首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radiative energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.  相似文献   

2.
Water transports through the four main straits around the South China Sea   总被引:2,自引:2,他引:0  
A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annual transports through the four straits Luzon Strait, Taiwan Strait, Sunda Shelf and Mindoro Strait are −4.5, 2.3, 0.5 and 1.7 Sv (1 Sv=106 m3s−1), respectively. The Mindoro Strait has an important outflow that accounts for over one third of the total inflow through the Luzon Strait. Furthermore, it indicates that there are strong seasonal variations of water transport in the four straits. The water transport through the Luzon Strait (Taiwan Strait, Sunda Shelf, Mindoro Strait) has a maximum value of −7.6 Sv in December (3.1 Sv in July, 2.1S v in January, 4.5Sv in November), a minimum value of −2.1 Sv in June (1.5 Sv in October, −1.0 Sv in June, −0.2 Sv in May), respectively. Supported by National Natural Science Foundation of China (No. 40806012, 40876013), Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences (No. KLOCAW0803) and Scientific Research Foundation for talent, Guangdong Ocean University (No. E06118)  相似文献   

3.
A model study is conducted to examine the role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007. The model generally agrees with the observations in showing considerable seasonal and interannual variability of the Pacific water inflow at Bering Strait in response to changes in atmospheric circulation. During summer 2007 anomalously strong southerly winds over the PaCific sector of the Arctic Ocean strengthen the ocean circulation and bring more Pacific water into the Arctic than the recent (2000-2006) average. The simulated summer (3 months ) 2007 mean Pacific water inflow at Bering Strait is 1.2 Sv, which is the highest in the past three decades of the simulation and is 20% higher than the recent average. Particularly, the Pacific water inflow in September 2007 is about 0.5 Sv or 50% above the 2000-2006 average. The strengthened warm Pacific water inflow carries an additional 1.0 x 1020 Joules of heat into the Arctic, enough to melt an additional 0.5 m of ice over the whole Chukchi Sea. In the model the extra summer oceanic heat brought in by the Pacific water mainly stays in the Chukchi and Beaufort region, contributing to the warming of surface waters in that region. The heat is in constant contact with the ice cover in the region in July through September. Thus the Pacific water plays a role in ice melting in the Chukchi and Beaufort region all summer long in 2007, likely contributing to up to O. 5 m per month additional ice melting in some area of that region.  相似文献   

4.
Mineralogical analysis was performed on bulk sediments of 79 surface samples using X-ray diffraction. The analytical results, combined with data on ocean currents and the regional geological background, were used to investigate the mineral sources. Mineral assemblages in sediments and their distribution in the study area indicate that the material sources are complex. (1) Feldspar is abundant in the sediments of the middle Chukchi Sea near the Bering Strait, originating from sediments in the Anadyr River carried by the Anadyr Current. Sediments deposited on the western side of the Chukchi Sea are rich in feldspar. Compared with other areas, sediments in this region are rich in hornblende transported from volcanic and sedimentary rocks in Siberia by the Anadyr Stream and the Siberian Coastal Current. Sediments in the eastern Chukchi Sea are rich in quartz sourced from sediments of the Yukon and Kuskokwim rivers carried by the Alaska Coastal Current. Sediments in the northern Chukchi Sea are rich in quartz and carbonates from the Mackenzie River sediments. (2) Sediments of the southern and central Canada Basin contain little calcite and dolomite, mainly due to the small impact of the Beaufort Gyre carrying carbonates from the Canadian Arctic Islands. Compared with other areas, the mica content in the region is high, implying that the Laptev Sea is the main sediment source for the southern and central Canada Basin. In the other deep sea areas, calcite and dolomite levels are high caused by the input of large amounts of sediment carried by the Beaufort Gyre from the Canadian Arctic Islands (Banks and Victoria). The Siberian Laptev Sea also provides small amounts of sediment for this region. Furthermore, the Atlantic mid-water contributes some fine-grained material to the entire deep western Arctic Ocean.  相似文献   

5.
The sea ice cover in the Arctic Ocean has been reducing and hit the low record in the summer of 2007. The anomaly was extremely large in the Pacific sector. The sea level height in the Bering Sea vs. the Greenland Sea has been analyzed and compared with the current meter data through the Bering Strait. A recent peak existed as a consequence of atmospheric circulation and is considered to contribute to inflow of the Pacific Water into the Arctic Basin. The timing of the Pacific Water inflow matched with the sea ice reduction in the Pacific sector and suggests a significant increase in heat flux. This component should be included in the model prediction for answering the question when the Arctic sea ice becomes a seasonal ice cover.  相似文献   

6.
Zhang  Yanwei  Liang  Xinfeng  Tian  Jiwei  Yang  Lifen 《中国海洋湖沼学报》2009,27(1):129-134
TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M 2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M 2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M 2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M 2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide M 2 provides enough energy to maintain the large-scale thermohaline circulation of the ocean. Supported by the National Basic Research Program of China (973 Program, No. 2005CB422303), the International Cooperation Program (No. 2004DFB02700), and the National Natural Science Foundation of China (No. 40552002). The TOPEX/POSEIDON data are provided by Physical Oceanography Distributed Active Archive Center (PO DACC)  相似文献   

7.
热带气旋作为一种海上灾害性天气,对“海上丝绸之路”海上航运影响重大。本文基于西北太平洋和北印度洋1990—2017年的热带气旋路径数据,结合热带气旋风场参数模型,利用缓冲区分析、叠加分析等GIS空间分析技术,系统研究了“海上丝绸之路”主要海域、主要海区、关键通道受热带气旋影响频次以及热带气旋危险性的时空分布特征。主要结论:① “海上丝绸之路”主要海域受热带气旋影响严重,表现在热带气旋影响范围广、影响频次高,其中西北太平洋较北印度洋受热带气旋影响更为严重,危险性更大;② 西北太平洋的15°N—30°N,120°E-—145°E海域热带气旋危险性最高;③ 热带气旋危险性季节变化较为明显,秋夏两季危险性较高,冬春两季危险性较低,在夏秋两季各月份中,7、8、9、10月危险最高;④ 在各海区中,中国东部海区热带气旋危险最高,其次是南海、日本海、孟加拉湾、阿拉伯海,而红海和波斯湾不受热带气旋影响;在各关键通道中,吕宋海峡热带气旋危险性最高,其次是台湾海峡、对马海峡、宗谷海峡、鞑靼海峡、保克海峡、霍尔木兹海峡,而马六甲海峡和曼德海峡无热带气旋危险。  相似文献   

8.
TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide M2 provides enough energy to maintain the large-scale thermohaline circulation of the ocean.  相似文献   

9.
Sea ice is a quite sensitive indicator in response to regional and global climate changes. Based on monthly mean PanArctic Ice Ocean Modeling and Assimilation System(PIOMAS) sea ice thickness fields, we computed the conductive heat flux(CHF) in the Arctic Ocean in the four winter months(November–February) for a long period of 36 years(1979–2014). The calculated results for each month manifest the increasing extension of the domain with high CHF values since 1979 till 2014. In 2014, regions of roughly 90% of the central Arctic Ocean have been dominated by the CHF values larger than 18 Wm~(-2)(November–December) and 12 Wm~(-2)(January–February), especially significant in the shelf seas around the Arctic Ocean. Moreover, the population distribution frequency(PDF) patterns of the CHF with time show gradually peak shifting toward increased CHF values. The spatiotemporal patterns in terms of the trends in sea ice thickness and other three geophysical parameters, surface air temperature(SAT), sea ice thickness(SIT), and CHF, are well coupled. This suggests that the thinner sea ice cover preconditions for the more oceanic heat loss into atmosphere(as suggested by increased CHF values), which probably contributes to warmer atmosphere which in turn in the long run will cause thinner ice cover. This represents a positive feedback mechanism of which the overall effects would amplify the Arctic climate changes.  相似文献   

10.
The compounds of sterols such as C27 ,C2s ,C29 and C30 are recorded from C-8 core of the Chukchi Sea. The double bond position is located at 5-, 5,22 as well as 22-,24-. The compound of sterols such as C27 ,C28 ,C29 are recorded from B2-9 core of the Bering Sea. The double bond position is located at 5-, 5, 22 as well as 22. The composition characteristics of sterols indicate that the substance is mainly contributed by the terrigenous origin and marine silicate organisms. The results are also suggest that the record of abnormal sterols from the surface sediments (2 -0 era)in the Chukchi Sea and the Bering Sea represent the period from 1980s to the late 1990s. The strong signal of the Arctic warming is preserved in the sediments, which indicates the eco - environmental change responding to climatic effect of circumjacent.  相似文献   

11.
Analysis on long-term change of sea surface temperature in the China Seas   总被引:4,自引:0,他引:4  
Long-term change of sea surface temperature (SST) in the China Seas from 1900 to 2006 is examined based on two different observation datasets (HadISST1 and HadSST3). Similar to the Atlantic, SST in the China Seas has been well observed dur-ing the past 107 years. A comparison between the reconstructed (HadISST1) and un-interpolated (HadSST3) datasets shows that the SST warming trends from both datasets are consistent with each other in most of the China Seas. The warming trends are stronger in winter than in summer, with a maximum rate of SST increase exceeding 2.7℃ (100 year)-1 in the East China Sea and the Taiwan Strait during winter based on HadISST1. However, the SST from both datasets experienced a sudden decrease after 1999 in the China Seas. The estimated trend from HadISST1 is stronger than that from HadSST3 in the East China Sea and the east of Taiwan Island, where the difference in the linear SST warming trends are as large as about 1℃ (100 year)-1 when using respectively HadISST1 and HadSST3 datasets. When compared to the linear winter warming trend of the land surface air temperature (1.6℃ (100 year)-1), HadSST3 shows a more reasonable trend of less than 2.1℃ (100 year)-1 than HadISST1’s trend of larger than 2.7℃ (100 year)-1 at the mouth of the Yangtze River. The results also indicate large uncertainties in the estimate of SST warming patterns.  相似文献   

12.
Study results in this paper have indicated that the Holocene climate in Xinjiang, Northwestem China has been alternating between wet and dry conditions, and was punctuated with a series of abrupt climate shifts. A sediment core taken from Barkol Lake in the northern Xinjiang of Northwest China was analyzed at 1 cm interval for grain-size distribution. Abrupt climate shifts revealed by the grain-size proxy occurred at ca 1.4, 3.0, 4.3, 5.6, 8.0 cal kyr B.E, which were well correlated to both the abrupt shifts recorded in the North Atlantic Ocean (NAO) and the Holocene sea surface temperature (SST) cooling events in the Arabian Ocean. The correlation indicated that the climatic changes in the extreme arid Northwest China were associated with the NAO, probably via the North Atlantic Oscillation-affected westerly winds. The strength and position of westerly winds probably modulated the Siberian-Mongolian high- pressure system (winter monsoon), and played an important role in climate change of Northwest China. Moreover, an evident drought interval during the middle Holocene was also revealed by grain-size proxy.  相似文献   

13.
北极海冰对全球气候起着非常重要的调制作用,海冰范围是海冰监测的基本参数。近40年,北极地区持续变暖,北极海冰显著减少,进而引发北极自然环境恶化、北半球极端天气频发、全球海平面上升等一系列环境和气候问题。准确获取北极海冰范围及其演变趋势,确定海冰变化对全球气候系统的响应,是研究和预测全球气候变化趋势的关键之一。HasISST和OISST海冰数据集在海冰监测中应用最为广泛,可为北极地区长时间序列海冰变化研究提供基础数据,但这2套数据集空间分辨率相对较低,应用于北极关键区对中国气候响应研究方面存在很大的局限,为解决这一问题和弥补国内海冰监测微波遥感数据的空白,2011年6月27日,国家卫星气象中心(National Satellite Meteorological Center, NSMC)发布了FY(Fengyun, FY)北极海冰数据集,该数据集利用搭载在FY卫星上的微波成像仪(Microwave Radiation Imager, MWRI)数据,使用Enhance NASA Team算法制作,该算法利用前向辐射传输模型模拟北极地区4种海表类型(海水、新生冰、一年冰和多年冰)在不同大气条件下MWRI辐射亮温,进而得到每种大气条件下0~100%的海冰覆盖度查找表(海冰覆盖度每次增加1%),通过观测值与模拟值的比对得到海冰覆盖度,由该数据集计算得到的北极海冰范围在大部分区域与实际情况相符。该产品虽已进行通道间匹配误差修正和定位精度偏差订正,但由于其搭载的微波成像仪(Microwave Radiation Imager, MWRI)天线长度有限,造成传感器探测到的地物回波信号相对较弱,难以区分海冰和近岸附近的陆地,影响了该数据集的精度和应用。为解决这一问题,本文基于美国冰雪中心(National Snow and Ice Data Center, NSIDC)发布的海冰产品对FY海冰数据集进行优化,NSIDC产品利用判断矩阵对海岸线附近的像元进行识别,并对误差像元进行不同程度的修正,由NSIDC产品计算得到的北极海冰范围与实际情况更为符合。数据集优化大大提高了FY海冰数据集的精度,研究结果表明,优化后FY海冰数据集与NSIDC产品相关系数高达0.9997,且二者日、月、年平均最大海冰范围偏差仅为3.5%、1.9%、0.9%,且FY海冰数据集优化过程对其较好的空间分异特征无明显影响。该数据集可正确地反映北极海冰范围及其变化情况,且海岸线附近海冰的分布情况更准确,可为北极海冰变化研究提供可靠的基础数据。  相似文献   

14.
北极熊是北极最重要的哺乳动物之一,近年来数量却在减少。海冰作为北极熊狩猎、活动和繁殖的平台,是其栖息地的重要组成部分。因此其种群栖息地变化主要依赖于海冰变化。本文基于美国雪冰中心的海冰密集度和NOAA提供的ETOPO1基岩数据,分析了北极海冰密集度、开阔水域面积、海冰消退时间、海冰出现时间、开阔水域季节长度的年际变化,进而评价北极熊栖息地的稳定性。结果表明,海冰密集度呈现降低的趋势,开阔水域面积增大,多年冰数量减少,大多变为一年冰。海冰消退时间提前,海冰出现时间延后,开阔水域季节长度大幅增加,与1992年相比增加了72 d。19个栖息地中,巴伦支海是开阔水域面积和季节长度变化贡献最大的海域,增加速度分别为9.71×103 km2/a和71.69 d/10a。以开阔水域季节长度变化率为依据,将北极熊栖息地划分为稳定、次稳定和不稳定3个等级。总共有3个稳定栖息地,包括分布在相对其他栖息地而言纬度较低的楚科奇海、西哈得孙湾和南哈得孙湾。13个次稳定栖息地,包括拉普捷夫海、喀拉海、东格陵兰、巴芬湾、戴维斯海峡、福克斯湾、布西亚湾、麦克林托克海峡、梅尔维尔子爵海峡、挪威湾、北波弗特、南波弗特和兰开斯特海峡。3个不稳定栖息地,均位于70°N以北,包括北极盆地、巴伦支海和凯恩盆地。稳定区主要位于低纬度,不稳定区全部位于高纬度。该分级结果表明高纬度地区虽然海冰覆盖多,但是年际变化十分显著,不稳定的3个区域内北极熊对海冰变化适应时间更少,年际迁移变化大,对北极熊的生存发展更为不利。  相似文献   

15.
1 IntroductionGreen house gases, such as CO2,CH4, N2O and so on are released to the atmosphereconstantly by human activities. These gases insert positive radiative forcing to the climate.Meanwhile, aerosol, which are also released by human activities, ins…  相似文献   

16.
This study revisits the Arctic sea ice extent(SIE) for the extended period of 1979-2015 based on satellite measurements and finds that the Arctic SIE experienced three different periods: a moderate sea ice decline period for 1979-1996, an accelerated sea ice decline period from 1997 to 2006, and large interannual variation period after 2007, when Arctic sea ice reached its tipping point reported by Livina and Lenton(2013). To address the response of atmospheric circulation to the lowest sea ice conditions with a large interannual variation, we investigated the dominant modes for large atmospheric circulation responses to the projected 2007 Arctic sea ice loss using an atmospheric general circulation model(ECHAM5). The response was obtained from two 50-yr simulations: one with a repeating seasonal cycle of specified sea ice concentration for the period of 1979-1996 and one with that of sea ice conditions in 2007. The results suggest more occurrences of a negative Arctic Oscillation(AO) response to the 2007 Arctic sea ice conditions, accompanied by an North Atlantic Oscillation(NAO)-type atmospheric circulation response under the largest sea ice loss, and more occurrences of the positive Arctic Dipole(AD) mode under the 2007 sea ice conditions, with an across-Arctic wave train pattern response to the largest sea ice loss in the Arctic. This study offers a new perspective for addressing the response of atmospheric circulation to sea ice changes after the Arctic reached the tipping point in 2007.  相似文献   

17.
A high-resolution Arctic Ocean-Finite Volume Community Ocean Model(AO-FVCOM) and observational current data from 14 mooring stations in Bering Strait and surrounding regions between 1990 and 2015 were used to study the seasonal and interannual variability of Bering Strait throughflow(BST). AO-FVCOM represented the BST with a climatological northward flux of 1.06 Sv, which was close to the observational mean of 0.94 ? 0.26 Sv. From the model results, the strongest volume flux was in summer, approximately 45% larger than that in winter. Interannual variability of BST was also indicated in the model results, and the maximum and minimum annual mean transports are in 2007 and 2012, respectively. AO-FVCOM showed larger differences from the observations in 2000, 2002, and 2015 than in other years, which may be related to the limitation of atmospheric forcing for the model. According to the driving mechanisms of BST, sea level difference(SLD) across the strait dominates the northward volume transport, and local wind is also important in forcing the seasonal variability of the BST and SLD patterns to change the BST indirectly.  相似文献   

18.
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.  相似文献   

19.
The nonwind-driven mechanism of the winter circulation in the northern South China Sea is discussed. Linked by the Bashi Strait to the Pacific Ocean, the northern South Cnina Sea is treated as a part of the Pacific western boundary where the circulation variation (except the very thin surface layer) is closely related to that of the ocean interior and the effect of local wind might be neglected (at least for some seasons). Based on the assumption that the thick and strong westward current which flows in through the Bashi Strait can effectively prevent water exchange between the northern and southern South China Seas, the model sea only includes the northern part. Barotropic numerical experiments show that part of this westward current is deflected by the continental slope and forms the slope area NE current—the South China Sea Warm Current. Besides, the topographical flow fed by the extension of the western boundary current and the anticyclonic eddy born near the eastern boundary are also fundamental components of the South China Sea Warm Current. The reflection of the incident Rossby waves by the continental slope is found to be of significance in the intensification of the South China Sea Warm Current. Contribution No. 1362 from Institute of Oceanology, Academia  相似文献   

20.
The Arctic is experiencing a significant warming trend as well as a decadal oscillation. The atmospheric circulation represented by the Polar Vortex and the sea ice cover show decadal variabilities, while it has been difficult to reveal the decadal oscillation from the ocean interior. The recent distribution of Russian hydrochemical data collected from the Arctic Basin provides useful information on ocean interior variabilities. Silicate is used to provide the most valuable data for showing the boundary between the silicate-rich Pacific Water and the opposite Atlantic Water. Here, it is assumed that the silicate distribution receives minor influence from seasonal biological productivity and Siberian Rivers outflow. It shows a clear maximum around 100m depth in the Canada Basin, along with a vertical gradient below 100 m, which provides information on the vertical motion of the upper boundary of the Atlantic Water at a decadal time scale. The boundary shifts upward (downward), as realized by the silicate reduction (increase) at a fixed depth, responding to a more intense (weaker) Polar Vortex or a positive (negative) phase of the Arctic Oscillation. A coupled ice-ocean model is employed to reconstruct this decadal oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号