动力反应,讨论应力水平和相对密实度对钙质砂静、动力强度的影响,并与典型的石英砂性质进行比较。在单调单剪试验中,中密和密实钙质砂在100~400 k Pa范围的初始竖向应力下都表现出应变硬化的性质,有效内摩擦角随剪应变增大。在循环单剪试验中,钙质砂的反应与相对密实度和初始竖向应力密切相关,但中密和密实钙质砂中的等效孔压都能达到初始竖向应力的85%~90%,此时剪应变突增,试样发生破坏。与相近密实度的石英砂相比,钙质砂抵抗液化的能力更强。提出了南海钙质砂动强度的归一化表达式,建立了不排水静强度、不排水动强度和循环次数之间的关系。  相似文献   

13.
The present study originates from a construction problem found in the planned deployment of the side caissons of the Venice gates barrier. Each of these caissons is made to float, then sunk into a lateral trench and jointed to the soil at its bottom. As a result, a C-shaped channel forms between the vertical caisson surfaces and the surrounding trench. Incoming storm waves propagating from the sea can then induce forced oscillations in this C-channel. An analytical model based on the method of matched asymptotics is developed in order to obtain the free surface oscillations in the channel, caused by a grazing incident wave. The resonant response of the basin and the amplification factors are then determined. From the free surface elevation, the pressure field and hence the total forces are also found. The analysis moves on to irregular wave motion. The analytical solution enables us to compute the dynamic actions, showing that their magnitude can be significant, due to the excitation of different resonant modes.  相似文献   

14.
Calibration chamber tests were conducted on open‐ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on load transfer mechanism in the soil plug. The model pile used in the test series was devised so that the bearing capacity of an open‐ended pile could be measured as three components: outside shaft resistance, plug resistance, and tip resistance. Under the assumption that the unit shaft resistance due to pile‐soil plug interaction varies linearly near the pile tip, the plug resistance was estimated. The plug capacity, which was defined as the plug resistance at ultimate condition, is mainly dependent on the ambient lateral pressure and relative density. The length of wedged plug that transfers the load decreases with the decrease of relative density, but it is independent of the ambient pressure and penetration depth. Under several assumptions, the value of earth pressure coefficient in the soil plug can be calculated. It gradually reduces with increase in the longitudinal distance from the pile tip. At the bottom of the soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. This may be attributed to (1) the decrease of friction angle as a result of increase in the effective vertical stress, (2) the difference in the dilation degree of the soil plug during driving with ambient pressures, and (3) the difference in compaction degree of soil plug during driving with relative densities. Based on the test results, an empirical equation was suggested to compute the earth pressure coefficient to be used in the calculation of plug capacity using one‐dimensional analysis, and it produces proper plug capacities for all soil conditions.  相似文献   

15.
Considering the shear deformation and thickness stretching of large deformation, a modified numerical calculation method based on the thick shell theory is established to determine the collapse pressure of thick-walled pipes. Verification experiments are conducted on ten pipe specimens in hyperbaric chambers. The good agreement between experimental results and numerical predictions shows the validity and reliability of the new numerical calculation method. Combining DNV specification, the characteristic collapse pressure is also calculated for comparison. The difference between experimental results and DNV calculations illustrates the latter one is much conservative in predicting collapse pressure for thick-walled pipes. Sensitivity analysis on manufacturing imperfections and material properties is investigated for pipes with different D/t ratios. Thick-walled pipes are easier to be affected by initial ovality, residual stress and hardening factor. Based on the stress distribution at the moment of collapse, a novel discovery is found that the collapse pressure of thick-walled pipes is dominated by material plastic behavior.  相似文献   

16.
An investigation was conducted to obtain analytical solutions for the pullout behavior of a suction caisson undergoing inclined loads in sand. The inclined load is transformed into an equivalent load system in which the vertical, horizontal, and moment loads are applied on the center of the lid of the suction caisson. The vertical and lateral stiffness coefficients along the skirt of the suction caisson in sands are presented using the new three-dimensional elastic solutions taking into account the nonhomogeneous and nonlinear properties of the sand. The vertical, lateral, and rocking stiffness coefficients on the base of the suction caisson are presented considering the solutions of a hollow rigid cylindrical punch acting on the surface of a soil. The yield, pullout, and failure for sands with the nonhomogeneous and nonlinear characteristics are taken into consideration. The effects of the load inclination, the loading depth, and the aspect ratio on the pullout load capacity of the suction caisson are presented. Behaviour of the suction caisson in sand prior to failure is clarified from the relationship between tensile load, displacement, and rotation and that between depth, vertical pressure, and lateral pressure.  相似文献   

17.
The effects of drag reduction by ribbons attached to cylindrical pipes   总被引:1,自引:0,他引:1  
This study proposes a drag reduction device that uses three ribbons attached 120 degree apart to vertical pipes. Experiments were conducted in a circulating water channel to investigate the effects of the ribbon length and the direction of the flow on various current velocities. Drag on a vertical cylinder was measured by a resistance dynamometer. Flow visualizations were conducted using laser sheet beams. Laser Doppler Velocimetry (LDV) was used to measure the velocity field in the wake. This experiment demonstrates that attached ribbons can be used to reduce the drag force on vertical pipes for various directions of incoming flows. The ribbon-type device is very simple and easy to fabricate for field applications. The results are promising for the application to offshore structures.  相似文献   

18.
《Coastal Engineering》2001,44(2):153-190
This paper summarizes the results of the European Union Marine Science and Technology (EU MAST) III project “Scour Around Coastal Structures” (SCARCOST). The summary is presented under three headings: (1) Introduction; (2) Flow and scour processes with the subheadings: flow and scour processes around vertical cylinders; flow and scour processes at detached breakwaters; flow and scour processes at submerged breakwaters; and the effect of turbulence on sediment transport; and (3) Sediment behaviour close to the structure with the subheadings: field measurement and analysis of wave-induced pore pressures and effective stresses around a bottom seated cylinder; non-linear soil modelling with respect to wave-induced pore pressures and gradients; wave-induced pressures on the bottom for non-linear coastal waves, including also wave kinematics; development of a numerical model (linear soil modelling) to calculate wave-induced pore pressures—the effect of liquefaction on sediment transport; penetration of blocks in non-consolidated fine soil; and cyclic stiffness of loose sand.The paper also includes a discussion of the role of scale effects in laboratory testing and the applicability of the results obtained in supporting engineering design.  相似文献   

19.
Abstract

In this article, the dilatancy of calcareous soil is studied systematically based on triaxial consolidation drainage shear tests, and the difference in dilatancy between calcareous soil and siliceous soil is also investigated. It was found that: ① Calcareous soil experience obvious dilated deformation. Dilatancy tendency increases with increasing related density and decreases with increasing confining pressure. ② The volumetric strain rate initially increases from negative to positive. After it reaches a maximum, there is a small decrease in the volumetric strain rate, but it is still greater than zero, and the stress-strain curves are of softening type. ③ For the same condition, the dilatancy deformation of calcareous sand begins later than that of siliceous sand, and the volume compression before dilatancy is also larger for calcareous sand. ④ The critical state alone cannot accurately describe the entire deformation process of soil, and it is proposed that the phase transformation state be added to the standard method used to assess soil dilatation and contraction. ⑤ Based on the statistical analysis of experimental data, mathematical relationships were established between void ratio, relative density, and effective confining pressure of phase transformation state and critical state, respectively.
  • Highlights
  • Reports results from a well-designed experiment that includes a good amount of samples and data.

  • Effects of relative density and effective confining pressure on deformation mode and mechanical properties of calcareous sand are evaluated.

  • The difference in dilatancy between calcareous sand and siliceous sand was compared

  • The phase-transformation state and critical state were compared with the axial strain, volumetric strain and deviatoric stress.

  • Using phase-transformation void ratio and critical void ratio to describe the whole deformation process of calcareous sand is proposed.

  • The mathematical expressions of phase-transformation void ratio and critical void ration were given, respectively.

  相似文献   

20.
本文基于1987和1988年夏季在古镇口港同步连续观测的波浪、波压力和浮托力资料,分析研究了浮托力的概率特征、浮托力沿堤底面的变化及其谱特征。结果表明,浮托力幅度和周期的累积分布实际上不随测点在堤底面上的位置变化,可用公式表示。浮托力沿堤底面宽度近似呈线性衰减,前趾浮托力最大,后趾不为零,呈梯形状。文中还给出了计算最大峰、谷总浮托力的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号