首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

2.
We present a study of active star-forming regions in the environs of the H  ii region Sh2-205. The analysis is based on data obtained from point source catalogues and images extracted from the Two-Micron All-Sky Survey (2MASS), Midcourse Space Experiment ( MSX ) and IRAS surveys. Complementary data are taken from a CO survey. The identification of primary candidates for star-formation activity is made following colour criteria and a correlation with molecular gas emission.
A number of star-formation tracer candidates are projected on to two substructures of the H  ii region: SH 148.83–0.67 and SH 149.25–0.00. However, the lack of molecular gas related to these structures casts doubt on the nature of the sources. Additional infrared sources may be associated with the H  i shell centred at  ( l , b ) = (149°0', −1°30')  .
The most striking active area was found in connection with the H  ii region LBN 148.11–0.45, where star-formation candidates are projected on to molecular gas. The analytical model of the 'collect and collapse' process shows that star-formation activity could have been triggered by the expansion of this H  ii region.  相似文献   

3.
ISO data taken with the long-wavelength imaging photo-polarimeter ISOPHOT are presented of 18 pre-stellar cores at three far-infrared wavelengths, 90, 170 and 200 μm. Most of the cores are detected clearly at 170 and 200 μm, but only one is detected strongly at 90 μm, indicating that mostly they are very cold, with typical temperatures of only ∼     . Colour temperature images are constructed for each of the cores. Most of the cores are seen either to be isothermal, or to have associated temperature gradients from the core centres to their edges, with all except one being cooler at the centre. We compare the data with previous ISOCAM absorption data, and calculate the energy balance for those cores in common between the two samples. We find that the energy radiated by each core in the far-infrared is similar to that absorbed at shorter wavelengths. Hence there is no evidence for a central heating source in any of the cores – even those for which previous evidence for core contraction exists. This is all consistent with external heating of the cores by the local interstellar radiation field, confirming their pre-stellar nature.  相似文献   

4.
We present new, high-resolution, near-infrared images of the HH 1 jet and bow shock. H2 and [Fe  ii ] images are combined to trace excitation changes along the jet and across the many shock features in this flow. Echelle spectra of H2 profiles towards a few locations in HH 1 are also discussed. Gas excitation in oblique, planar C-type shocks best explains the observations, although J-type shocks must be responsible for the observed [Fe  ii ] emission features. Clearly, no single shock model can account for all of the observations. This will probably be true of most, if not all, Herbig–Haro flows.  相似文献   

5.
6.
7.
8.
9.
A sample of 25 infrared-bright planetary nebulae (PNe) towards the Galactic bulge is analysed through 8–13 μm spectroscopy. The classification of the warm dust emission features provides a measure of the C/O chemical balance, and represents the first C/O estimates for bulge PNe. Out of 13 PNe with identified dust types, four PNe have emission features associated with C-based grains, while the remaining 9 have O-rich dust signatures. The low fraction of C-rich PNe, ≲ 30 per cent, contrasts with that for local PNe, around ∼ 80 per cent, although it follows the trend for a decreasing frequency of C-rich PNe with galactocentric radius (Paper I). We investigate whether the PNe discussed here are linked to the bulge stellar population (similar to type IV, or halo, PNe) or the inner Galactic disc (a young and super-metal-rich population). Although 60 per cent of the PNe with warm dust are convincing bulge members, none of the C-rich PNe satisfies our criteria, and they are probably linked to the inner Galactic disc. In the framework of single star evolution, the available information on bulge PNe points towards a progenitor population similar in age to that of local PNe (type I PNe are found in similar proportions), but super-metal-rich (to account for the scarcity of C-rich objects). Yet the metallicities of bulge PNe, as inferred from [O/H], fail to reach the required values – except for the C-rich objects. It is likely that the sample discussed here is derived from a mixed disc/bulge progenitor population and dominated by type IV PNe, as suggested by Peimbert. The much higher fraction of O-rich PNe in this sample than in the solar neighbourhood should result in a proportionally greater injection of silicate grains into the inner Galactic medium.  相似文献   

10.
We have retrieved Spitzer archive data of pre-stellar cores taken with the Multiband Imaging Photometer for Spitzer (MIPS) at a wavelength of 160 μm. Seventeen images, containing 18 cores, were constructed. Flux densities were measured for each core, and background estimates were made. Mean off-source backgrounds were found to be 48 ± 10 MJy sr−1 in Taurus and 140 ± 55 MJy sr−1 in Ophiuchus. Consistency was found between the MIPS 170-μm and ISOPHOT 160-μm calibrations. Fourteen cores were detected both by MIPS and by our previous submillimetre surveys. Spectral energy distributions were made for each core, using additional 24- and 70-μm data from the Spitzer data archive, as well as previous infrared and submillimetre data. Previous temperature estimates were refined, and new temperature estimates were made where no Infrared Space Observatory ( ISO ) data exist. A temperature range of 8–18 K was found for the cores, with most lying in the range 10–13 K. We discount recent claims that a large number of pre-stellar cores may have been misclassified and in fact contain low-luminosity protostars detectable only by Spitzer . We find no new protostars in our sample other than that previously reported in L1521F. It is shown that this has a negligible effect on pre-stellar lifetime estimates.  相似文献   

11.
12.
13.
We report on Australia Telescope Compact Array observations of the massive star-forming region G305.2+0.2 at 1.2 cm. We detected emission in five molecules towards G305A, confirming its hot core nature. We determined a rotational temperature of 26 K for methanol. A non-local thermodynamic equilibrium excitation calculation suggests a kinematic temperature of the order of 200 K. A time-dependent chemical model is also used to model the gas-phase chemistry of the hot core associated with G305A. A comparison with the observations suggest an age of between  2 × 104  and  1.5 × 105 yr  . We also report on a feature to the south-east of G305A which may show weak Class I methanol maser emission in the line at 24.933 GHz. The more evolved source G305B does not show emission in any of the line tracers, but strong Class I methanol maser emission at 24.933 GHz is found 3 arcsec to the east. Radio continuum emission at 18.496 GHz is detected towards two H  ii regions. The implications of the non-detection of radio continuum emission towards G305A and G305B are also discussed.  相似文献   

14.
GGD30 has been suggested to be either a small reflection nebulosity or a Herbig–Haro (HH) object formed in the outflow from a nearby obscured star. Observations to date have not been able to distinguish between these two scenarios. In addition, there are conflicting proposals for the location of the exciting source for GGD30. To resolve these questions, we have carried out optical spectroscopy and near-infrared ( J , K and 3.6-μm) imaging of GGD30. Taken together, these observations reveal that the bright optical knot in GGD30 must be a HH object, excited by the outflow from an optically obscured pre-main-sequence (PMS) star located ∼3 arcsec to the southwest. Based on mid-infrared fluxes from the Mid-course Space Experiment ( MSX ) satellite, we estimate the luminosity of this PMS star to be  ∼12.5 L  which suggests it is an intermediate-mass object rather than low-mass as previously proposed. The optical spectroscopy indicates projected velocities of  ∼−270 km s−1  associated with the HH object. The fact that these velocities are blueshifted and relatively high compared to the velocities typical of HH flows suggests that the outflow from the PMS star must be almost aligned with the line of sight. There is an additional low-velocity  (∼−70 km s−1) Hα  component but its origin is not clear.  相似文献   

15.
16.
A survey towards a selection of 35 methanol maser and/or ultracompact (UC) H  ii regions, reported in Papers I and II and by Norris et al., has been conducted in the near-infrared (NIR). Out of 25 methanol maser sites surveyed, 12 are associated with a NIR counterpart. Out of 18 UC H  ii regions (8 of which overlap with maser emission), 12 are associated with a NIR counterpart. Counterparts can be confidently identified not only by the positional agreements, but also by their unusually red colours. Spectral types for the embedded stars can be unambiguously determined for six sources, all of which imply massive, ionizing stars. One of these infrared sources has methanol maser emission, but no UC H  ii region. It is possible that the maser emission associated with this source arises from a pre-UC H  ii phase of massive stellar evolution or it could be that nearly all the ultraviolet photons are absorbed by dust within the UC H  ii region. We have modelled the spectral energy distributions (SEDs) for some sources and find that a single blackbody can be used to estimate the stellar luminosity, but cannot represent the whole infrared SED. A two-component blackbody model and a radiative transfer model were also used to derive essential parameters of the infrared sources. The radiative transfer model also indicates which infrared sources are relatively young and which are older. Both models show that silicate absorption at 9.7 μm must be a dominant feature of these SEDs.  相似文献   

17.
We have compared the results of a number of published class I methanol maser surveys with the catalogue of high-mass outflow candidates identified from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire survey (known as extended green objects or EGOs). We find class I methanol masers associated with approximately two-thirds of EGOs. Although the association between outflows and class I methanol masers has long been postulated on the basis of detailed studies of a small number of sources, this result demonstrates the relationship for the first time on a statistical basis. Despite the publication of a number of searches for class I methanol masers, a close physical association with another astrophysical object which could be targeted for the search is still lacking. The close association between class I methanol masers and EGOs therefore provides a large catalogue of candidate sources, most of which have not previously been searched for class I methanol masers. Interstellar masers and outflows have both been proposed to trace an evolutionary sequence for high-mass star formation, therefore a better understanding of the relationship between class I methanol masers and outflow offers the potential for comparison and amalgamation of these two evolutionary sequences.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号