首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phyllosilicates, carbonates, zeolites, and sulfates on Mars give clues about the planet's past environmental conditions, but little is known about the specific conditions in which these minerals formed within the crust and at the surface. The aim of the present study was to gain increased understanding on the formation of secondary phases by hydrothermal alteration of basaltic glass. The reaction processes were studied under varying conditions (temperature, pCO2, water:rock ratio, and fluid composition) with relevance to aqueous hydrothermal alteration in fully and partly saturated Martian basalt deposits. Analyses made on reaction products using X‐ray diffraction (XRD) and scanning electron microscope (SEM) were compared with near infrared spectroscopy (NIR) to establish relative detectability and spectral signatures. This study demonstrates that comparable alteration minerals (phyllosilicates, carbonates, zeolites) form from vapor condensing on mineral surfaces in unsaturated sediments and not only in fully water‐saturated sediments. In certain environments where water vapor might be present, it can alter the basaltic bedrock to a suite of authigenic phases similar to those observed on the Martian surface. For the detection of the secondary phases, XRD and SEM‐EDS were found to be superior to NIR for detecting and characterizing zeolites. The discrepancy in detectability of zeolites between NIR and XRD/SEM‐EDS might indicate that zeolites on Mars are more abundant than previously thought.  相似文献   

2.
On Earth, measurements of the ratios of stable carbon isotopes have provided much information about geological and biological processes. For example, fractionation of carbon occurs in biotic processes and the retention of a distinctive 2-4% contrast in 13C/12C between organic carbon and carbonates in rocks as old as 3.8 billion years constitutes some of the firmest evidence for the antiquity of life on the Earth. We have developed a prototype tunable diode Laser spectrometer which demonstrates the feasibility of making accurate in situ isotopic ratio measurements on Mars. This miniaturized instrument, with an optical path length of 10 cm, should be capable of making accurate 13C/12C and 15N/14N measurements. Gas samples for measurement are to be produced by pyrolysis using soil samples as small as 50 mg. Measurements of 13C/12C, 18O/16O and 15N/14N have been made to a precision of better than 0.1% and various other isotopes are feasible. This laser technique, which relies on the extremely narrow emission linewidth of tunable diode lasers (<0.001 cm(-1)) has favorable features in comparison to mass spectrometry, the standard method of accurate isotopic ratio measurement. The miniature instrument could be ready to deploy on the 2003 or other Mars lander missions.  相似文献   

3.
This tutorial deals with the question of atmospheric escape on Mars. After a brief introduction describing the general context of Mars escape studies, we will present in Section 2 a simplified theory of thermal escape, of both Jeans and hydrodynamic types. The phenomenon of hydrodynamic escape, still hypothetical and not proved to have ever existed on terrestrial planets, will be treated with the help of two well known examples: (i) the isotopic fractionation of xenon in Mars and Earth atmospheres, (ii) the paradox of missing oxygen in Venus atmosphere. In Section 3, a simplified approach of non-thermal escape will be developed, treating in a specific way the different kinds of escape (photochemical escape, ion sputtering, ion escape and ionospheric outflow). As a matter of illustration, some calculations of the relative contributions of these mechanisms, and of their time evolutions, will be given, and the magnitude of the total amount of atmosphere lost by non-thermal escape will be estimated. Section 4 will present the state of knowledge concerning the constraints derived from Mars isotopic geochemistry in terms of past escape and evolution. Finally, a few conclusions, which are more interrogations, will be proposed.  相似文献   

4.
The hydrogen isotopic composition of planetary reservoirs can provide key constraints on the origin and history of water on planets. The sources of water and the hydrological evolution of Mars may be inferred from the hydrogen isotopic compositions of mineral phases in Martian meteorites, which are currently the only samples of Mars available for Earth‐based laboratory investigations. Previous studies have shown that δD values in minerals in the Martian meteorites span a large range of ?250 to +6000‰. The highest hydrogen isotope ratios likely represent a Martian atmospheric component: either interaction with a reservoir in equilibrium with the Martian atmosphere (such as crustal water), or direct incorporation of the Martian atmosphere due to shock processes. The lowest δD values may represent those of the Martian mantle, but it has also been suggested that these values may represent terrestrial contamination in Martian meteorites. Here we report the hydrogen isotopic compositions and water contents of a variety of phases (merrillites, maskelynites, olivines, and an olivine‐hosted melt inclusion) in Tissint, the latest Martian meteorite fall that was minimally exposed to the terrestrial environment. We compared traditional sample preparation techniques with anhydrous sample preparation methods, to evaluate their effects on hydrogen isotopes, and find that for severely shocked meteorites like Tissint, the traditional sample preparation techniques increase water content and alter the D/H ratios toward more terrestrial‐like values. In the anhydrously prepared Tissint sample, we see a large range of δD values, most likely resulting from a combination of processes including magmatic degassing, secondary alteration by crustal fluids, shock‐related fractionation, and implantation of Martian atmosphere. Based on these data, our best estimate of the δD value for the Martian depleted mantle is ?116 ± 94‰, which is the lowest value measured in a phase in the anhydrously prepared section of Tissint. This value is similar to that of the terrestrial upper mantle, suggesting that water on Mars and Earth was derived from similar sources. The water contents of phases in Tissint are highly variable, and have been affected by secondary processes. Considering the H2O abundances reported here in the driest phases (most likely representing primary igneous compositions) and appropriate partition coefficients, we estimate the H2O content of the Tissint parent magma to be ≤0.2 wt%.  相似文献   

5.
Abstract— The fall and recovery of the Tagish Lake meteorite in British Columbia in January 2000 provided a unique opportunity to study relatively pristine samples of carbonaceous chondrite material. Measurements of the oxygen isotopic composition of water extracted under stepped pyrolysis from a bulk sample of this meteorite have allowed us to make comparisons with similar data obtained from CI and CM chondrites and so further investigate any relationships that may exist between these meteorites. The much lower yield of water bearing a terrestrial signature in Tagish Lake is indicative of the pristine nature of the meteorite. The relationship between the isotopic composition of this water and reported isotopic values for carbonates, bulk matrix and whole rock have been used to infer the extent and conditions under which parent‐body aqueous alteration occurred. In Tagish Lake the difference in Δ17O isotopic composition between the water and other phases is greater than that found in either CM or CI chondrites suggesting that reaction and isotopic exchange between components was more limited. This in turn suggests that in the case of Tagish Lake conditions during the processes of aqueous alteration on the parent body, which ultimately controlled the formation of new minerals, were distinct from those on both CI and CM parent bodies.  相似文献   

6.
Spectroscopic analysis of carbonate-bearing samples from a variety of terrestrial environments provides important insights into spectroscopy-based investigations of Mars designed to detect the presence of carbonate minerals. In order to better address the spectral detectability of carbonates on Mars, we examined the spectral reflectance properties of carbonates and carbonate-bearing lithologies from a variety of terrestrial environments, including impact structures (Haughton, St. Martin, Eagle Butte), landslides (Frank), quarrying operations (Hecla), carbonates affected by weathering (Haughton, East German Creek), and sulfide-sulfate-carbonate assemblages (Central Manitoba). The goal is to identify processes and environments that can affect spectroscopy-based carbonate detection, for more detailed follow-on studies. Common carbonates appear to be stable, from a spectroscopic perspective, to various tectonic processes. Iron oxides/hydroxides do not appear to significantly affect spectral detectability of carbonates, as the spectrum-altering effects of these phases are largely restricted to the region below ∼1 μm, while useful carbonate absorption bands occur longward of ∼1.8 μm. Carbonate detection and characterization in the 0.35-2.5-μm region is largely restricted to a single absorption feature in the 2.3-μm region, which can be problematic for robust carbonate identification. While tectonic processes and iron oxide/hydroxide staining do not appear to significantly impair carbonate detection based on the 2.3-μm region absorption band, a number of other factors can affect carbonate detection. These include the fact that this absorption band is weak compared to many other minerals, a number of other minerals also exhibit absorption bands in this wavelength region (leading to possible misidentifications), and that even small abundances of minerals that absorb strongly in this region will reduce the strength of the carbonate absorption band. Identifying the nature of accessory minerals associated with carbonates can be used to constrain possible formation environments. Ongoing research at carbonate-bearing terrestrial analogue sites will continue to provide new insights into the occurrence and detection of carbonates on Mars.  相似文献   

7.
Martian meteorites can provide valuable information about past environmental conditions on Mars. Allan Hills 84001 formed more than 4 Gyr ago, and owing to its age and long exposure to the Martian environment, and this meteorite has features that may record early processes. These features include a highly fractured texture, gases trapped during one or more impact events or during formation of the rock, and spherical Fe‐Mg‐Ca carbonates. In this study, we have concentrated on providing new insights into the context of these carbonates using a range of techniques to explore whether they record multiple precipitation and shock events. The petrographic features and compositional properties of these carbonates indicate that at least two pulses of Mg‐ and Fe‐rich solutions saturated the rock. Those two generations of carbonates can be distinguished by a very sharp change in compositions, from being rich in Mg and poor in Fe and Mn, to being poor in Mg and rich in Fe and Mn. Between these two generations of carbonate is evidence for fracturing and local corrosion.  相似文献   

8.
A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.  相似文献   

9.
The detection and identification of carbonates on Mars are of prime importance to establish the evolution of its atmosphere, correlated to the history of the liquid water, or even to determine the existence of a possible ancient biological activity. Till date, no large deposits of carbonates have been found. In fact, their detection is specific to local areas and in very low amounts. The absence of such deposits is commonly attributed to the harsh environmental conditions at the surface of Mars. Additionally, the presence of UV radiation has been proposed to explain their photodecomposition and hence their absence. However, contradictory results from laboratory experiments mimicking Mars’ surface UV radiation did not resolve the behaviour of carbonates in such an environment, which is why we exposed, in low Earth orbit and in laboratory experiments, both abiotic and biotic calcium carbonates to UV radiation of wavelength above 200 nm, the same spectral distribution as the one reaching the surface of Mars. For low Earth orbit (LEO) exposure, this was done for the UVolution experiment on board the BIOPAN ESA module, which was set outside a Russian Foton automated capsule, and exposed to space conditions for 12 days in September 2007. The targeted carbonates are biominerals and abiotic samples. Our laboratory results mainly show that the exposed carbonates appear to be stable to UV radiation if directly exposed to it. The LEO experiment results tend to the same conclusion, but the integrated exposition time to Solar UV during the experiment is not sufficient to be conclusive. However, the stability of the biominerals derived from the laboratory experiment could strengthen the interest to explore deeper their potential as life records at Mars. Hence, they should be considered as primary targets for in situ analyses during future missions.  相似文献   

10.
Abstract— We present an approach to assess the nature of materials involved in the accretion of Mars by the planet's nitrogen (δ15N) and oxygen (Δ17O) isotopic compositions as derived from data on martian meteorites. δ15N for Mars has been derived from nitrogen and xenon systematics, while Δ17O has been taken from the literature data. These signatures indicate that Mars has most probably accreted from enstatite and ordinary chondritic materials in a ratio of 74:26 and may not have a significant contribution from the carbonaceous (CI, CM, or CV) chondrites. This is consistent with the chromium isotopic (?53Cr) signatures of martian meteorites and the bulk planet Fe/Si ratio for Mars as suggested by the moment of inertia factor (I/MR2) obtained from the Mars Pathfinder data. Further, a simple homogeneous accretion from the above two types of materials is found to be consistent with the planet's moment of inertia factor and the bulk composition of the mantle. But, it requires a core with 6.7 wt% Si, which is consistent with the new results from the high pressure and temperature melting experiments and chemical data on the opaque minerals in enstatite chondrites.  相似文献   

11.
D. Möhlmann  K. Thomsen 《Icarus》2011,212(1):123-377
Brines, i.e. aqueous salty solutions, increasingly play a role in a better understanding of physics and chemistry (and eventually also putative biology) of the upper surface of Mars. Results of physico-chemical modeling and experimentally determined data to characterize properties of cryobrines of potential interest with respect to Mars are described. Eutectic diagrams, the related numerical eutectic values of composition and temperature, the water activity of Mars-relevant brines of sulfates, chlorides, perchlorides and carbonates, including related deliquescence relative humidity, are parameters and properties, which are described here in some detail. The results characterize conditions for liquid low-temperature brines (“cryobrines”) to evolve and to exist, at least temporarily, on present Mars.  相似文献   

12.
Boriskino is a poorly studied CM chondrite with numerous millimeter‐ to centimeter‐scale clasts exhibiting sharp boundaries. Clast textures and mineralogies attest to diverse geological histories with various degrees of aqueous alteration. We conducted a petrographic, chemical, and isotopic study on each clast type of the breccia to investigate if there exists a genetic link between brecciation and aqueous alteration, and to determine the controlling parameter of the extent of alteration. Boriskino is dominated by CM2 clasts for which no specific petrographic type could be assigned based on the chemical compositions and modal abundances of constituents. One clast stands out and is identified as a CM1 lithology, owing to its lack of anhydrous silicates and its overall abundance of dolomite‐like carbonates and acicular iron sulfides. We observe that alteration phases near clast boundaries exhibit foliation features, suggesting that brecciation postdated aqueous alteration. We measured the O‐isotopic composition of Ca‐carbonates and dolomite‐like carbonates to determine their precipitation temperatures following the methodology of Verdier‐Paoletti et al. (2017). Both types of carbonates yield similar ranges of precipitation temperatures independent of clast lithology, ranging from ?13.9 ± 22.4 (2σ) to 166.5 ± 47.3 °C, precluding that temperature alone accounts for the differences between the CM1 and CM2 lithologies. Instead, we suggest that initial water/rock ratios of 0.75 and 0.61 for the CM1 and CM2 clasts, respectively, might control the extent of aqueous alteration. Based on these estimates, we suggest that Boriskino clasts originated from a single parent body with heterogeneous distribution of water either due to local differences in the material permeability or in the initial content of ice available. These conditions would have produced microenvironments with differing geochemical conditions thus leading to a range of degrees of aqueous alteration.  相似文献   

13.
Yan Tang  Yujie Huang 《Icarus》2006,180(1):88-92
The detection of gray crystalline hematite deposits on Mars by Thermal Emission Spectrometer (TES) has been used to argue for the presence of liquid water on Mars in the distant past. By methanol-thermal treatment of anhydrous FeCl3 at low temperatures (70-160 °C), crystalline gray hematite with layered structure was synthesized, based on this result an alternative explanation for the origin of martian hematite deposits is suggested. Methane could be abundant in the early martian atmosphere; process such as photochemical oxidation of methane could result in the formation of ocean or pool of organic compounds such as methanol, which provides an environment for the formation of large-scale hematite deposits on Mars.  相似文献   

14.
Abstract— To determine the possible building blocks of the Earth and Mars, 225,792,840 possible combinations of the bulk oxygen isotopic and chemical compositions of 13 chondritic groups at 5% mass increments were examined. Only a very small percentage of the combinations match the oxygen isotopic composition, the assumed bulk FeO concentration, and the assumed Fe/Al weight ratio for the Earth. Since chondrites are enriched in silicon relative to estimates of the bulk Earth, none of the combinations fall near the terrestrial magmatic fractionation trend line in Mg/Si‐Al/Si space. More combinations match the oxygen isotopic composition and the assumed bulk FeO concentration for Mars. These combinations fall near the trend for shergottite meteorites in Mg/Si‐Al/Si space. One explanation for the difficulty in forming Earth out of known chondrites is that the Earth may be composed predominately of material that did not survive to the present day as meteorites. Another explanation could be that significant amounts of silicon are sequestered in the core and/or lower mantle of the Earth.  相似文献   

15.
Abstract— Spectroscopic measurement and analysis of Martian meteorites provide important information about the mineralogy of Mars, as well as necessary ground-truths for deconvolving remote sensing spectra of the Martian surface rocks. The spectroscopic properties of particulate ALH 84001 from 0.3 to 25 μm correctly identify low-Ca pyroxene as the dominant mineralogy. Absorption bands due to electronic transitions of ferrous iron are observed at 0.94 and 1.97 μm that are typical for low-Ca pyroxene. A strong, broad water band is observed near 3 μm that is characteristic of the water band typically associated with pyroxenes. Weaker features near 4.8, 5.2 and 6.2 μm are characteristic of particulate low-Ca pyroxene and can be distinguished readily from the features due to high-Ca pyroxene and other silicate minerals. The reflectance minimum occurs near 8.6 μm for the ALH 84001 powder, which is more consistent with high-Ca pyroxene and augite than low-Ca pyroxene. The dominant mid-infrared (IR) spectral features for the ALH 84001 powder are observed near 9 and 19.5 μm; however, there are multiple features in this region. These mid-IR features are generally characteristic of low-Ca pyroxene but cannot be explained by low-Ca pyroxene alone. Spectral features from 2.5–5 μm are typically associated with water, organics and carbonates and have been studied in spectra of the ALH 84001, split 92 powder and ALH 84001, splits 92 and 271 chip surfaces. Weak features have been identified near 3.5 and 4 μm that are assigned to organic material and carbonates. Another feature is observed at 4.27 μm in many surface spots and in the powder but has not yet been uniquely identified. Spectroscopic identification of minor organic and carbonate components in this probable piece of Mars suggests that detection of small amounts of organics and carbonates in the Martian surface regolith would also be possible using visible-infrared hyperspectral analyses. Laboratory spectroscopic analysis of Martian meteorites provides a unique opportunity to identify the spectral features of minerals and other components while they are embedded in their natural medium.  相似文献   

16.
Two petrographic settings of carbonaceous components, mainly filling open fractures and occasionally enclosed in shock‐melt veins, were found in the recently fallen Tissint Martian meteorite. The presence in shock‐melt veins and the deuterium enrichments (δD up to +1183‰) of these components clearly indicate a pristine Martian origin. The carbonaceous components are kerogen‐like, based on micro‐Raman spectra and multielemental ratios, and were probably deposited from fluids in shock‐induced fractures in the parent rock of Tissint. After precipitation of the organic matter, the rock experienced another severe shock event, producing the melt veins that encapsulated a part of the organic matter. The C isotopic compositions of the organic matter (δ13C = ?12.8 to ?33.1‰) are significantly lighter than Martian atmospheric CO2 and carbonate, providing a tantalizing hint for a possible biotic process. Alternatively, the organic matter could be derived from carbonaceous chondrites, as insoluble organic matter from the latter has similar chemical and isotopic compositions. The presence of organic‐rich fluids that infiltrated rocks near the surface of Mars has significant implications for the study of Martian paleoenvironment and perhaps to search for possible ancient biological activities on Mars.  相似文献   

17.
What we have learned about Mars from SNC meteorites   总被引:1,自引:0,他引:1  
Abstract— The SNC meteorites are thought to be igneous martian rocks, based on their young crystallization ages and a close match between the composition of gases implanted in them during shock and the atmosphere of Mars. A related meteorite, ALH84001, may be older and thus may represent ancient martian crust. These petrologically diverse basalts and ultramafic rocks are mostly cumulates, but their parent magmas share geochemical and radiogenic isotopic characteristics that suggest they may have formed by remelting the same mantle source region at different times. Information and inferences about martian geology drawn from these samples include the following: Planetary differentiation occurred early at ~4.5 Ga, probably concurrently with accretion. The martian mantle contains different abundances of moderately volatile and siderophile elements and is more Fe-rich than that of the Earth, which has implications for its mineralogy, density, and origin. The estimated core composition has a S abundance near the threshold value for inner core solidification. The former presence of a core dynamo may be suggested by remanent magnetization in SNC meteorites, although these rocks may have been magnetized during shock. The mineralogy of martian surface units, inferred from reflectance spectra, matches that of basaltic shergottites, but SNC lithologies thought to have crystallized in the subsurface are not presently recognized. The rheological properties of martian magmas are more accurately derived from these meteorites than from observations of martian flow morphology, although the sampled range of magma compositions is limited. Estimates of planetary water abundance and the amount of outgassed water based on these meteorites are contradictory but overlap estimates based on geological observations and atmospheric measurements. Stable isotope measurements indicate that the martian hydrosphere experienced only limited exchange with the lithosphere, but it is in isotopic equilibrium with the atmosphere and has been since 1.3 Ga. The isotopically heavy atmosphere/hydrosphere composition deduced from these rocks reflects a loss process more severe than current atmospheric evolution models, and the occurrence of carbonates in SNC meteorites suggests that they, rather than scapolite or hydrous carbonates, are the major crustal sink for CO2. Weathering products in SNC meteorites support the idea of limited alteration of the lithosphere by small volumes of saline, CO2-bearing water. Atmospheric composition and evolution are further constrained by noble gases in these meteorites, although Xe and Kr isotopes suggest different origins for the atmosphere. Planetary ejection of these rocks has promoted an advance in the understanding of impact physics, which has been accomplished by a model involving spallation during large cratering events. Ejection of all the SNC meteorites (except ALH84001) in one or two events may provide a plausible solution to most constraints imposed by chronology, geochemistry, and cosmic ray exposure, although problems remain with this scenario; ALH84001 may represent older martian crust sampled during a separate impact.  相似文献   

18.
Carbonate deposits have not been found so far on Mars, although there appears to have been sufficient water to have supported their formation. Many hypotheses have been proposed in order to explain this. In the present work we explore the possibility that the missed detection of carbonate deposits on the martian surface could be simply due to the fact that the concentration of carbonates, when mixed with other materials present in the sedimentary deposits, may be below the detection limit of the various instruments used so far in this search. In the present study we consider 21 putative paleolacustrine basins and use a sediment transport model to estimate the abundance of carbonates which could be present in the sediments deposited on the basin floor. In this way we find that for all the selected basins the estimated carbonate abundances are in general less than a few percent, and such values are below (or at best comparable to) the detection limits of the spectrometers flown around Mars during the recent space missions. Furthermore, applying the sediment transport model to the well studied Eberswalde crater, we conclude that the fluvio-lacustrine activity in this basin should have lasted for a period on the order of 103–104 years, in good agreement with previous work. Our results suggest that a hydrological cycle, able to move large volumes of water and to create relatively stable lakes, could have been active intermittently on Mars in the past, producing carbonate deposits that could escape detection by the instruments that have flown to date.  相似文献   

19.
The origin and nature of the early atmosphere of Mars is still debated. The discovery of sulfate deposits on the surface, coupled with the evidence that there are not large abundances of carbonates detectable on Mars in the optically accessible part of the regolith, leaves open different paleoclimatic evolutionary pathways. Even if carbonates are responsible for the feature observed by TES and Mini-TES at 6.76 μm, alternative hypotheses suggest that it could be due to the presence of Hydrated Iron Sulfates (HIS). Carbonates can be discerned from HIS by investigating the spectral region in which a strong overtone carbonate band is present. The Planetary Fourier Spectrometer on board the Mars Express spacecraft has acquired several thousand martian spectra in the range 1.2-45 μm since January 2004, most of which show a weak absorption feature between 3.8 and 4 μm. A similar feature was observed previously from the Earth, but its origin could not be straightforwardly ascribed to surface materials, and specifically to carbonates. Here we show the surficial nature of this band that can be ascribed to carbonate mixed with the martian soil materials. The materials that best reproduce the detected feature are Mg-rich carbonates (huntite [CaMg3(CO3)4] and/or magnesite [MgCO3]). The presence of carbonates is demonstrated in both bright and dark martian regions. An evaluation of the likeliest abundance gives an upper limit of ∼10 wt%. The widespread distribution of carbonates supports scenarios that suggest carbonate formation occurred not by precipitation in a water-rich environment but by weathering processes.  相似文献   

20.
For planetary landing missions, the capability to acquire samples of soil and rock is of high importance whenever complex analyses (e.g. isotopic studies) on these materials are to be carried out, or when samples are to be returned to Earth. Not only surface samples are of relevance, but in recent concepts at least for Mars landing missions also subsurface samples are required. Subsurface material on Mars is believed to have been protected from the inferred oxidants at the immediate surface while also being protected from the UV influx. Therefore, there is considerable hope that in subsurface soil samples on Mars, at least organic matter delivered by meteorites may be detected, and possibly also relics of earlier simple microbial life on the planet. Likewise, samples from the inside of Martian surface rocks promise to have been protected from weathering and for the same reason they are important for organic chemistry studies. In this paper, an overview is given of the development and science of two different subsurface sampling devices for the Beagle 2 lander of ESA's Mars Express mission, being a “Mole” subsurface soil sampler and a small rock coring and sampling mechanism. Besides their sampling function, both the Mole and the Corer/Grinder will provide data on physical properties of Martian soils and rock, respectively, through the way they interact with the sampled materials. Details of the Mole and Corer/Grinder design are presented, along with results of recent tests with prototypes in the laboratory on physically analogous sample materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号