首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Precambrian Research》2001,105(2-4):269-287
The Kolvitsa Belt in the south-western Kola Peninsula formed coeval with the earliest Palaeoproterozoic rift-belts in the Fennoscandian Shield. The Palaeoproterozoic history of this belt comprises the deposition of the 2.47 Ga Kandalaksha amphibolite (metabasalt) sequence onto 2.7 Ga granitoid gneisses, the intrusion of the 2.45–2.46 Ga Kolvitsa Massif of gabbro-anorthosite and the subsequent multiple injection of mafic dykes and magmatic brecciation, followed by the intrusion of 2.44 Ga dioritic dykes, and extensive shearing at 2.43–2.42 Ga. The gabbro-anorthosite and dykes contain high-pressure garnet-bearing assemblages that have previously been considered as evidence for metamorphism in a compressional setting of the Kolvitsa Belt at 2.45–2.42 Ga, i.e. coeval with the formation of the Imandra–Varzuga rift-belt and layered mafic intrusions in an extensional setting. The Kochinny Cape study area on the White Sea coast presents an unique remnant of a 2.44 Ga mafic dyke swarm that endured ca. 1.9 Ga collision but preserved its primary structural pattern well. All these dykes were intruded along numerous NW-trending shear zones within the Kolvitsa Massif and contain angular xenoliths of sheared gabbro-anorthosite. Every new batch of mafic melt underwent shearing during or immediately after solidification, and later dykes intruded into already sheared dykes. Thus, rocks of the Kolvitsa Massif and its dyke complex were successively injected into a large-scale shear zone which was active from ca. 2.46 to 2.42 Ga. Multiple injection of mafic melts, the presence of mutually intruding, composite, sheared mafic dykes, of magmatic breccias with gabbroic groundmass, and of host rocks fragments (showing no evidence of tectonic stacking at the time of brecciation), all indicate an extensional setting. Shearing was also extensional as it occurred simultaneously with the multistage magmatism. The asymmetric morphology of deformed dykes, and asymmetric flexures within weakly deformed lenses show that all these extensional shear zones, apart from a few exceptions, are dextral, were formed in a transtensional setting and are attributed to general W–E to WSW–ENE extension. Structural data available for 2.4–2.5 Ga magmatic rocks elsewhere in the Kola region suggest that the same kinematics operated on a regional scale. The presence of the garnet-bearing assemblages in gabbro-anorthosite and dykes may be explained by crystallisation and shearing of the magmatic rocks at deep crustal levels. Alternatively, corona development might have occurred much later as a result of tectonic loading due to the juxtaposition and overthrusting of the Umba Granulite Terrane onto the Kolvitsa Belt at ca. 1.9 Ga. In view of the field evidence and published ages, an overall extensional setting rather than a combination of compressional and extensional zones is preferable for Palaeoproterozoic tectonics in the north-eastern Fennoscandian Shield at 2.5–2.4 Ga.  相似文献   

2.
Approximately 1650-Ma-old NW/SE and NE/SW-trending dolerite dykes in the Tiruvannamalai (TNM) area and approximately 1800-Ma-old NW/SE-trending dolerite dykes in the Dharmapuri (DP) area constitute major Proterozoic dyke swarms in the high-grade granulite region of Tamil nadu, southern India. The NW- and NE-trending TNM dykes are compositionally very similar and can be regarded as having been formed during a single magmatic episode. The DP dykes may relate to an earlier similar magmatic episode. The dolerites are Fe-rich tholeiites and most of the elemental variations can be explained in terms of fractional crystallisation. Clinopyroxene and olivine are the inferred ferromagnesian fractionation phases followed by plagioclase during the late fractionation stages. All the studied dykes have, similar to many continental flood basalts (CFB), large-ion lithophile element (LILE) and light rare-earth element (LREE) enrichment and Nb and Ta depletion. The incompatible element abundance patterns are comparable to the patterns of many other Proterozoic dykes in India and Antarctica, to the late Archaean (~2.72 Ga) Dominion volcanics in South Africa and to the early Proterozoic (~2.0 Ga) Scourie dykes of Scotland. The geochemical characteristics of the TNM and DP dykes cannot be explained by crustal contamination alone. Instead, they are consistent with derivation from an enriched lithospheric mantle source which appears to have been developed much earlier than the dyke intrusions during a major crustal building event in the Archaean. The dyke magmas may have been formed by dehydration melting induced by decompression and lithospheric attenuation or plume impingement at the base of the lithosphere. These magmas, compared with CFB, appear to be the minor partial melts from plume heads of smaller diameter and of shallow origin (650 km). Therefore, the Proterozoic thermal events could induce crustal attenuation and dyke intrusions in contrast to the extensive CFB volcanism and continental rifting generally associated with the Phanerozoic plumes of larger head diameter (>1000 km) and of deeper origin (at crust mantle boundary).  相似文献   

3.
The Archaean block of southern Greenland constitutes the core of the North Atlantic craton (NAC) and is host to a large number of Precambrian mafic intrusions and dyke swarms, many of which are regionally extensive but poorly dated. For southern West Greenland, we present a U–Pb zircon age of 2990 ± 13 Ma for the Amikoq mafic–ultramafic layered intrusion (Fiskefjord area) and four baddeleyite U–Pb ages of Precambrian dolerite dykes. Specifically, a dyke located SE of Ameralik Fjord is dated at 2499 ± 2 Ma, similar to a previously reported 40Ar/39Ar age of a dyke in the Kangâmiut area. For these and related intrusions of ca. 2.5 Ga age in southern West Greenland, we propose the name Kilaarsarfik dykes. Three WNW-trending dykes of the MD3 swarm yield ages of 2050 ± 2 Ma, 2041 ± 3 Ma and 2029 ± 3 Ma. A similar U–Pb baddeleyite age of 2045 ± 2 Ma is also presented for a SE-trending dolerite (Iglusuataliksuak dyke) in the Nain Province, the rifted western block of the NAC in Labrador. We speculate that the MD3 dykes and age-equivalent NNE-trending Kangâmiut dykes of southern West Greenland, together with the Iglusuataliksuak dyke (after closure of the Labrador Sea) represent components of a single, areally extensive, radiating swarm that signaled the arrival of a mantle plume centred on what is presently the western margin of the North Atlantic craton. Comparison of the magmatic ‘barcodes’ from the Nain and Greenland portions of the North Atlantic craton with the established record from the north-eastern Superior craton shows matches at 2500 Ma, 2214 Ma, 2050–2030 Ma and 1960–1950 Ma. We use these new age constraints, together with orientations of the dyke swarms, to offer a preliminary reconstruction of the North Atlantic craton near the north-eastern margin of the Superior craton during the latest Archaean and early Palaeoproterozoic, possibly with the Core Zone craton of eastern Canada intervening.  相似文献   

4.
针对华北克拉通中部地区(即Zhaoetal.(2001)称之的中部带)内元古代未变形变质基性岩墙群重要组成部分的太行山南段基性岩脉开展了较为系统的40Ar-39Ar年代学研究,研究结果表明:区内三条NWW或NNE走向的基性岩脉(99JX-16、99JX-65、99JX-71)在>80%的39Ar累积量基础上分别给出了1765.3±1.1Ma,1774.7±0.7Ma,1780.7±0.5Ma的坪谱年龄。1781~1765Ma的年龄限定了区内基性岩脉的侵位年龄,该年龄也一致于恒山NWW向未变形基性岩脉1769.1±2.5Ma的单颗粒锆石U-Pb年龄。上述资料较好地约束了华北陆块早元古代基性岩脉的形成年龄。这为深入理解华北陆块1800Ma左右的热构造事件和华北早前寒武纪构造演化提供新的年代学资料。  相似文献   

5.
There are several geological, geochemical and geophysical evidences, which corroborate reconstruction of Gondwanaland and juxtaposition of India and Antarctica. Petrology of the Precambrian mafic dykes of East Antarctica and Central-East India also support juxtaposition of India and Antarctica. Mafic dykes of different generations are emplaced in the Archaean granite gneisses of these regions. These dykes appear to be an important tool to support juxtaposition of India and Antarctica. Geological and petrological data of the Central-East India Precambrian mafic dykes suggest four episodes of mafic magmatism in the region - three tholeiitic and one noritic (?). Similarly, East Antarctica also comprises four dyke suites, emplaced during three distinct periods. These suites are 2.4 Ga meta-tholeiites, 2.4 Ga high-Mg tholeiites, 1.8 Ga dolerites and 1.2–1.4 Ga dolerites. Geochemical compositions of these mafic dykes are compared and they show good relationships with each other. Similarities in petrological and geochemical characteristics of Precambrian mafic dykes of East Antarctica and Central-East India strongly support juxtaposition of these two continents.  相似文献   

6.
The geochemistry and petrology of tonalitic to trondhjemitic samples (n = 85) from eight different plagiogranite intrusions at the gabbro/sheeted dyke transition of the Troodos Ophiolite were studied in order to determine their petrogenetic relationship to the mafic plutonic section and the lava pile. The plagiogranitic rocks have higher SiO2 contents than the majority of the glasses of the Troodos lava pile, but lie on a continuation of the chemical trends defined by the extrusive rocks, indicating that the shallow intrusions generally represent crystallised magmas. We define three different groups of plagiogranites in the Troodos Ophiolite based on different incompatible element contents and ratios. The first and most common plagiogranite group has geochemical similarities to the tholeiitic lavas forming the lavas and sheeted dyke complex in the Troodos crust, implying that these magmas formed at a spreading axis. The second plagiogranite group occurs in one intrusion that is chemically related to late-stage and off-axis boninitic lavas and dykes. One intrusion next to the Arakapas fault zone consists of incompatible element-enriched plagiogranites which are unrelated to any known mafic crustal rocks. The similarities of incompatible element ratios between plagiogranites, lavas and mafic plutonic rocks, the continuous chemical trends defined by plagiogranites and mafic rocks, as well as incompatible element modelling results, all suggest that shallow fractional crystallisation is the dominant process responsible for formation of the felsic magmas.  相似文献   

7.
 Proterozoic tholeiitic dyke swarms share many compositional features with, and pose similar petrogenetic problems to, Phanerozoic continental flood basalts, but there are few extrusive equivalents of such swarms. The Mesoproterozoic (1.27 Ga) Harp dyke swarm in Labrador is one where possible extrusive equivalents exist in the Seal Lake group, but are slightly displaced in space and time, and can probably be related by models of progressive crustal extension. Here we try to evaluate the roles of crystal differentiation, in situ crystallisation, crustal assimilation and the relative contributions of asthenosphere- and lithosphere-derived melts in the petrogenesis of the mafic magmas. Modelling of the major and trace element variations both within individual dykes and between dykes, and within the lava sequence, does not suggest an important role for continental crust involvement. While in situ crystallisation processes could account for some of the compositional variations, the most successful models invoke mixing or contamination of asthenospheric magmas with/by veined material in the lower lithosphere / upper asthenosphere which carries the ‘continental’ characteristics. The results imply an important role for hydrous phases such as phlogopite and hornblende in the sub-lithosphere mantle. Much of the low-MgO character of mafic dykes may result from significant removal of mafic phases during in situ crystallisation within the lithosphere. Received: 15 May 1994/Accepted: 28 July 1995  相似文献   

8.
哀牢山-红河剪切带是新生代印度板块与欧亚板块碰撞过程中发育的大规模走滑型剪切带,其发育对于碰撞过程中印支地块的南东向逃逸以及藏东南地区构造格局的形成具有重要的贡献。与剪切带演化相关,伴随发育多阶段花岗岩脉就位,它们为限定剪切变形时限、阐明剪切作用属性提供了重要证据。本文在野外观察基础上,应用显微构造和EBSD石英c-轴组构分析查明花岗岩脉的构造特点与应变型式,同时采用锆石LA-ICP-MS测年方法获得岩脉侵位与结晶年龄。年龄分析结果表明,岩脉年龄分别为27.09±0.48Ma、25.17±0.23Ma和25.16±0.50Ma,其中年龄为27.09±0.48Ma的花岗岩脉具有糜棱岩化现象,其变形特征体现为中温变形后叠加低温变形,且剪切变形形式由一般剪切转换为简单剪切;年龄为25.17±0.23Ma的花岗岩脉表现出同剪切晚期构造特征,且具有较低温度简单剪切变形特点;25.16±0.50Ma的切穿糜棱叶理,矿物未见变形,可能代表剪切期后岩脉。结合区域构造,推测剪切方式由纯剪为主的剪切向由单剪为主的剪切转换发生在27Ma和25Ma之间,哀牢山-红河剪切带中段在约25Ma走滑运动结束。  相似文献   

9.
The Bastar craton has experienced many episodes of mafic magmatism during the Precambrian. This is evidenced from a variety of Precambrian mafic rocks exposed in all parts of the Bastar craton in the form of volcanics and dykes. They include (i) three distinct mafic dyke swarms and a variety of mafic volcanic rocks of Precambrian age in the southern Bastar region; two sets of mafic dyke swarms are sub-alkaline tholeiitic in nature, whereas the third dyke swarm is high-Si, low-Ti and high-Mg in nature and documented as boninite-norite mafic rocks, (ii) mafic dykes of varying composition exposed in Bhanupratappur-Keskal area having dominantly high-Mg and high-Fe quartz tholeiitic compositions and rarely olivine and nepheline normative nature, (iii) four suites of Paleoproterozoic mafic dykes are recognized in and around the Chattisgarh basin comprising metadolerite, metagabbro, and metapyroxenite, Neoarchaean amphibolite dykes, Neoproterozoic younger fine-grained dolerite dykes, and Early Precambrian boninite dykes, and (iv) Dongargarh mafic volcanics, which are classified into three groups, viz. early Pitepani mafic volcanic rocks, later Sitagota and Mangikhuta mafic volcanics, and Pitepani siliceous high-magnesium basalts (SHMB). Available petrological and geochemical data on these distinct mafic rocks of the Bastar craton are summarized in this paper. Recently high precision U-Pb dates of 1891.1±0.9 Ma and 1883.0±1.4 Ma for two SE-trending mafic dykes from the BD2 (subalkaline) dyke swarm, from the southern Bastar craton have been reported. But more precise radiometric age determinations for a number of litho-units are required to establish discrete mafic magmatic episodes experienced by the craton. It is also important to note that very close geochemical similarity exist between boninite-norite suite exposed in the Bastar craton and many parts of the world. Spatial and temporal correlation suggests that such magmatism occurred globally during the Neoarchaean-Paleoproterozoic boundary. Many Archaean terrains were united as a supercontinent as Expanded Ur and Arctica at that time, and its rifting gave rise to numerous mafic dyke swarms, including boninitenorite, world-wide.  相似文献   

10.
古元古代是华北克拉通形成过程中重要的造山构造演化阶段,该阶段形成的基性岩墙群,为深入理解裂解-俯冲-碰撞-抬升的造山构造-岩浆过程提供了重要信息.本文报道了天镇-怀安地区广泛分布于新太古代-古元古代变质基底中的变质基性岩墙(二辉麻粒岩),野外产状与区域主期构造面理协调一致,主要由单斜辉石、斜方辉石、斜长石和少量角闪石组成.LA-MC-ICPMS锆石U-Pb同位素定年获得变质基性岩墙的变质年龄为1 820~1 834 Ma,与区内麻粒岩相变质事件一致,结合区域基性岩墙年龄记录,推测其原岩形成年龄为1.95~1.91 Ga.根据岩石地球化学特征可将变质基性岩墙划分为高Mg低Ti型和低Mg高Ti型两类,两者经历了不同程度的橄榄石、单斜辉石和斜长石的分离结晶.两类基性岩墙均亏损高场强元素(如Nb、Ta、Ti、Zr和Hf),结合锆石Hf同位素分析,研究表明基性岩墙来源于俯冲流体交代的岩石圈地幔或者受到过地壳物质的混染.华北克拉通古元古代存在2.16~2.04 Ga和1.97~1.83 Ga两期基性岩墙侵位事件:早期代表在初始克拉通基础上发生的板内裂解过程,晚期记录了由俯冲碰撞到伸展的转换过程,即碰撞造山构造体制由水平挤压转变为垂向抬升,构造转换时限大致介于1.95~1.91 Ga.   相似文献   

11.
Continental tholeiites have higher SiO2, K2O and light rare earth element contents and more evolved isotopic characteristics than their oceanic counterparts. These differences can be explained if the compositions of the parent magmas to both types of tholeiites are similar but if continental magmas assimilate significant amounts of continental crust en route to the surface. Although there is little doubt that most continental tholeiites have assimilated crustal material, the lcoation and mechanism of assimilation remain uncertain. Longhi (1981) has argued that magmas derived directly from the mantle should crystallize little orthopyroxene. The abundance of orthopyroxene in most continental layered intrusions suggests that they have crystallized from magmas which have assimilated continental crust. Since orthopyroxene is an early crystallizing phase in layered intrusions, this assimilation must occur early, before the magma enters the chamber. Assimilation can occur at the margins of the dykes which feed magma chambers, depending on the nature of the flow. If the flow is turbulent the high temperatures at the centre of the dyke will extend to the margins and the magma will erode the dyke walls. If the flow is laminar, a conductive profile develops at the margin and the flowing magma chills against the walls, protecting them from thermal erosion. The nature of flow in a dyke can be predicted from the Reynolds number, the criteria for turbulence. Reynolds number calculations suggest that the flow of primitive magmas in continental dykes will be fully turbulent and, if this is the case, assimilation of low melting point components in the walls of the dyke is inevitable. It is therefore suggested that many of the geochemical characteristics of continental tholeiites result from melting at the walls of dykes as primitive magmas ascend through the crust.  相似文献   

12.
吉南地区太古宙基底中发育大量早前寒武纪基性岩墙群,是陆壳伸展的直接证据。对白山市东部天桥太古宙基底出露区内基性岩墙及其围岩进行了锆石U-Pb定年和地球化学分析,以确定该期伸展事件的形成机制及地质意义。天桥地区基性岩墙岩性为斜长角闪岩,侵位于TTG片麻岩中。英云闪长质片麻岩(TN1)中锆石具核-边结构,岩浆核的LA-ICP-MS测年结果为2500±6Ma,指示其形成于新太古代末期。天桥岩墙(TN3)中的锆石内部结构与TN1相同,酸性岩浆核的SHRIMP测年结果为2490±17Ma,与TN1在误差范围内一致,表明这些锆石不是基性岩墙原生锆石,而是岩墙侵位过程中在围岩中捕获的锆石,但根据岩墙仅侵位在太古宙基底中且变质程度高于周围古元古界老岭群,将其侵位年龄大致限制在新太古代末期-古元古代早期。地球化学特征显示,基性岩墙具有低SiO_2、Na_2O、K_2O含量,高CaO、MgO含量,A/CNK=0.56~0.59,属于准铝质的拉斑玄武岩系列岩石,∑REE低、配分曲线平坦,富集LILE(Rb、Ba和K),亏损HFSE(Th、U、Nb和Ta),具有与原始地幔相同的Nb/Ta、Zr/Hf比值及接近地壳的Nb/U、Ta/U比值,指示其岩浆可能来源于地幔且在上升过程中受到地壳混染,形成于板内伸展环境。TTG片麻岩具有中等的SiO_2和MgO含量,高Al_2O_3和Na_2O含量以及低CaO含量,A/CNK=1.00~1.14,属弱过铝质的钙碱性系列岩石,∑REE低、具有右倾的REE配分曲线,轻稀土富集、重稀土亏损,富集LILE(Rb、Ba、K和Sr),强烈亏损HFSE(U、Nb、Ta、Sm和Ti),其岩浆可能来源于变质玄武质岩石和极少量沉积岩的部分熔融,结合邻区TTG的研究成果,认为其形成于与俯冲相关的活动大陆边缘环境。前人研究表明,新太古代晚期板块构造体制可能已经启动,结合我们以往研究,认为新太古代晚期华北克拉通东北部可能发生了弧陆碰撞造山运动,天桥岩墙的侵位标志着新太古代末期至古元古代早期之间华北克拉通东北部进入造山后伸展环境,可能是对新太古代造山运动结束的响应。  相似文献   

13.
《Precambrian Research》2001,105(2-4):183-203
Previous studies have shown that the 2.04 Ga Kangâmiut dyke swarm of SW Greenland was injected into an active tectonic environment associated with the formation of the Nagssugtoqidian orogenic belt. Major and trace element modelling of the swarm shows that its chemical evolution was controlled by simple clinopyroxene–plagioclase fractionation. However, such trends — although typical of continental flood basalts and mafic dyke swarms — are at variance with their mineralogy and petrography, which show that locally hornblende is the dominant primary ferromagnesian mineral. Modelling of intradyke fractionation alone shows that hornblende could locally have been an important crystallising phase within several dykes. Normal basaltic fractionation must have occurred before dyke injection at the exposed crustal levels, where the influx of water into the dykes is believed to be responsible for the transition from clinopyroxene–plagioclase (tholeiitic) to hornblende–plagioclase±oxides (calc–alkaline) crystallisation. Overall geochemical trends are dominated by tholeiitic fractionation because (1) hornblende fractionation tended to buffer chemical composition; (2) the presence of water in the surrounding country rocks may have resulted in the advection of heat away from the dyke and consequently resulted in rapid crystallisation, particularly in thin dykes. There is no evidence from trace element data, and particularly Pb isotopic ratios, of any significant assimilation of country rocks occurring during clinopyroxene–plagioclase fractionation, although this does not preclude contamination of the mantle source prior to magma generation. It is likely that the incompatible element enrichment within the dykes resulted from subduction-related mantle metasomatism. The Kangâmiut dyke swarm was both a syn-tectonic and thermal event, which triggered it may be linked to passage of a slab window underneath the metasomatised region, or a mantle plume ascending under a subduction zone.  相似文献   

14.
Paleoproterozoic mafic igneous rocks (2450–1970 Ma) are exposed in the form of layered intrusions, dykes, and volcanic rocks in the Karelian, Kola and Murmansk provinces and in the form of dykes and small intrusions in the Belomorian Province, Eastern Fennoscandian Shield. The age and sequence of mafic dyke emplacement during the Paleoproterozoic are very similar in these regions. Further comparisons of geochemical characteristics of mafic dyke swarms in the Belomorian Province and neighboring cratons show considerable similarities.  相似文献   

15.
华北克拉通1.75Ga基性岩墙群特征及其研究进展   总被引:2,自引:1,他引:2  
基性岩墙群是地壳伸展背景下,来自地幔的基性岩浆侵入体。华北克拉通同世界上其它克拉通一样,广泛发育前寒武纪基性岩墙群。它们在不同时代均有产生,其中1.75Ga前后的规模最大,分布范围最广,几乎遍布整个克拉通,对其进行深入研究,可以揭示华北克拉通该期构造演化过程。华北克拉通1.75Ga前后的岩墙几何形态多变,直立或近直立,走向主要为NNW向和近EW向。岩石以拉斑玄武质岩类占绝对优势(>80%),主要造岩矿物为单斜辉石和斜长石。根据岩墙走向、岩浆分异程度和岩石地球化学特征可将其分五组:低分异LT组、低分异HT组、高分异NW组、高分异EW组,以及具明显差异的高铁系列。同位素和微量元素研究显示,岩浆源区主要与富集Ⅰ型地幔(EMⅠ)、弱亏损的常规地幔(DM-PREMA)以及陆下岩石圈地幔有关。目前对华北克拉通1.75Ga基性岩墙群产出的构造环境在认识上有分歧,其中地幔柱观点和碰撞后伸展观点最为人们所关注。  相似文献   

16.
华北晚前寒武纪镁铁质岩墙群的流动构造及侵位机制   总被引:21,自引:1,他引:21       下载免费PDF全文
华北克拉通中部广泛发育晚前寒武纪镁铁质岩墙群。这些岩墙群未变形和未变质,保存了清晰完好的流动构造,完整地反映了前寒武纪岩浆活动的特征和流动构造,这在世界上是罕见的。通过对晚前寒武纪镁铁质岩墙群的形态和流动构造研究,如:流动线理、矿物组构和磁组构等,提出岩墙群的侵位方向和侵位方式。结合本区岩墙群与燕辽—中条拗拉槽系的关系以及岩墙群的力学性质,探讨本区岩墙群的侵位机制。  相似文献   

17.
The Terre Adélie Craton displays superimposed strain fields related to the Neoarchean (2.6–2.4 Ga, M1) and Paleo-Mesoproterozoic (1.7–1.5 Ga, M2) metamorphic events. M1 is a regional granulite facies event, constrained by P-T modelling at ~0.8–1.0 GPa – 800–850 °C, followed by a decompressional retrogression in the upper amphibolite facies at ~0.6 GPa – 750 °C. M2 Stage 1 P-T peak is constrained at 0.6–0.7 GPa – 670–700 °C, followed by a steep P-T path down to 0.3 GPa – 550 °C. Retrogression after M2 PT peak occurred in a context of dextral shearing along the Mertz Shear Zone along with thrust motions within the eastern Terre Adélie Craton. In this paper, we present a series of 63 new 40Ar/39Ar ages of biotite and amphibole pairs in mafic rocks from a complete traverse of the Terre Adélie Craton. 40Ar/39Ar dating constrains M2 amphibolite facies metamorphism at a regional scale between 1700 and 1650 Ma, during stage 1 peak metamorphism. During retrogression, lower amphibolite facies recrystallization mainly occurred along vertical shear zones and mafic dykes between 1650 and 1600 Ma (Stage 2), followed by amphibolite to greenschist facies metamorphism until after 1500 Ma (Stage 3). At the scale of the Mawson continent, this event is related to the growth of an active margin above an oblique subduction zone. The supra-subduction model best explains opening of Dumont D'Urville and Hunter basins at 1.71 Ga followed by their rapid closure and metamorphism at 1.70 Ga. In this context, episodic shear zone reactivation and magmatic dyke emplacement led to a partial reequilibration of the 40Ar/39Ar system until <1500 Ma. This latter phase of mafic magmatism largely coincides with a hot spot event at the scale of the Gawler Craton and western Laurentia paleocontinent.  相似文献   

18.
The Indian Shield is cross-cut by a number of distinct Paleoproterozoic mafic dyke swarms. The density of dykes in the Dharwar and Bastar Cratons is amongst the highest on Earth. Globally, boninitic dyke swarms are rare compared to tholeiitic dyke swarms and yet they are common within the Southern Indian Shield. Geochronology and geochemistry are used to constrain the petrogenesis and relationship of the boninitic dykes (SiO2 = 51.5 to 55.7 wt%, MgO = 5.8 to 18.7 wt%, and TiO2 = 0.30 wt% to 0.77 wt%) from the central Bastar Craton (Bhanupratappur) and the NE Dharwar Craton (Karimnagar). A single U-Pb baddeleyite age from a boninitic dyke near Bhanupratappur yielded a weighted-mean 207Pb/206Pb age of 2365.6 ± 0.9 Ma that is within error of boninitic dykes from the Dharwar Craton near Karimnagar (2368.5 ± 2.6 Ma) and farther south near Bangalore (2365.4 ± 1.0 Ma to 2368.6 ± 1.3 Ma). Rhyolite-MELTS modeling indicates that fractional crystallization is the likely cause of major element variability of the boninitic dykes from Bhanupratappur whereas trace element modeling indicates that the primary melt may be derived from a pyroxenite mantle source near the spinel-garnet transition zone. The Nd isotopes (εNd(t) = −6.4 to +4.5) of the Bhanupratappur dykes are more variable than the Karimnagar dykes (εNd(t) = −0.7 to +0.6) but they overlap. The variability of Sr-Nd isotopes may be related to crustal contamination during emplacement or is indicative of an isotopically heterogeneous mantle source. The chemical and temporal similarities of the Bhanupratappur dykes with the dykes of the Dharwar Craton (Karimnagar, Penukonda, Chennekottapalle) indicate they are members of the same giant radiating dyke swarm. Moreover, our results suggest that the Bastar and Dharwar Cratons were adjacent but likely had a different configuration at 2.37 Ga than the present day. It is possible that the 2.37Ga dyke swarm was related to a mantle plume that assisted in the break-up of an unknown or poorly constrained supercontinent.  相似文献   

19.
The southwestern margin of the Eastern Ghats Belt characteristically exposes mafic dykes intruding massif-type charnockites. Dykes of olivine basalt of alkaline composition have characteristic trace element signatures comparable with Ocean Island Basalt (OIB). Most importantly strong positive Nb anomaly and low values of Zr/Nb ratio are consistent with OIB source of the mafic dykes. K-Ar isotopic data indicate two cooling ages at 740 and 530 Ma. The Pan-African thermal event could be related to reactivation of major shear zones and represented by leuco-granite vein along minor shear bands. And 740 Ma cooling age may indicate the low grade metamorphic imprints, noted in some of the dykes. Although no intrusion age could be determined from the present dataset, it could be constrained by some age data of the host charnockite gneiss and Alkaline rocks of the adjacent Prakasam Province. Assuming an intrusion age of ∼1.3Ga, Sr-Nd isotopic composition of the dykes indicate that they preserved time-integrated LREE enrichment. In view of the chemical signatures of OIB source, the mafic dykes could as well be related to continental rifting, around 1.3Ga, which may have been initiated by intra-plate volcanism.  相似文献   

20.
华北克拉通晚前寒武纪镁铁质岩墙群K-Ar年龄及地质意义   总被引:3,自引:0,他引:3  
华北克拉通腹地山西地块内广泛发育大规模的晚前寒武纪镁铁质岩墙群。通过对晋北地区新平堡镁铁质岩墙群9个样品的K-Ar年龄等时线分析,这些岩墙可能形成于1430Ma.从山西各地所采集的64个镁铁质岩墙群样品的K-Ar表观年龄统计分析可见,华北克拉通腹地内广泛发育的镁铁质岩墙群主要形成于中元古代1000~1800Ma间,活动高峰期在1200~1600Ma。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号