首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

2.
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two- and three-dimensional numerical models. In particular, they possess greater capacity to be applied in large river basins with many tributaries. This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport. The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model. This one-dimensional model, therefore, can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River. Moreover, a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed. The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River. A comparison of the calculated water level and river bed deformation with field measurements Shows that the improved numerical model is capable of predicting flow, sediment transport, bed changes, and bed-material sorting in various situations, with reasonable accuracy and reliability.  相似文献   

3.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Retrogressive erosion is a high-speed erosion process that usually occurs during the rapid release of stored water in reservoirs built on sandy rivers.Retrogressive erosion has been utilized in the practice of reservoir sedimentation control,but accurate prediction of the bed deformation process by numerical models has rarely been reported.The current study presents a one-dimensional morphodynamic model for simulating the evolution process of retrogressive erosion induced by high-velocity flows on steep slopes.The governing equations apply a Cartesian coordinate system with a vertically oriented z axis.The bed surface gradient and friction terms in the flow equations include correction factors to take account of the effects of high slope on flow movement.The net vertical sediment flux term in the sediment transport and bed deformation equations is calculated using an equation of erosion velocity.Particularly,this equation is based on an empirical relation between the sediment entrainment rate and the Shields parameter in contrast to the traditional sediment transport capacity,and the critical Shields parameter is modified by taking into account the permeability of the sediment layer and the stability of particles on a slope.The feedback of scoured sediment on the flow movement is considered by additional terms in the governing equations.Flume experiments of retrogressive erosion in literature were simulated to validate the model.The temporal variations of the longitudinal profiles of the free surface and channel bed and the sediment transport rate were well predicted.The algorithm calculating sediment entrainment in the proposed model also was validated for an experiment measuring entrainment rate from the literature.More importantly,it was found that the morphodynamic model using the sediment transport capacity equation predicts the trend of cumulative erosion contrary to the measurements,while results of the proposed model can follow a similar trend with the observed data in the retrogressive erosion process.  相似文献   

5.
Streams and rivers, particularly smaller ones, often do not maintain steady flow rates for long enough to reach equilibrium conditions for sediment transport and bed topography. In particular, streams in small watersheds may be subject to rapidly changing hydrographs, and relict bedforms from previous high flows can cause further disequilibrium that complicates the prediction of sediment transport rates. In order to advance the understanding of how bedforms respond to rapid changes in flow rate,...  相似文献   

6.
In this study an incompressible smoothed particle hydrodynamics (ISPH) approach coupled with the sediment erosion model is developed to investigate the sediment bed scour and grain movement under the dam break flows. Two-phase formulations are used in the ISPH numerical algorithms to examine the free surface and bed evolution profiles, in which the entrained sediments are treated as a different fluid component as compared with the water. The sediment bed erosion model is based on the concept of pick-up flow velocity and the sediment is initiated when the local flow velocity exceeds a critical value. The proposed model is used to reproduce the sediment erosion and follow-on entrainment process under an instantaneous dam break flow and the results are compared with those from the weakly compressible moving particle semi-implicit (WCMPS) method as well as the experimental data. It has been demonstrated that the two-phase ISPH model performed well with the experimental data. The study shows that the ISPH modelling approach can accurately predict the dynamic sediment scouring process without the need to use empirical sediment transport formulas.  相似文献   

7.
Flow, sediment transport and bed deformation in alluvial rivers normally exhibit multiple time scales. Enhanced knowledge of the time scales can facilitate better approaches to the understanding of the fluvial processes. Yet prior studies of the time scales are based upon the concept of sediment transport capacity at low concentrations, which however is not generally applicable. This paper presents new formulations of the time scales of fluvial flow, suspended sediment transport and bed deformation, under the framework of shallow water hydrodynamics, non-capacity sediment transport and the theory of characteristics for the hyperbolic governing equations. The time scale of bed deformation in relation to that of flow depth is demonstrated to delimit the applicability region of mathematical river models, and the time scale of suspended sediment transport relative to that of the pertinent flow information is analyzed to address if the concept of sediment transport capacity is applicable. For shallow flows with high sediment concentrations, bed deformation may considerably affect the flow and a fully coupled model is normally required. In contrast, for deep flows at low sediment concentrations, a decoupled model is mostly justified. This pilot study of the time scales delivers a new theoretical basis, on which the interaction between flow, suspended sediment transport and bed deformation can be potentially better characterized.  相似文献   

8.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The acceleration of saltating grains by overland flow causes momentum to be transferred from the flow to the grains, thereby increasing flow resistance and bed roughness. To assess the impact of saltating sediment on overland flow hydraulics, velocity profiles in transitional and turbulent flows on a fixed sand-covered bed were measured using hot-film anemometry. Five discharges were studied. At each discharge, three flows were measured: one free of sediment, one with a relatively low sediment load, and one with a relatively high sediment load. In these flows from 83 to 90 per cent of the sediment was travelling by saltation. As a result, in the sediment-laden flows the near-bed velocities were smaller and the velocity profiles steeper than those in the equivalent sediment-free flows. Sediment loads ranged up to 87·0 per cent of transport capacity and accounted for as much as 20·8 per cent of flow resistance (measured by the friction factor) and 89·7 per cent of bed roughness (measured by the ratio of the roughness length to median grain diameter). It is concluded that saltating sediment has a considerable impact on overland flow hydraulics, at least on fixed granular beds. Saltation is likely to have a relatively smaller effect on overland flow on natural hillslopes and agricultural fields where form and wave resistance dominate. Still, saltation is generally of greater significance in overland flow than in river flow, and for this reason its effect on overland flow hydraulics is deserving of further study. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Sediment transport in rill flows exhibits the characteristics of non‐equilibrium transport, and the sediment transport rate of rill flow gradually recovers along the flow direction by erosion. By employing the concept of partial equilibrium sediment transport from open channel hydraulics, a dynamic model of rill erosion on hillslopes was developed. In the model, a parameter, called the restoration coefficient of sediment transport capacity, was used to express the recovery process of sediment transport rate, which was analysed by dimensional analysis and determined from laboratory experimental data. The values of soil loss simulated by the model were in agreement with observed values. The model results showed that the length and gradient of the hillslope and rainfall intensity had different influences on rill erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Modelling dam-break flows over mobile beds using a 2D coupled approach   总被引:1,自引:0,他引:1  
Dam-break flows usually propagate along rivers and floodplains, where the processes of fluid flow, sediment transport and bed evolution are closely linked. However, the majority of existing two-dimensional (2D) models used to simulate dam-break flows are only applicable to fixed beds. Details are given in this paper of the development of a 2D morphodynamic model for predicting dam-break flows over mobile beds. In this model, the common 2D shallow water equations are modified, so that the effects of sediment concentrations and bed evolution on the flood wave propagation can be considered. These equations are used together with the non-equilibrium transport equations for graded sediments and the equation of bed evolution. The governing equations are solved using a matrix method, thus the hydrodynamic, sediment transport and morphological processes can be jointly solved. The model employs an unstructured finite volume algorithm, with an approximate Riemann solver, based on the Roe-MUSCL scheme. A predictor–corrector scheme is used in time stepping, leading to a second-order accurate solution in both time and space. In addition, the model considers the adjustment process of bed material composition during the morphological evolution process. The model was first verified against results from existing numerical models and laboratory experiments. It was then used to simulate dam-break flows over a fixed bed and a mobile bed to examine the differences in the predicted flood wave speed and depth. The effects of bed material size distributions on the flood flow and bed evolution were also investigated. The results indicate that there is a great difference between the dam-break flow predictions made over a fixed bed and a mobile bed. At the initial stage of a dam-break flow, the rate of bed evolution could be comparable to that of water depth change. Therefore, it is often necessary to employ the turbid water governing equations using a coupled approach for simulating dam-break flows.  相似文献   

12.
Mountain streams with their tributary torrents build the upper part of the fluvial network. They are important regarding the transfer of sediment from headwaters to lower basins. Channels are typically steep with wide grain size distributions, ranging from fine sand up to large boulders, and a stabilized bed surface. Mountain streams often are supply-limited with respect to mobile bed load, which needs to be addressed when bed load transport equations are applied to such streams. To better understand supply limitation, laboratory experiments highlighting the effect of bed load supply on incipient motion and bed load transport rate are discussed. Experimental tests were done in which fine bed load was supplied to a previously armored channel bed, with flow conditions ranging from one-third to twice the critical dis-charge for the bed surface. At flows not exceeding the critical discharge, the time series of the bed load transport rate at the downstream model boundary featured consistent patterns which are attributed to distinct phases: (i) a temporal lag, (ii) an equilibrium state, and (iii) a post-supply phase. Bed load transport occurred even at flows distinctly below that for incipient motion of the bed surface. But, with the mass of total bed load outflow approaching the supply amount, the mass did not exclusively consist of supplied grains. The coarser the supplied bed load, the more sediment was mobilized from the bed surface. At higher flows, processes differed. Total bed load outflow exceeded the supply amount and the break-up of the armor layer caused a refining of the bed surface.  相似文献   

13.
Non-uniform sediment deposited in a confined, steep mountain channel can alter the bed surface composition. This study evaluates the contribution of geometric and resistance parameters to bed sta-bilization and the reduction in sediment transport. Flume experiments were done under various hydraulic conditions with non-uniform bed material and no sediment supply from upstream. Results indicate that flume channels respond in a sequence of coarsening and with the formation of bedform-roughness features such as rapids, cascades, and steps. A bedform development coefficient is introduced and is shown to increase (i.e. vertical sinuosity develops) in response to increasing shear stress during the organization process. The bedform development coefficient also is positively correlated with the critical Shields number and Manning's roughness coefficient, suggesting the evolution of flow resistance with increasing bedform development. The sediment transport rate decreases with increasing bed shear stress and bedform development, further illustrating the effect of bed stabilization. An empirical sedi-ment transport model for an equilibrium condition is proposed that uses the bedform development coefficient, relative particle submergence (i.e. the ratio of mean water depth and maximum sediment diameter), modified bed slope, and discharge. The model suggests bedform development can play a primary role in reducing sediment transport (increasing bed stabilization). The model is an extension of Lane's (1955) relation specifically adapted for mountain streams. These results explain the significance of bedform development in heightening flow resistance, stabilizing the bed, and reducing sediment transport in coarse, steep channels.  相似文献   

14.
This paper discusses a model which simulates dune development resulting from aeolian saltation transport. The model was developed for application to coastal foredunes, but is also applicable to sandy deserts with transverse dunes. Sediment transport is calculated using published deterministic and empirical relationships, describing the influence of meteorological conditions, topography, sediment characteristics and vegetation. A so-called adaptation length is incorporated to calculate the development of transport equilibrium along the profile. Changes in topography are derived from the predicted transport, using the continuity equation. Vegetation height is incorporated in the model as a dynamic variable. Vegetation can be buried during transport events, which results in important changes in the sediment transport rates. The sediment transport model is dynamically linked to a second-order closure air flow model, which predicts friction velocities over the profile, influenced by topography and surface roughness. Modelling results are shown for (a) the growth and migration of bare, initially sine-shaped dunes, and (b) dune building on a partly vegetated and initially flat surface. Results show that the bare symmetrical dunes change into asymmetric shapes with a slipface on the lee side. This result could only be achieved in combination with the secondorder closure model for the calculation of air flow. The simulations with the partly vegetated surfaces reveal that the resulting dune morphology strongly depends on the value of the adaptation length parameter and on the vegetation height. The latter result implies that the dynamical interaction between aeolian activity and vegetation (reaction to burial, growth rates) is highly relevant in dune geomorphology and deserves much attention in future studies. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Sediment export from glaciated basins involves complex interactions between ice flow, basal erosion and sediment transfer in subglacial and proglacial streams. In particular, we know very little about the processes associated with sediment transfer by subglacial streams. The Haut Glacier d'Arolla (VS, Switzerland) was investigated during the summer melt season of 2015. LiDAR survey revealed positive surface changes in the ablation zone, indicating glacier uplift, at the end of the morning during the period of peak ablation. Instream measures of sediment transport showed that suspended load and bedload responded differently to diurnal flow variability. Suspended load depended on the availability of fine material whereas bedload depended mainly on the competence of the flow. Interpretation of these results allowed development of a conceptual model of subglacial sediment transport dynamics. It is based upon the mechanisms of clogging (deposition) and flushing (transport/erosion) in sub-glacial channels as forced by diurnal flow variability. Through the melt season, the glacier hydrological response evolves from being buffered by glacier snow cover with a poorly developed subglacial drainage system to being dominated by more rapid ice melt with a more hydraulically efficient subglacial channel system. The resultant changes in the shape of diurnal discharge hydrographs, and notably higher peak flows and lower base flows, causes sediment transport to become discontinuous, with overnight clogging and late morning flushing of subglacial channels. Overnight clogging may be sufficient to reduce subglacial channel size, creating temporarily pressurized flow and lateral transfer of water away from the subglacial channels, leading to the late morning glacier surface uplift. However, without further data, we cannot exclude other hypotheses for the uplift. © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Modeling geomorphic evolution in estuaries is necessary to model the fate of legacy contaminants in the bed sediment and the effect of climate change, watershed alterations, sea level rise, construction projects, and restoration efforts. Coupled hydrodynamic and sediment transport models used for this purpose typically are calibrated to water level, currents, and/or suspended-sediment concentrations. However, small errors in these tidal-timescale models can accumulate to cause major errors in geomorphic evolution, which may not be obvious. Here we present an intermediate step towards simulating decadal-timescale geomorphic change: calibration to estimated sediment fluxes (mass/time) at two cross-sections within an estuary. Accurate representation of sediment fluxes gives confidence in representation of sediment supply to and from the estuary during those periods. Several years of sediment flux data are available for the landward and seaward boundaries of Suisun Bay, California, the landward-most embayment of San Francisco Bay. Sediment flux observations suggest that episodic freshwater flows export sediment from Suisun Bay, while gravitational circulation during the dry season imports sediment from seaward sources. The Regional Oceanic Modeling System (ROMS), a three-dimensional coupled hydrodynamic/sediment transport model, was adapted for Suisun Bay, for the purposes of hindcasting 19th and 20th century bathymetric change, and simulating geomorphic response to sea level rise and climatic variability in the 21st century. The sediment transport parameters were calibrated using the sediment flux data from 1997 (a relatively wet year) and 2004 (a relatively dry year). The remaining years of data (1998, 2002, 2003) were used for validation. The model represents the inter-annual and annual sediment flux variability, while net sediment import/export is accurately modeled for three of the five years. The use of sediment flux data for calibrating an estuarine geomorphic model guarantees that modeled geomorphic evolution will not exceed the actual supply of sediment from the watershed and seaward sources during the calibration period. Decadal trends in sediment supply (and therefore fluxes) can accumulate to alter decadal geomorphic change. Therefore, simulations of future geomorphic evolution are bolstered by this intermediate calibration step.  相似文献   

18.
This numerical investigation was carried out to advance mechanistic understanding of sediment transport under sheet flow conditions. An Euler–Euler coupled two-phase flow model was developed to simulate fluid–sediment oscillatory sheet flow. Since the concentration of sediment particles is high in such flows, the kinematics of the fluid and sediment phases are strongly coupled. This model includes interaction forces, intergranular stresses and turbulent stress closure. Each phase was modeled via the Reynolds-Averaged Navier–Stokes equations, with interphase momentum conservation accounting for the interaction between the phases. The generation and transformation of turbulence was modeled using the two-equation k–εkε turbulence model. Concentration and sediment flux profiles were compared with experimental data for sheet flow conditions considering both symmetric and asymmetric oscillatory flows. Sediment and fluid velocity variations, concentration profiles, sediment flux and turbulence parameters of wave-generated sheet flow were studied numerically with a focus on sediment transport characteristics. In all applications, the model predictions compared well with the experimental data. Unlike previous investigations in which the flow is driven by a horizontal pressure gradient, the present model solves the Navier–Stokes equations under propagating waves. The model’s ability to predict sediment transport under oscillatory sheet flow conditions underscores its potential for understanding the evolution of beach morphology.  相似文献   

19.
《国际泥沙研究》2020,35(2):193-202
The current work focuses on locally resolving velocities,turbulence,and shear stresses over a rough bed with locally non-uniform character.A nonporous subsurface layer and fixed interfacial sublayer of gravel and sand were water-worked to a nature-like bed form and additionally sealed in a hydraulic flume.Two-dimensional Particle Image Velocimetry(2 D-PIV) was applied in the vertical plane of the experimental flume axis.Runs with clear water and weak sediment transport were done under slightly supercritical flow to ensure sediment transport conditions without formation of considerable sediment deposits or dunes.The study design included analyzing the double-averaged flow parameters of the entire measurement domain and investigating the flow development at 14 consecutive vertical subsections.Local geometrical variabilities as well the presence of sediment were mainly reflected in the vertical velocity component.Whereas the vertical velocity decreased over the entire depth in presence of sediment transport,the streamwise velocity profile was reduced only within the interfacial sublayer.In the region with decelerating flow conditions,however,the streamwise velocity profile systematically increased along the entire depth extent.The increase in the main velocity(reduction of flow resistance)correlated with a decrease of the turbulent shear and main normal stresses.Therefore,effects of rough bed smoothening and drag force reduction were experimentally documented within the interfacial sublayer due to mobile sediment.Moreover,the current study leads to the conclusion that in nonuniform flows the maximum Reynolds stress values are a better predictor for the bed shear stress than the linearly extrapolated Reynolds stress profile.This is an important finding because,in natural flows,uniform conditions are rare.  相似文献   

20.
The process of dam removal establishes the channel morphology that is later adjusted by high-flow events. Generalities about process responses have been hypothesized, but broad applicability and details remain a research need. We completed laboratory experiments focused on understanding how processes occurring immediately after a sediment release upon dam removal or failure affect the downstream channel bed. Flume experiments tested three sediment mixtures at high and low flow rates. We measured changes in impounded sediment volume, downstream bed surface, and rates of deposition and erosion as the downstream bed adjusted. Results quantified the process responses and connected changes in downstream channel morphology to sediment composition, temporal variability in impounded sediment erosion, and spatial and temporal rates of bedload transport. Within gravel and sand sediments, the process response depended on sediment mobility. Dam removals at low flows created partial mobility with sands transporting as ripples over the gravel bed. In total, 37% of the reservoir eroded, and half the eroded sediment remained in the downstream reach. High flows generated full bed mobility, eroding sands and gravels into and through the downstream reach as 38% of the reservoir eroded. Although some sediment deposited, there was net erosion from the reach as a new, narrower channel eroded through the deposit. When silt was part of the sediment, the process response depended on how the flow rate influenced reservoir erosion rates. At low flows, reservoir erosion rates were initially low and the sediment partially exposed. The reduced sediment supply led to downstream bed erosion. Once reservoir erosion rates increased, sediment deposited downstream and a new channel eroded into the deposits. At high flows, eroded sediment temporarily deposited evenly over the downstream channel before eroding both the deposits and channel bed. At low flows, reservoir erosion was 17–18%, while at the high flow it was 31–41%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号