首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wave overtopping nearshore coastal structures, such as shore-parallel breakwaters, can significantly alter the current circulation and sediment transport patterns around the structures, which in turn affects the formation of tombolos and salients in the nearshore area. This paper describes the implementation of a wave overtopping module into an existing depth-averaged coastal morphological mode: COAST2D and model applications to investigate the effect of wave overtopping on the hydrodynamics and morphodynamics around a group of shore-parallel breakwaters. The hydrodynamic aspects of the model were validated against a series of laboratory conditions. The model was then applied to a study site at Sea Palling, Norfolk, UK, where 9 shore-parallel segmented breakwaters including 4 surface-piercing and 5 low-crested breakwaters are present, for the storm conditions in Nov 2006. The model results were compared with laboratory data and field measurements, showing a good agreement on both hydrodynamics and morphological changes. Further analysis of wave overtopping effect on the nearshore hydrodynamics and morphodynamics reveals that wave overtopping has significant impacts on the nearshore circulation, sediment transport and the resulting morphological changes within such a complex breakwater scheme under the storm and macro-tide conditions. The results indicate the importance of including the wave overtopping in modelling nearshore morphodynamics with the presence of coastal structures.  相似文献   

2.
3.
Five different coastal area morphodynamic models have been set up to run on the same offshore breakwater layout and an intercomparison carried out on the hydrodynamic and morphodynamic output produced by each scheme. In addition, the predicted morphodynamics was checked against available laboratory and field data.It is concluded that the models are capable of producing realistic estimates for the dominant morphodynamic features associated with offshore breakwaters. Coupling of the wave, current and sediment transport components of each scheme is shown to yield bathymetry which attains a state of equilibrium, unlike models which are based on the initial transport field only.  相似文献   

4.
The performance of the new wave diffraction feature of the shallow-water spectral model SWAN, particularly its ability to predict the multidirectional wave transformation around shore-parallel emerged breakwaters is examined using laboratory and field data. Comparison between model predictions and field measurements of directional spectra was used to identify the importance of various wave transformation processes in the evolution of the directional wave field. First, the model was evaluated against laboratory measurements of diffracted multidirectional waves around a breakwater shoulder. Excellent agreement between the model predictions and measurements was found for broad frequency and directional spectra. The performance of the model worsened with decreasing frequency and directional spread. Next, the performance of the model with regard to diffraction–refraction was assessed for directional wave spectra around detached breakwaters. Seven different field cases were considered: three wind–sea spectra with broad frequency and directional distributions, each coming from a different direction; two swell–sea bimodal spectra; and two swell spectra with narrow frequency and directional distributions. The new diffraction functionality in SWAN improved the prediction of wave heights around shore-parallel breakwaters. Processes such as beach reflection and wave transmission through breakwaters seem to have a significant role on transformation of swell waves behind the breakwaters. Bottom friction and wave–current interactions were less important, while the difference in frequency and directional distribution might be associated with seiching.  相似文献   

5.
6.
Interaction of surface gravity waves with multiple vertically moored surface-piercing membrane breakwaters in finite water depth is analyzed based on the linearized theory of water waves. The study is carried out using least square approximation method to understand the effect of the vertical membrane as effective breakwater. Initially the problem is studied for a single membrane wave barrier but for the case of multiple membrane breakwaters the study is carried out using the method of wide-spacing approximation. In the present study, it is observed that the deflection of the membrane is reduced with the increase in the stiffness parameter of the mooring lines attached to the membrane. In the case of single surface-piercing membrane with moored and fixed edge conditions, the reflection and transmission coefficients are compared and analyzed in detail. The resonating pattern in the reflection coefficients are also observed for multiple floating membrane which can also be referred as Bragg's resonance. In the presence of the porosity constant the wave reflection is also observed to be decreasing and the change in the distance between the vertical floating breakwaters also helps in the attenuation of wave height. It is observed that the presence of multiple floating breakwater helps in the reduction of wave height in the transmitted region.  相似文献   

7.
Littoral sediment transport is the main reason for coastal erosion and accretion. Therefore, various types of structures are used in shore protection and littoral sediment trapping studies. Offshore breakwaters are one of these structures. Construction of offshore breakwaters is one of the main countermeasures against beach erosion. In this paper, offshore protection process is studied on the effect of offshore breakwater parameters (length, distance and gap), wave parameters (height, period and angle) and on sediment accumulation ratio, one researched in a physical model. In addition to the experimental studies, numerical model in which the formulae of the sediment discharge (i.e. the formulae of CERC and Kamphuis), was used was developed and employed. The results of the experimental and numerical studies were compared with each other.  相似文献   

8.
Understanding the sediment transport and the resulting scour around coastal structures such as pile breakwaters under local extreme wave conditions is important for the foundation safety of various coastal structures. This study reports a wave-flume experiment investigating the scour induced by solitary waves at a pile breakwater, which consists of a row of closely spaced large piles. A wave blacking gate with a simple operation procedure in the experiment was designed to eliminate possible multiple reflections of the solitary wave inside the flume. An underwater laser scanner and a point probe were used in combination to provide high-resolution data of the bed profile around the pile breakwater. Effects of incident wave height and local water depth on the maximum scour depth, the maximum deposition height and the total scour and deposition volumes were examined. An existing empirical formula describing the evolution of the scour at a single pile in current or waves was extended to describe the scour at the pile breakwater under the action of multiple solitary waves, and new empirical coefficients were obtained by fitting the formula to the new experimental data to estimate the equilibrium scour depth. It appears that the maximum scour depth and the total scour volume are two reliable quantities for validation of numerical models developed for the scour around pile breakwaters under highly nonlinear wave conditions.  相似文献   

9.
A numerical model was developed of beach morphological evolution in the vicinity of coastal structures. The model includes five sub-models for random wave transformation, surface roller development, nearshore wave-induced currents, sediment transport, and morphological evolution. The model was validated using high-quality data sets obtained during experiments with a T-head groin and a detached breakwater in the basin of the Large-scale Sediment Transport Facility at the Coastal and Hydraulics Laboratory in Vicksburg, Miss, USA. The simulations showed that the model reproduced well the wave conditions, wave-induced currents, and beach morphological evolution in the vicinity of coastal structures. Both salient and tombolo formation behind a T-head groin and a detached breakwater were simulated with good agreement compared to the measurements.  相似文献   

10.
A multiple detached breakwater system was designed to protect an extended length of shoreline in front of the presidential villa located in the Gombo region, Tuscany, Italy. The purpose of this empirical field study was to examine the impact of the surface-piercing segmented breakwater on the subaqueous morphology and to follow the effect of the breakwaters on the beach.Shoreline mapping was performed on rectified, stereo-plotted air photos and was also based on topographic field surveying. Bathymetric mapping was based on interpolation of profile lines extending to 10 m water depth.Building the breakwaters in a downstream order caused the trapping of the longshore-driven sediments mainly at the southernmost breakwaters that faced the longshore sediment supply. The longshore down-current direction controlled the hierarchy of the beach response. Two relatively coherent behavioral domains were found to exist: (1) the “permanent tombolo stage” of segments 1–3 and (2) the “no sinuosity” response of the beach opposite the northern segment no. 5. The segment no.4, in-between, did not exhibit a coherent behaviour, indicating a drastic reversal in the sedimentary regime.The three southernmost tombolos facing the longshore current became the main sediment trap, causing a lee-side erosional effect to emerge within the protection scheme of the segmented detached breakwaters. The oblique incident waves enter through the gaps and maintain in the inshore the depleted longshore drift, causing the shoreline configuration in the lee of the northern breakwaters to develop into a prograding log-spiral bay.  相似文献   

11.
《Coastal Engineering》2001,44(2):153-190
This paper summarizes the results of the European Union Marine Science and Technology (EU MAST) III project “Scour Around Coastal Structures” (SCARCOST). The summary is presented under three headings: (1) Introduction; (2) Flow and scour processes with the subheadings: flow and scour processes around vertical cylinders; flow and scour processes at detached breakwaters; flow and scour processes at submerged breakwaters; and the effect of turbulence on sediment transport; and (3) Sediment behaviour close to the structure with the subheadings: field measurement and analysis of wave-induced pore pressures and effective stresses around a bottom seated cylinder; non-linear soil modelling with respect to wave-induced pore pressures and gradients; wave-induced pressures on the bottom for non-linear coastal waves, including also wave kinematics; development of a numerical model (linear soil modelling) to calculate wave-induced pore pressures—the effect of liquefaction on sediment transport; penetration of blocks in non-consolidated fine soil; and cyclic stiffness of loose sand.The paper also includes a discussion of the role of scale effects in laboratory testing and the applicability of the results obtained in supporting engineering design.  相似文献   

12.
基于开源程序REEF3D,通过建立高精度二维数值波浪水槽,系统研究了聚焦波浪在浅堤上传播变形的规律,着重分析了聚焦波浪通过浅堤的水动力过程及能量变化规律,讨论了不同波浪要素对聚焦波浪传播特性的影响。除此之外,还考虑了双浅堤布置对聚焦波浪传播变形的影响。研究结果表明:极端波浪通过浅堤时,堤顶水深越小,波浪主频能量衰减越显著。在给定堤顶水深条件下,聚焦点与浅堤的相对位置对聚焦波浪能量的衰减影响较小。在双浅堤布置条件下,随着浅堤间距的增加,上下游浅堤的相互影响逐渐减弱,高频段的波浪能量也随之减小。  相似文献   

13.
《Coastal Engineering》1999,38(3):143-166
Two different concepts are applicable to model the nearshore morphodynamics. The first one takes into account only final consequences of acting mechanisms and is aimed at the prediction of long-term trends in beach development. Another approach implies the modelling of the whole suite of elementary processes responsible for changes in nearshore bottom topography during a given storm, and it is the approach used in the present work. A coastal area model complex is proposed that allows to reproduce the local morphological changes due to both the natural processes and the influence of coastal structures, such as a groin, a detached breakwater and a navigable channel (underwater trough). Consisting of a traditional series of basic components, the model differs from other ones in essential aspects concerning the treatment of transport mechanisms. In particular, the determination of wave-induced near-bed mean flow is based on the hypothesis that the direction and magnitude of bottom drift depend on difference between the actual rate of energy dissipation and its threshold value marking the flow reversal point. This hypothesis is shown to explain a general trend of cross-shore mean flow distributions observed in the nearshore region. Besides, the influence of the wave breaking process on sediment suspension is taken into account and the contribution of the swash zone to total sediment transport is included. Examples of computed morphological response are represented to demonstrate the model capability. A satisfactory agreement of computations with available data is pointed out.  相似文献   

14.
This paper illustrates the results of an experimental investigation (model-to-prototype length ratio equal to 12) carried out to reproduce the cross-shore evolution of nourished sandy beaches. New two-dimensional experiments were performed to study the short-term response of the cross-shore profile for both “soft” (unprotected) and “mixed” (protected by submerged breakwaters) beach fill projects. Due to the simplified reproduction of prototype conditions in a two-dimensional geometry, only cross-shore sediment transport is considered. The results are related to the immediate post-nourishment evolution and far from beach fill boundaries where long-shore gradients of long-shore sediment transport are likely to be negligible. Three different pseudo-random wave trains were generated in order to simulate both accretive and erosive conditions. A fourth wave train, characterised by time-varying incident wave spectrum was generated for the investigation of the beach response to simplified storm time evolution. Dimensionless experimental results are given in terms of wave parameters, key features of cross-shore profile evolution and sediment transport rates. Furthermore, being highly resolved in both time and space, experimental data are suitable for mathematical model validation. It was observed that submerged breakwater switches erosive conditions to slightly accretive, at least within the tested experimental range.  相似文献   

15.
16.
近岸波、流作用下结构物附近海岸演变的数值模拟   总被引:5,自引:0,他引:5  
张海文  陶建华 《海洋学报》2000,22(1):117-124
针对与砂质海岸在波浪作用下的演变有关的波浪、近岸流及输沙问题进行了系统的研究,并对结构物附近海岸演变进行了数值模拟。考虑了波浪折射-绕射及波浪破碎的综合作用,在近岸流场的模拟中用沿水深积分形成的K方程模型确定涡粘系数。计算岸滩地形变化时,综合波浪、近岸流作用的底沙和悬沙输沙率,并考虑波浪对泥沙作用的影响。模型对防波堤和近岸沉船附近地形变化进行了模拟,效果良好。  相似文献   

17.
This paper presents a new framework for probabilistic modelling of long-term beach evolution in the vicinity of detached breakwaters. The study focuses on the key physical processes contributing to beach variability over a range of spatial and temporal scales. Based on a one-line model, the framework is enhanced with sophisticated solutions for beach-wave-structure interaction, diffraction together with a treatment of varying tide level. The sediment transport rate is calibrated at regional and local levels using data from bespoke field campaigns and site-specific coefficients are proposed. Monte Carlo simulation is conducted for long-term shoreline simulation under a sequence of time varying sequence of waves, currents and tidal levels. The results of the Monte Carlo simulation give an insight into the statistical characteristics of beach behaviour within the defence system. In particular, regions within the scheme that are relatively stable and those that exhibit greater natural fluctuations are identified.  相似文献   

18.
In order to understand the subtidal marine dynamics relative to the coastal engineering works in the Bahía Blanca Estuary (Argentina), the balance of sediment transport caused by tidal currents was estimated in the Puerto Rosales area and compared with the predicted potential littoral transport. The breaking wave height used in the littoral drift calculation was estimated after applying different wave transforming procedures over the deepwater wave which was predicted by the occurrence of predominant wind, blowing long enough in an essentially constant direction over a fetch. The effect of a breakwater on currents and circulation was studied by bathymetric and side-scan sonar records, sedimentology, and tidal current measurements. Different modes of transport occur on either sides of the breakwater. On the east side, longshore transport is the principal mode, and on the west side, tidal transport is predominant.  相似文献   

19.
I~crIOWIn the coastal area, especially at the sandy seashore, wave and nearshore current are the major factors which affect sediment transPOrt and the motyhChdynamics.The numerical models of predicting the beach evolution can be classified intO the medi~term and long-term models according to their space and time scales (De Briend et al., 1993;Watanabe, 1990; Watanabe et al., 1986; Tao, 1996). In the medium-term model the effects ofwave, nearshore current and sediment transport are conside…  相似文献   

20.
多方向不规则波传播变形数值模拟   总被引:2,自引:1,他引:1  
在推广的缓坡方程数学模型基础上建立了多方向不规则波数学模型,综合考虑了波浪折射、绕射、反射、底摩擦和风能输入等因素。基于线性波浪理论,将波浪方向谱在频率和方向上按等能量分割法离散后,分别计算各组成波的传播变形,再计算合成波要素。缓坡方程数学模型采用改进的ADI法求解,计算效率高,稳定性好。采用椭圆形浅滩不规则波模型试验结果和单突堤不规则波绕射理论解对数学模型进行了验证,数值模拟结果和试验值及理论解符合良好。利用该模型进行了某港港内波浪折射、绕射和反射的联合数值模拟,给出了合理的港内波高分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号