首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
MININGHISTORYGeographicalytheJiaodonggoldprovincecoversalmostthewholeShandongorJiaodongPeninsula,theeasternhalfoftheShandongP...  相似文献   

2.
华北克拉通固结时间较晚,活动性较强,金矿床赋矿围岩以中深变质的镁铁质岩石和花岗岩类岩石为主,大规模金矿床一般产在韧、脆性剪切叠加的构造带中,成矿时代在188~46Ma之间.西澳克拉通固结较早,稳定性较好,金矿床主要产在太古宙花岗岩-绿岩地体中,一般产在韧-脆性剪切过渡带或叠加的构造带中,金矿化年龄在2640~2600Ma之间.华北克拉通金矿床比西澳金矿床形成晚,受剥蚀程度低,许多矿床尚未出露地表,在深部寻找盲矿体前景可观.  相似文献   

3.
The Yuerya gold deposit in eastern Hebei Province, China, is located on the eastern margin of the North China Craton and is hosted by Mesozoic Yanshanian granitoid rocks and adjacent Mesoproterozoic Gaoyuzhuang Formation carbonates. The auriferous quartz veins in this deposit are dominated by pyrite, with subordinate sphalerite, chalcopyrite, and galena in a quartz-dominated gangue that also contains calcite, dolomite, barite, apatite, and fluorite. Gold is present as native gold and electrum, which are generally present as micron-size infillings in microfissures within pyrite and less commonly as tiny inclusions within pyrite, quartz, and tellurobismuthite. The pyrite in this deposit has high Co/Ni ratios and contains elevated concentrations of both of these elements, suggesting that the Yuerya gold deposit has a magmato-hydrothermal origin and that the ore-forming fluids that formed the deposit leached trace elements such as Co, Ni, As, and Au during passage through Archean metamorphic rocks, Mesoproterozoic carbonates, and the Yanshanian Yuerya granitoid. Pyrite in the study area has S/Se ratios and S isotopic compositions that suggest that the sulfur (and by inference the gold) within the deposit was sourced from magmato-hydrothermal fluids that were probably originally derived from Archean metamorphic rocks and Yanshanian granitoids. Tellurobismuthite in the study area is closely intergrown with gold and was the single telluride phase identified during this study. The fineness of gold associated with tellurobismuthite is greater than the fineness of gold associated with pyrite, although the fine particle size of the gold surrounded by tellurobismuthite means that the recovery of this gold is difficult, in turn meaning that the tellurobismuthite has little significance to the economics of the Yuerya gold deposit. Only trace amounts of sulfides are associated with the tellurobismuthite within the Yuerya gold deposit, suggesting that this mineral was deposited under conditions of low fS2 and/or high fTe2. In addition, the presence of tellurides within the Yuerya gold deposit reflects a genetic relationship between the deposit and magmatism. Quartz from mineralized veins in the study area has δ18O values of 11.2‰–12.9‰ and the fluids that formed these veins have δD values of − 78.3‰ to − 72.1‰. The δ34S values of pyrite within the deposit are rather restricted (2.3‰–3.5‰). These data, combined with the trace element geochemistry of sulfides within the deposit, suggest that the formation of the Yuerya gold deposit was closely related to both Archean metamorphic rocks and the Yanshanian Yuerya granitoid.  相似文献   

4.
小秦岭地区文峪和东闯石英脉型金矿床铅及硫同位素研究   总被引:7,自引:4,他引:7  
小秦岭地区文峪和东闯金矿床均是华北地台南缘的大型金矿床,金和金(铅)矿化主要在太古宙太华群变质岩层内呈脉状产出,并且同中生代燕山期花岗岩类具密切的时空分布关系。文章对文峪金矿床、东闯金(铅)矿床、花岗岩类侵入岩和变质岩地层的硫和铅同位素组成进行了系统研究,对不同地质体的硫和铅同位素变化特征进行了详细讨论。研究结果表明:中生代花岗岩体起源于太古言变质岩的重熔和岩浆结晶分异作用。金的成矿作用发生在中生代燕山期,成矿物质主要来自花岗岩类侵入岩,岩浆热流体对太古富变质岩地层的淋滤作用亦为金矿床的形成提供了部分物质来源。  相似文献   

5.
非造山带型金矿--胶东型金矿的陆内成矿作用   总被引:42,自引:2,他引:40  
综合了全球有关金矿床的资料 ,Goldfarb和Groves等发表了著名的造山带金矿的论述 ,提出了与造山带有关的金矿在全球范围和从中太古代到整个显生宙的地质时期有广泛的分布和周期性。该类金矿的特点是与变形和变质的中地壳岩块共生 ,特别是在空间上与相应的地壳构造一致。金矿出现在造山带的不同构造部位 ,与不同的金属共生或伴生成矿。胶东作为一个重要的金矿矿集区 ,以不到中国领土面积的 0 .2 % ,而金矿产量占全国的 1 /4。国内一些地质学家也将胶东型金矿划归为造山带型金矿。最近的研究表明 ,胶东矿集区的东界与华北克拉通的东界吻合 ,金矿以华北克拉通变质岩及其有关的侵入岩为控矿围岩。主成矿期成矿时代为 (1 2 0± 1 0 )Ma ,约在不到 1 0Ma的短时限内。成矿物质具有多元性 ,既来自于控矿围岩———花岗片麻岩和变质岩 ,又来自于幔源的岩浆岩 ,特别是与中基性脉岩、偏碱的钙碱性花岗岩的侵入关系密切。除胶东金矿集区之外 ,华北克拉通的边缘和内部普遍含有金矿 ,而且金矿的物质来源、成矿方式、矿产类型、成矿围岩和成矿年龄都是一致的。这种大规模、短时限、高强度的成矿 ,被中国地质学家所重视并称为中生代成矿大爆发或金属异常巨量堆积。深部结构和成分的研究表明 ,华北东部的岩石圈在中生代急  相似文献   

6.
Abstract. Intrusion‐related gold deposits are widely distributed within the North China craton or along its marginal fold belts. Presently, about 200 individual intrusion‐related gold deposits (prospects) have been discovered, among which Yuerya, Anjia‐yingzi, Linglong, Jiaojia, Chenjiazhangzi, Qiyugou, Jinjiazhuang, Dongping, Hougou, Huangtuliang, Guilaizhuang, Wulashan and Donghuofang are the most important ones. In general, the intrusion‐related gold deposits can be classified into three major groups according to their host rocks: (1) hosted by or related to felsic intrusions, including (la) calc‐alkaline granitoid intrusions and (lb) cryptoexplosion breccia pipes; (2) related to ultramafic intrusions, and (3) hosted by or related to alkaline intrusions. The first group contains the Yuerya, Anjiayingzi, Linglong, Jiaojia, Chenjiazhangzi and Qiyugou gold deposits. Gold mineralization at these deposits occurs within Mesozoic Yanshanian calc‐alkaline granitoid intrusions or cryptoexplosion breccia pipes as gold‐bearing quartz veins and replacement bodies. Pyrite, galena, sphalerite, chalcopyrite, native gold and electrum are major metallic minerals. The Jinjiazhuang deposit belongs to the second group, and occurs within Hercynian diopsidite and peridotite as quartz veins and replacement bodies. Pyrite, marcasite, arsenopyrite, native gold and electrum are identified. The third group includes the Dongping, Hougou, Huangtuliang, Guilaizhuang, Wulashan and Donghuofang deposits. Gold mineralization at these deposits occurs predominantly within the Hercynian alkaline intrusive complexes as K‐feldspar‐quartz veins and replacement bodies. Major metal minerals are pyrite, galena, chalcopyrite, tellurides, native gold and electrum. All these pyrite separates from Hercynian and Yanshanian intrusions or cryptoexplosion pipes associated with the gold deposits show a broad range in δ34S value, which is overall higher than those Precambrian rocks and their hosted gold deposits. For the alkaline intrusion‐related gold deposits, the δ34S values of the sulfides (pyrite, galena and chalcopyrite) from the deposits increase systematically from orebodies to the alkaline intrusions. All of these intrusion‐related gold deposits show relatively radiogenic lead isotopic compositions compared to mantle or lower crust curves. Most lead isotope data of sulfides from the gold ores plot in between the fields of the intrusions and Precambrian metamorphic rocks. Data are interpreted as indicative of a mixing of sulfur and lead from magma with those from Precambrian metamorphic rocks. Isotopic age data, geological and geochemical evidences suggest that the ore‐forming materials for the intrusion‐related gold deposits were generated during the emplacement of the Hercynian or Yanshanian intrusion. The calc‐alkaline or alkaline magma may provide heat, volatiles and metals for the intrusion‐related gold deposits. Evolved meteoric water, which circulated the wall rocks, was also progressively involved in the magmatic hydrothermal system, and may have dominated the ore fluids during late stage of ore‐forming processes. Therefore, the ore fluid may have resulted from the mixing of calc‐alkaline or alkaline magmatic fluids and evolved meteoric water. All these intrusion‐related gold deposits are believed to be products of Hercynian or Yanshanian calc‐alkaline and alkaline igneous processes along deep‐seated fault zones within the North China craton or along its marginal belts.  相似文献   

7.
西秦岭地区是中国最重要的金矿矿集区之一,除产出少数夕卡岩型金矿床外,几乎所有的其他金矿床都可归并为造山型、卡林型和类卡林型3种类型。研究表明,西秦岭地区中生代花岗岩主要形成于中晚三叠世,而金矿成矿主要集中在晚三叠世,它们都是华北板块与华南板块碰撞导致的秦岭造山作用的产物。西秦岭地区造山型金矿床主要赋存在泥盆系和石炭系一套复杂的构造变形和区域变质的绿片岩相岩中,主要受北西西向脆韧性剪切带控制,成矿元素组合主要为Au-Ag。矿石中含有大量显微自然金、银金矿,明金可见。成矿流体主要为变质流体。由造山作用引起的强烈构造运动为成矿流体提供了运移通道,为矿质沉淀提供了有利的场所。虽然一些造山型金矿床与中酸性岩体相邻,但矿化与岩浆活动不具直接的成因关系。西秦岭地区卡林型金矿床主要产于轻微变质的寒武系至三叠系沉积岩中,明显受地层、岩性和构造控制。金矿床中的金以超显微金和存在于含砷黄铁矿与毒砂晶格中的固溶体金为主。成矿元素组合为Au-As-Hg-Sb-Ba。成矿流体由早期形成的地层水被后期大气降水补给活化形成,也有部分岩浆水或变质水的加入。在伸展背景下大气降水通过循环演化形成了较浅层次的流体系统,导致Au等成矿元素发生沉淀而形成浸染状矿石。西秦岭地区类卡林型金矿床主要产于浅变质沉积岩建造中,受脆韧性剪切带的控制,并形成于花岗岩岩体附近。与造山型、卡林型金矿床最大的不同之处在于,类卡林型金矿床的形成与同时期的岩浆活动有密切的成因关系。矿石中存在显微自然金,载金矿物主要为黄铁矿、含砷黄铁矿和碲化物。成矿热液主要是岩浆水与变质水、建造水的混合流体。与造山型金矿床类似,流体不混溶导致类卡林型金矿床的形成。  相似文献   

8.
治岭头金矿位于浙江省遂昌县,是我国东南沿海的一座大型金矿床。该矿床围岩蚀变发育,类型有硅化、绢云母化、绿泥石化、黄铁矿化、方解石化和菱锰矿化。从矿体到围岩可以划分为4个蚀变带:强硅化带、弱硅化-黄铁绢英岩化带、绢云母化带和绿泥石化带。沿矿体走向,蚀变强度整体上呈波动性变化,与矿体呈透镜状产出特征一致。硅化、黄铁矿化、菱锰矿化与金矿化关系最密切,而且这些蚀变具有相似的变化趋势。绢云母化和绿泥石化与硅化的变化趋势不同,且与矿化关系不密切。另外,矿区还发育方解石化,且强度较弱。金矿化及围岩蚀变均发育在古元古界八都群变质岩中,未进入上覆中生代火山岩盖层,证明治岭头金矿成矿作用与中生代火山活动无关。定量计算结果显示:蚀变过程中Al_2O_3、TiO_2、P_2O_5为惰性组分;SiO_2、CaO、MnO、Au、Ag、Cu、Pb、Zn等为明显带入组分;Fe_2O_3、FeO、MgO、K_2O、Na_2O、Ba、Sr等为明显带出组分。根据围岩蚀变和稳定同位素分析,推断治岭头金矿原始成矿热液流体应是富含Si、Ca、Mn、Au、Ag、Cu、Pb、Zn等组分的岩浆热液,后期有大气降水的加入。  相似文献   

9.
The Xiaodonggou porphyry Mo deposit is located in the Mesozoic calc-alkaline Xiaodonggou granitoid within a Palaeozoic fold zone of northern China. The mineralization mainly occurred in an area of 0.54 km2 at the south-eastern part of the Xiaodonggou granitoid. The mineralization includes disseminated molybdenite, pyrite, chalcopyrite, magnetite and pyrrhotite and stockwork quartz-sulfide veins. A molybdenite-rich inner core is surrounded by a concentric zone of the sulfide mineral assemblage of pyrite, galena and sphalerite. Intense potassic alteration is overprinted by sericitization and silicification in the mineralized zone. SHRIMP U-Pb data of zircon indicate that the granitoid crystallized at 142 ± 2 Ma (2σ). Re–Os age dating for six molybdenite samples from underground galleries of the deposit constrains the age of porphyry-style Mo mineralization to be 138.1 ± 2.8 Ma (2σ). These data suggest that porphyry-style mineralization was associated with the Xiaodonggou granitoid intrusion and support an Early Cretaceous porphyry-type metallogenic epoch along the northern margin of North China Craton.  相似文献   

10.
The Vaikijaur Cu–Au–(Mo) deposit is located in the ca. 1.88 Ga calc-alkaline Jokkmokk granitoid near the Archaean–Proterozoic palaeoboundary within the Fennoscandian shield of northern Sweden. The Skellefte VMS district lies immediately to the south and the northern Norrbotten Fe-oxide–Cu–Au deposits to the north. The Vaikijaur deposit occupies an area of 2×3 km within the Jokkmokk granitoid and includes stockwork quartz-sulphide veinlets and disseminated chalcopyrite, pyrite, gold, molybdenite, magnetite, and pyrrhotite. Porphyritic mafic dykes were emplaced along fractures in a ring dyke pattern. The Jokkmokk granitoid, dykes, and the mineralized area are foliated, indicating that mineralization predated the main regional deformation. The mineralized area is characterized by strong potassic alteration. Phyllic and propylitic alteration zones are also present. A pyrite-rich inner core is surrounded by a concentric zone with pyrite, chalcopyrite, and gold. Molybdenite is distributed irregularly throughout the chalcopyrite zone. Geophysical data indicate a strongly conductive central zone in the mineralized area bordered by conductive and high magnetic zones. Five high precision Re–Os age determinations for three molybdenite occurrences from outcrop and drill core samples constrain the age of porphyry-style Cu–Au–(Mo) mineralization to between 1889±10 and 1868±6 Ma. A younger molybdenite is associated with a much later metamorphic event at about 1750 Ma. These data suggest that primary porphyry-style mineralization was associated with calc-alkaline magmatism within the Archaean–Proterozoic boundary zone at ca. 1.89–1.87 Ga.  相似文献   

11.
The Shihu gold deposit, situated in the Taihang Mesozoic orogen of the North China Craton (NCC), is hosted by ductile-brittle faults within Archean metamorphic core complex. The deposit is characterized by gold-bearing quartz-polymetallic sulfides veins. The Mapeng granitoids stock and intermediate-basic dikes intruded the metamorphic basement rocks, and are spatially related to gold mineralization. Detailed laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) U-Pb zircon ages of the granitic rocks, dykes and mineralized quartz veins in the studied area reveal its magmatic and mineralized history. The mineralized quartz veins contain inherited zircons with ages of about 2.55 Ga and 1.84 Ga, probably coming from the basement. These two Precambrian events are coeval with those in other parts of the NCC. The Mapeng granitoid stock, the largest intrusion in the area, was emplaced at ca. 130 Ma, and is coeval with magmatic zircon populations from diorites and quartz diorite pophyrites in the same region. The ca. 130 Ma magmatism and gold mineralization were most likely related to an underplating event that took place in the Taihang orogen at Late Mesozoic. The timing of gold mineralization with respect to felsic magmatism in the area is similar to those observed in other major gold-producing provinces in the NCC. This episode is simultaneous with those in the eastern margin of NCC, indicative of a widespread late Yanshanian metallogenic event that was a response to the Early Cretaceous lithosphere in the eastern NCC, in which the mesothermal gold deposits were formed from similar tectono-magmatic environments.  相似文献   

12.
Dave Craw 《Ore Geology Reviews》2010,37(3-4):224-235
The giant gold placer system on the Otago Schist of southern New Zealand was derived from Mesozoic orogenic gold deposits in the underlying schist basement. The core of the schist basement was exhumed in the middle Cretaceous, coeval with the accumulation of the oldest preserved nonmarine sedimentary rocks in the area (ca 112 Ma). Those sedimentary rocks contain quartz clasts, with distinctive ductile deformation textures, that were derived from structural zones in, or adjacent to, major orogenic gold deposits. Quartz textures in these structural zones are readily distinguishable from the rest of the schist belt, and hence provide a fingerprint for erosion of gold. The earliest sedimentary rocks on the margins of the gold-bearing schist belt are immature, and were derived from unoxidised outcrops in areas of high relief. Gold was not liberated from unoxidised basement rocks during erosion, and was removed from the system without placer concentration. Placer concentration did not begin until about 20 million years later, when oxidative alteration of gold deposits had facilitated gold grain size enhancement from micron scale (primary) to millimetre scale (secondary). Subsequent erosion and recycling of gold in the early Cenozoic, and again in the late Cenozoic, caused additional concentration of gold in progressively younger deposits. The Klondike giant placer goldfield of Canada had a similar geological history to the Otago placer field, and Klondike placer accumulation occurred in the late Cenozoic, at least 70 million years after Mesozoic exhumation of orogenic gold. The giant placer deposit on the western slopes of the Sierra Nevada in California occurs in Eocene and younger sedimentary rocks, at least 40 million years younger than the timing of major exhumation of the source rocks. Circum-Pacific giant gold placers formed under entirely different tectonic regimes from the emplacement of their source orogenic deposits, and these giant placer deposits do not form in foreland basins associated with convergent orogens. Formation of giant placers requires less active erosion and more subdued topography than the collisional orogenic activity that accompanied emplacement of source gold deposits in basement rocks, as well as oxidative alteration of the primary deposits to liberate gold from sulfide minerals and enhance secondary gold grain size.  相似文献   

13.
曲家金矿位于我国重要的蚀变岩型金矿矿集区之焦家金矿带的中段,矿床赋存标高为-726~-1 334 m。为研究黄铁矿的演化及其对金成矿过程的指示,运用LA-ICP-MS分析黄铁矿原位微量元素含量,结合岩相学观察和点群分析对黄铁矿进行了分类。发现黄铁矿中Co、Ni、As等微量元素主要以类质同像形式赋存,而Au、Ag、Cu、Zn、Pb、Bi等元素主要以纳米级、微米级矿物包裹体形式赋存。黄铁矿主要分为5种类型:富Co型Py1,富Ni型Py2,富Au、As型Py3,富Au、Ag、Pb、Bi型Py4及“干净”型Py5。黄铁矿微量元素特征指示成矿物质可能主要来源于前寒武纪变质基底岩石和中生代岩浆岩,少量来源于地幔,成矿热液可能属变质热液、岩浆热液和浅部大气降水的混合成因。不同类型黄铁矿反映成矿热液由富Co、Ni经富As、Au向富Pb、Bi、Au、Ag演化。Py1和Py2形成后受构造活动影响发生强烈破碎,裂隙表面对热液中金络合物增强的吸附作用促使金在裂隙中沉淀,对金的富集成矿可能起重要作用。Co、Ni含量较低,同时Au、Ag、As、Pb、Bi等元素含量较高的黄铁矿与成矿作用有密切关系。另外,黄铁矿中C...  相似文献   

14.
焦家断裂蚀变带是胶东地区最重要的控矿构造之一。该断裂带控制的矿床是创立“焦家式”金矿理论的重要实例基础。目前,焦家断裂带累计探明Au资源储量超过1200 t,并且还在不断增加,展现了深部重要的勘查和研究价值。焦家断裂带控制的矿体主要赋存在主断面下盘,断裂带发育于花岗岩中时,上盘发育钾长石化花岗岩、绢英岩化花岗岩、黄铁绢英岩化花岗质碎裂岩、(黄铁)绢英岩质碎裂岩,下盘发育黄铁绢英岩质碎裂岩、黄铁绢英岩化花岗质碎裂岩、黄铁绢英岩化花岗岩和钾化花岗岩,蚀变类型在主断面两侧呈现对称分布特征。但是在岩性特征、结构构造、蚀变强度、化学成分等方面差异明显,表现出非镜像对称特征。上盘蚀变岩厚度大于下盘,下盘花岗岩的构造破碎程度比上盘花岗岩更严重;断裂带上盘黄铁矿含量低、一般无矿化显示,下盘黄铁矿含量高,出现金矿化;断裂带上盘的中生代花岗岩中韧性变形不发育,以脆性破裂为主,下盘发育明显的韧性变形;断裂带上下盘不同蚀变带的成矿元素Au,矿化剂元素S,成矿伴生元素Ag、Pb、Zn,亲石分散元素Ba、Sr以及主量元素Na2O、MgO含量具有差异性,指示焦家断裂带主断裂面两盘经历了不同的成矿作用过程,下盘花岗岩的热液蚀变作用与成矿作用的关系更为密切。依据焦家断裂带不同蚀变带元素的非镜像对称性特征,可利用上、下盘花岗岩和构造蚀变带的地球化学标志识别矿体或者不同蚀变带的位置,对认识“焦家式”金矿床的成因机制、预测深部成矿前景、指导深部找矿具有重要理论和实际意义。  相似文献   

15.
The Jinsha River-Lancang River-Nujiang River area is one of the important prospect areas for noble metal and nonferous metal deposits of China. Of a great variety of gold deposits present in this area, the following types seem to be economically most valuable and promising: tectonic alteration type in ophiolitic melange; polymetallic quartz vein type related to intermediate-acid intrusions; finely disseminated type in fracture zones; mixed hydrothermal type in tectonic fractures of carbonate rocks; hydrothermal type related to subvolcanic rocks; volcanic-hot spring type; submarine volcano exhalation-sedimentary-hydrothermal reformation type. Metallogenic epochs are exclusively Mesozoic and Cenozoic, and ore deposits and orebodies are controlled by linear structures. Magmatic activity has affected gold mineralization in varying degrees, and gold deposits are basically of mesothermal-epithermal type with ubiquitous and intense alterations. Ore-forming materials and hydrothermal solutions show multi-source character.  相似文献   

16.
The Phanerozoic granitoid rocks include the Caledonian,Indosinian and Yenshanian granitoid rocks.The existence of Caledonian and Indosinian granites was evidenced by zircon U-Pb ages,The study of the characteristics of major,trace and rare-earth elements,isotopic composition and petrogenesis for the granitoid rocks has been made,The Caledonian and Indosinian granites were derived from partial melting of the Proterozoic basement rocks and the two tectonic activities were weak,The Yenshanian grantoid rocks were derived from mixing of mantle and crustal materials,It implies that the crustal accretion took place in Mesozoic time.  相似文献   

17.
The Banská?tiavnica ore district is in the central zone of the largest stratovolcano in the Central Slovakia Neogene Volcanic Field, which is situated at the inner side of the Carpathian arc over the Hercynian basement with the Late Paleozoic and Mesozoic sedimentary cover. Volcanic rocks of the High-K orogenic suite are of the Badenian through Pannonian age (16.5–8.5?Ma). Their petrogenesis is closely related to subduction of flysch belt oceanic basement underneath the advancing Carpathian arc and to back-arc extension processes. The stratovolcano includes a large caldera 20?km in diameter and a late-stage resurgent horst in its centre, exposing a basement and extensive subvolcanic intrusive complex. The following stages have been recognized in the evolution of the stratovolcano: (1)?formation of a large pyroxene/hornblende-pyroxene andesite stratovolcano; (2)?denudation, emplacement of a diorite intrusion; (3) emplacement of a large granodiorite bell-jar pluton within the basement; (4) emplacement of granodiorite/quartz-diorite porphyry stocks and dyke clusters around the pluton; (5) caldera subsidence and its filling by biotite-hornblende andesite volcanics, emplacement of quartz-diorite porphyry sills and dykes at the subvolcanic level; (6)?renewed activity of andesites from dispersed centres on slopes of the volcano; (7) uplift of a resurgent horst accompanied by rhyolite volcanics and granite porphyry dykes. The following types of ore deposits (mineralizations) have been identified in the Banská?tiavnica ore district: 1. Quartz-pyrophyllite-pyrite high-sulphidation system at ?obov, related to the diorite intrusion. 2. Magnetite skarn deposits and occurrences?at contacts of the granodiorite pluton with Mesozoic carbonate rocks. Magnetite ores occur as lenses in the calcic skarns. 3.?Stockwork/disseminated base metal deposit along an irregular network of fractures in apical parts of the granodiorite pluton and in remnants of basement rocks. Mineral paragenesis is simple, with leading sphalerite and galena and minor chalcopyrite and pyrite. In overlying andesites the mineralization is accompanied by metasomatic quartzites and argillites with pyrophyllite, kaolinite, illite and pyrite. 4. Porphyry/skarn copper deposits and occurrences related to granodiorite/quartz-diorite porphyry dyke clusters and stocks around the granodiorite intrusion. The mineralized zone is represented by accumulations of chalcopyrite in exo- and endo-skarns, usually of the magnesian type affected by serpentinization. Besides chalcopyrite, pyrhotite, minor bornite, chalcosite, tennantite and magnetite, rare molybdenite and gold are present. The alteration pattern around productive intrusions includes an external zone of propylitization, a zone of argillitic alteration (kaolinite – illite – pyrite) and an internal zone of phyllic alteration (quartz – sericite – pyrite). Biotitization is rare and limited to porphyry intrusions. 5. Intrusion related “mesothermal” gold deposit in an andesitic environment just above the granodiorite intrusion. Gold of high fineness with base metal mineralization is contained in brecciated and/or banded quartz veins of subhorizontal orientation, parallel to the surface of granodiorite pluton. At least the first phase of mineralization is older than quartz-diorite porphyry sills, which separate granodiorite and blocks of mineralized andesite. 6. Hot spring type advanced argillic systems in the caldera filling. Silicites and opalites accompanied by kaolinite, alunite and pyrite grade downward into smectite dominated argillites. 7. Vein type epithermal precious/base metal deposits and occurrences as a result of the long lasting interaction among structural evolution of the resurgent horst and evolving hydrothermal system, extensive intrusive complex and deep seated siliceous magma chamber serving as heat and magmatic fluid source. Three types of epithermal veins occur in a zonal arrangement: (a) base metal veins ± Au with transition to Cu?±?Bi mineralization at depth in the east/central part of the horst, (b)?Ag – Au veins with minor base metal mineralization and (c) Au – Ag veins located at marginal faults of the horst. Isotopic composition of oxygen and hydrogen in hydrothermal fluids indicate mixing of magmatic and meteoric component (with generally increasing proportion of meteoric component towards younger mineralization periods?). Veins are accompanied by zones of silicification, adularization and sericitization, indicating a low sulphidation environment. 8.?Replacement base metal mineralization of a limited extent in the Mesozoic carbonate rocks next to sulphide rich epithermal base metal veins.  相似文献   

18.
TheeasternHebeiProvinceofChinaisoneofthemajorconcentratingareasofgoldmineralizationineasternChina,whichisanimportantpartofthe...  相似文献   

19.
内蒙古毕力赫金矿床(Ⅱ号带)是全国危机矿山接替资源勘查获得重大突破的矿床之一,由武警黄金地质研究所勘查发现(2006-2008年).矿区位于华北板块北缘叠接俯冲带南部华北板块一侧的陆相火山岩盆地中.该矿床有如下主要特点:(1)矿体呈隐伏状态(距地表1~40 m)产出于隐伏的燕山期花岗闪长斑岩体接触带内.并以内接触带为主;(2)矿体规模大(目前控制长500 m,最宽处300 m,最窄处约40 m.最大厚度128.17 m,最小厚度10.53 m,平均厚度52.85 m),品位高(平均4.5×10-6,最高52.76×10-6),单个矿体资源量达20 t以上;(3)矿石为蚀变的花岗闪长斑岩和火山岩型.前者具有典型的单向固结结构(UST).金属矿物以黄铁矿、黄铜矿、辉钼矿等为主,但含量低(小于1%),金主要赋存于蚀变形成的团块状或细脉状石英中;(4)围岩蚀变以钾化、硅化、绢云母化、高岭土化、青磐岩化等为主,具有富金斑岩型铜矿床的分带特征;(5)成矿温度明显分为两个区间.早期石英流体包裹体均一温度大于550℃,为含矿热液沸腾结果;中晚期温度变化在108~375℃,平均值为194℃.初步研究表明,该矿床应为独立的大型高品位斑岩型金矿床,在华北板块北缘地区为首次发现,具有典型性和代表性.对于区域相似地质环境内类似矿床的寻找和勘查具有重大示范意义.  相似文献   

20.
The Nassara-Au prospect is located in the Birimian Boromo Greenstone Belt in southwestern Burkina Faso. It is part of a larger mineralized field that includes the Cu–Au porphyry system of Gaoua, to the north. At Nassara, mineralization occurs within the West Batié Shear Zone that follows the contact between volcanic rocks (basalt and andesite) and volcano-sediments (pyroclastics and black shales) at the southern termination of the Boromo Belt. Gold is associated with pyrite and other Fe-bearing minerals that occur disseminated within the sheared volcanic and volcano-sedimentary rocks. In particular, highest grades are distinguished in alteration halos of small quartz–albite–ankerite veins that form networks along the shear zone. Here, pyrites are marked by As-poor and As-rich growth zones, the latter containing gold inclusions. Gold mineralization formed during D2NA. Subsequent shear fractures related to D3NA related are devoid of gold. Nassara is a classical orogenic gold occurrence where gold is associated to disseminated pyrite along quartz veins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号