首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By taking advantage of having depth profiles between contrasting lithologies from core samples of the Chinese Continental Scientific Drilling (CCSD) project, a combined study was carried out to examine changes in mineral H isotope, total water and hydroxyl contents in garnet and omphacite across the contacts between ultrahigh-pressure (UHP) eclogite and gneiss in the Sulu orogen, east-central China. The samples of interest were from two continuous core segments from the CCSD main hole at depths of 734.21-737.16 and 929.67-932.86 m, respectively. The results show δD values of −116‰ to  − 64‰ for garnet and −104‰ to −82‰ for omphacite, consistent with incorporation of meteoric water into protoliths of UHP metamorphic rocks by high-T alteration. Both equilibrium and disequilibrium H isotope fractionations were observed between garnet and omphacite, suggesting fluid-assisted H isotope exchange at local scales during amphibolite-facies retrogression. While bulk water analysis gave total H2O concentrations of 522-1584 ppm for garnet and 1170-20745 ppm for omphacite, structural hydroxyl analysis yielded H2O contents of 80-413 ppm for garnet and 228-412 ppm for omphacite. It appears that significant amounts of molecular H2O are present in the minerals, pointing to enhanced capacity of water storage in the UHP eclogite minerals. Hydrogen isotope variations in the transition between eclogite and gneiss show correlations with variations in their water contents. Petrographically, the degree of retrograde metamorphism generally increases with decreasing distance from the eclogite-gneiss boundary. Thus, retrograde metamorphism results in mineral reactions and H isotope variation. Because hydroxyl solubility in nominally anhydrous minerals decreases with dropping pressure, significant amounts of water are expected to be released from the minerals during decompression exhumation. Decompression exsolution of structural hydroxyl from 1 m3 volume of eclogite composed of only garnet and omphacite results in release of a quantitative estimate of 3.07-3.44 kg water that can form 140-156 kg amphibole during exhumation. Therefore, it is concluded that fluid for retrogression of the eclogites away from the eclogite-gneiss boundary was derived from the decompression exsolution of structural hydroxyl and molecular H2O in nominally anhydrous minerals. For the eclogites adjacent to gneiss, in contrast, the retrograde metamorphism was principally caused by aqueous fluid from the gneiss which is relatively rich in water. Consequently, both the origin and availability of metamorphic fluid during exhumation of deeply subducted continental crust are deciphered by this combined study focusing on the transitions and the retrograde processes between the felsic and mafic UHP rocks.  相似文献   

2.
Petrological and geochemical study of volatile bearing phases (fluid inclusions, amphibole, and nominally anhydrous minerals) in a spinel lherzolite xenolith suite from Quaternary lavas at Injibara (Lake Tana region, Ethiopian plateau) shows compelling evidence for metasomatism in the lithospheric mantle in a region of mantle upwelling and continental flood basalts. The xenolith suite consists of deformed (i.e., protogranular to porphyroclastic texture) Cl-rich pargasite lherzolites, metasomatized (LILE and Pb enrichment in clinopyroxene and amphibole) at T ? 1000 °C. Lherzolites contain chlorine-rich H2O-CO2 fluid inclusions, but no melt inclusions. Fluid inclusions are preserved only in orthopyroxene, while in olivine, they underwent extensive interaction with the host mineral. The metasomatic fluid composition is estimated: XCO2 = 0.64, XH2O = 0.33, XNa = 0.006, XMg = 0.006, XCl = 0.018, (salinity = 14-10 NaCl eq. wt.%, aH2O = 0.2, Cl = 4-5 mol.%). Fluid isochores correspond to trapping pressures of 1.4-1.5 GPa or 50-54 km depth (at T = 950 °C). Synchrotron sourced micro-infrared mapping (ELECTRA, Trieste) shows gradients for H2O-distribution in nominally anhydrous minerals, with considerable enrichment at grain boundaries, along intragranular microfractures, and around fluid inclusions. Total water amounts in lherzolites are variable from about 150 up to 400 ppm. Calculated trace-element pattern of metasomatic fluid phases, combined with distribution and amount of H2O in nominally anhydrous minerals, delineate a metasomatic Cl- and LILE-rich fluid phase heterogeneously distributed in the continental lithosphere. Present data suggest that Cl-rich aqueous fluids were important metasomatic agents beneath the Ethiopian plateau, locally forming a source of high water content in the peridotite, which may be easily melted. High Cl, LILE, and Pb in metasomatic fluid phases suggest the contribution of recycled altered oceanic lithosphere component in their source.  相似文献   

3.
The dacite pumice erupted from Mt. Pinatubo on June 15, 1991 (whole-rock, rhyolitic groundmass glasses and homogenized melt inclusions) has been analyzed using inductively coupled plasma-mass spectrometry (ICP-MS), nanosecond and femtosecond laser ablation ICP-MS and secondary ion mass spectrometry (SIMS) to evaluate its ore-forming potential. Data suggest that adakite magmas are metal-rich and concentrate ore metals during magmatic differentiation. Sulfides segregate in limited amounts under the hydrous, oxidizing conditions typical of adakitic magmas resulting in incompatible behavior for Au (6-22 ppb), Cu (26-77 ppm), and Pb, Mo, As, and Sb in melts of dacitic to rhyolitic compositions. Metal transfer from this adakite magma to the coexisting aqueous phase was favored by the peraluminous composition of the rhyolitic melt and high aqueous chloride concentrations. Mass balance calculations suggest that the pre-eruptive aqueous phase could have extracted a minimum of 100 t Au and 5 × 105 t Cu from the Mt. Pinatubo magma. Our data suggest that intrusives having adakitic signatures are genetically associated with Au-Cu and Cu-Mo mineralization, auriferous porphyry copper deposits, and epithermal gold veins. High H2O, Cl, Sr/Y, Pb/Ce, Mo/Ce, As/Ce and Sb/Ce in Mt. Pinatubo melts reflect the contribution of deep fluids derived from subducted sediments and altered MORBs in the dacite genesis. The slab-derived fluids carrying mobile elements are likely responsible for the enrichment of adakite magmas in gold, associated metals and H2O, and may explain the exceptional ore-forming potential of adakite magmatism.  相似文献   

4.
The solubility and incorporation mechanisms of water in synthetic and natural MgAl2O4 spinel have been investigated in a series of high-pressure/temperature annealing experiments. In contrast to most other nominally anhydrous minerals, natural spinel appears to be completely anhydrous. On the other hand, non-stoichiometric Al-rich synthetic (defect) spinel can accommodate several hundred ppm water in the form of structurally-incorporated hydrogen. Infrared (IR) spectra of hydrated defect spinel contain one main O-H stretching band at 3343-3352 cm−1 and a doublet consisting of two distinct O-H bands at 3505-3517 cm−1 and 3557-3566 cm−1. IR spectra and structural refinements based on single-crystal X-ray data are consistent with hydrogen incorporation in defect spinel onto both octahedral and tetrahedral O-O edges. Fine structure of O-H bands in IR spectra can be explained by partial coupling of interstitial hydrogen with cation vacancies, or by the effects of Mg-Al disorder on the tetrahedral site. The concentration of cation vacancies in defect spinel is a major control on hydrogen affinity. The commercial availability of large single crystals of defect spinel coupled with high water solubility and similarities in water incorporation mechanisms between hydrous defect spinel and hydrous ringwoodite (Mg2SiO4) suggests that synthetic defect spinel may be a useful low-pressure analogue material for investigating the causes and consequences of water incorporation in the lower part of Earth’s mantle transition zone.  相似文献   

5.
H2O diffusion in dacitic melt was investigated at 0.48-0.95 GPa and 786-893 K in a piston-cylinder apparatus. The diffusion couple design was used, in which a nominally dry dacitic glass makes one half and is juxtaposed with a hydrous dacitic glass containing up to ∼8 wt.% total water (H2Ot). H2O concentration profiles were measured on quenched glasses with infrared microspectroscopy. The H2O diffusivity in dacite increases rapidly with water content under experimental conditions, similar to previous measurements at the same temperature but at pressure <0.15 GPa. However, compared with the low-pressure data, H2O diffusion at high pressure is systematically slower. H2O diffusion profiles in dacite can be modeled by assuming molecular H2O (H2Om) is the diffusing species. Total H2O diffusivity DH2Ot within 786-1798 K, 0-1 GPa, and 0-8 wt.% H2Ot can be expressed as: where DH2Ot is in m2/s, T is temperature in K, P is pressure in GPa, K = exp(1.49 − 2634/T) is the equilibrium constant of speciation reaction (H2Om+O?2OH) in the melt, X = C/18.015/[C/18.015 + (100 − C)/33.82], C is wt.% of H2Ot, and 18.015 and 33.82 g/mol correspond to the molar masses of H2O and anhydrous dacite on a single oxygen basis. Compared to H2O diffusion in rhyolite, diffusivity in dacite is lower at intermediate temperatures but higher at superliquidus temperatures. This general H2O diffusivity expression can be applied to a broad range of geological conditions, including both magma chamber processes and volcanic eruption dynamics from conduit to the surface.  相似文献   

6.
Four nearly pure MgAl2O4 spinels, of both natural and synthetic occurrence, have been studied by means of X-ray single crystal diffraction and FTIR spectroscopy in order to detect their potential OH content. Absorption bands that can be assigned to OH incorporated in the spinel structure were only observed in spectra of a non-stoichiometric synthetic sample. The absorption intensity of two bands occurring at 3350 and 3548 cm−1 indicate an OH content of 90 ppm H2O. Based on correlations of OH vibrational frequencies and O-H?O distances, the observed absorption bands correspond to O-H?O distances of 2.77 and 2.99 Å, respectively, which is close to the values obtained by the structure refinements for VIO-Ounsh (2.825 Å) and IVO-O (3.001 Å). This indicates that one probable local position for hydrogen incorporation is the oxygens coordinating a vacant tetrahedral site. The present spectra demonstrate that the detection limit for OH in Fe-free spinels is in the range 10-20 ppm H2O. However, at appreciable Fe2+ levels, the detection of OH bands becomes hampered due to overlap with strong absorption bands caused by electronic d-d transitions in Fe2+ in the tetrahedral position.  相似文献   

7.
Water is an important volatile component in andesitic eruptions and deep-seated andesitic magma chambers. We report an investigation of H2O speciation and diffusion by dehydrating haploandesitic melts containing ?2.5 wt.% water at 743-873 K and 100 MPa in cold-seal pressure vessels. FTIR microspectroscopy was utilized to measure species [molecular H2O (H2Om) and hydroxyl group (OH)] and total H2O (H2Ot) concentration profiles on the quenched glasses from the dehydration experiments. The equilibrium constant of the H2O speciation reaction H2Om+O?2OH, K = (XOH)2/(XH2OmXO) where X means mole fraction on a single oxygen basis, in this Fe-free andesite varies with temperature as ln K = 1.547-2453/T where T is in K. Comparison with previous speciation data on rhyolitic and dacitic melts indicates that, for a given water concentration, Fe-free andesitic melt contains more hydroxyl groups. Water diffusivity at the experimental conditions increases rapidly with H2O concentration, contrary to previous H2O diffusion data in an andesitic melt at 1608-1848 K. The diffusion profiles are consistent with the model that molecular H2O is the diffusion species. Based on the above speciation model, H2Om and H2Ot diffusivity (in m2/s) in haploandesite at 743-873 K, 100 MPa, and H2Ot ? 2.5 wt.% can be formulated as
  相似文献   

8.
Fluid inclusions and clusters of water molecules at nanometer-to submicron-scale in size have been investigated using transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) in jadeite, quartz and symplectite aegirine–augite, albite, taramite and magnetite corona minerals from ultrahigh-pressure (UHP) jadeite–quartzite at Shuanghe, the Dabie Mountains, China. Fluid inclusions from 0.003 μm to 0.78 μm in size occur in jadeite and quartz crystals, and a small number of fluid inclusions from 0.001 μm to 0.25 μm have also been detected in symplectite-forming minerals. Most of the fluid inclusions have round or negative crystal morphology and contain aqueous fluids, but some contain CO2-rich fluids. They are usually connected to dislocations undetectable at an optical scale. The dislocations represent favorable paths for fluid leakage, accounting for non-decrepitation of most fluid inclusions when external pressure decreased at later stages, although there was partial decrepitation of some fluid inclusions unconnected to defect microstructures resulting from internal overpressure. Non-decrepitation and partial decrepitation of fluid inclusions resulted in changes of original composition and/or density. It is clear that identification of hidden re-equilibration features has significant implications for the petrological interpretation of post-peak metamorphic processes. Micro-FTIR results show that all jadeite and quartz samples contain structural water occurring as hydroxyl ions (OH) and free water (H2O) in the form of clusters of water molecules. The H2O transformed from OH during exhumation and could have triggered and enhanced early retrograde metamorphism of the host rocks and facilitated plastic deformation of jadeite and quartz grains by dislocation movement, and thus the H2O released during decompression might represent early-stage retrograde metamorphic fluid. The nominally anhydrous mineral (NAM) jadeite is able to transport aqueous fluids in concentrations of at least several hundred ppm water along a subduction zone to mantle depths in the form of clusters of water molecules and hydroxyl ions within crystals.  相似文献   

9.
A first experimental study was conducted to determine the equilibrium iron isotope fractionation between pyrrhotite and silicate melt at magmatic conditions. Experiments were performed in an internally heated gas pressure vessel at 500 MPa and temperatures between 840 and 1000 °C for 120-168 h. Three different types of experiments were conducted and after phase separation the iron isotope composition of the run products was measured by MC-ICP-MS. (i) Kinetic experiments using 57Fe-enriched glass and natural pyrrhotite revealed that a close approach to equilibrium is attained already after 48 h. (ii) Isotope exchange experiments—using mixtures of hydrous peralkaline rhyolitic glass powder (∼4 wt% H2O) and natural pyrrhotites (Fe1 − xS) as starting materials— and (iii) crystallisation experiments, in which pyrrhotite was formed by reaction between elemental sulphur and rhyolitic melt, consistently showed that pyrrhotite preferentially incorporates light iron. No temperature dependence of the fractionation factor was found between 840 and 1000 °C, within experimental and analytical precision. An average fractionation factor of Δ 56Fe/54Fepyrrhotite-melt = −0. 35 ± 0.04‰ (2SE, n = 13) was determined for this temperature range. Predictions of Fe isotope fractionation between FeS and ferric iron-dominated silicate minerals are consistent with our experimental results, indicating that the marked contrast in both ligand and redox state of iron control the isotope fractionation between pyrrhotite and silicate melt. Consequently, the fractionation factor determined in this study is representative for the specific Fe2+/ΣFe ratio of our peralkaline rhyolitic melt of 0.38 ± 0.02. At higher Fe2+/ΣFe ratios a smaller fractionation factor is expected. Further investigation on Fe isotope fractionation between other mineral phases and silicate melts is needed, but the presented experimental results already suggest that even at high temperatures resolvable variations in the Fe isotope composition can be generated by equilibrium isotope fractionation in natural magmatic systems.  相似文献   

10.
Reaction between dissolved water and sulphide was experimentally investigated in soda-lime-silicate (NCS) and sodium trisilicate (NS3) melts at temperatures from 1000 to 1200 °C and pressures of 100 or 200 MPa in internally heated gas pressure vessels. Diffusion couple experiments were conducted at water-undersaturated conditions with one half of the couple being doped with sulphide (added as FeS or Na2S; 1500-2000 ppm S by weight) and the other with H2O (∼3.0 wt.%). Additionally, two experiments were performed using a dry NCS glass cylinder and a free H2O fluid. Here, the melt was water-saturated at least at the melt/fluid interface. Profiling by electron microprobe (sulphur) and infrared microscopy (H2O) demonstrate that H2O diffusion in the melts is faster by 1.5-2.3 orders of magnitude than sulphur diffusion and, hence, H2O can be considered as a rapidly diffusing oxidant while sulphur is quasi immobile in these experiments.In Raman spectra a band at 2576 cm−1 appears in the sulphide - H2O transition zone which is attributed to fundamental S-H stretching vibrations. Formation of new IR absorption bands at 5025 cm−1 (on expense of the combination band of molecular H2O at 5225 cm−1) and at 3400 cm−1 was observed at the front of the in-diffusing water in the sulphide bearing melt. The appearance and intensity of these two IR bands is correlated with systematic changes in S K-edge XANES spectra. A pre-edge excitation at 2466.5 eV grows with increasing H2O concentration while the sulphide peak at 2474.0 eV decreases in intensity relative to the peak at 2477.0 eV and the feature at 2472.3 eV becomes more pronounced (all energies are relative to the sulphate excitation, calibrated to 2482.5 eV). The observations by Raman, IR and XANES spectroscopy indicate a well coordinated S2− - H2O complex which was probably formed in the glasses during cooling at the glass transition. No oxidation of sulphide was observed in any of the diffusion couple experiments. On the contrary, XANES spectra from experiments conducted with a free H2O fluid show complete transformation of sulphide to sulphate near the melt surface and coexistence of sulphate and sulphide in the center of the melt. This can be explained by a lower H2O activity in the diffusion couple experiments or by the need of a sink for hydrogen (e.g., a fluid which can dissolve high concentration of hydrogen) to promote oxidation of sulphide by H2O via the reaction S2− + 4H2O = SO42− + 4H2. Sulphite could not be detected in any of the XANES spectra implying that this species, if it exists in the melt, it is a subordinate or transient species only.  相似文献   

11.
Water speciation in rhyolitic melts with dissolved water ranging from 0.8 to 4 wt% under high pressure was investigated. Samples were heated in a piston-cylinder apparatus at 624-1027 K and 0.94-2.83 GPa for sufficient time to equilibrate hydrous species (molecular H2O and hydroxyl group, H2Om + O ? 2OH) in the melts and then quenched roughly isobarically. The concentrations of both hydrous species in the quenched glasses were measured with Fourier transform infrared (FTIR) spectroscopy. For the samples with total water content less than 2.7 wt%, the equilibrium constant (K) is independent of total H2O concentration. Incorporating samples with higher water contents, the equilibrium constant depends on total H2O content, and a regular solution model is used to describe the dependence. K changes with pressure nonmonotonically for samples with a given water content at a given temperature. The equilibrium constant does not change much from ambient pressure to 1 GPa, but it increases significantly from 1 to 3 GPa. In other words, more molecular H2O reacts to form hydroxyl groups as pressure increases from 1 GPa, which is consistent with breakage of tetrahedral aluminosilicate units due to compression of the melt induced by high pressure. The effect of 1.9 GPa (from 0.94 to 2.83 GPa) on the equilibrium constant at 873 K is equivalent to a temperature effect of 49 K (from 873 K to 922 K) at 0.94 GPa. The results can be used to evaluate the role of speciation in water diffusion, to estimate the apparent equilibrium temperature, and to infer viscosity of hydrous rhyolitic melts under high pressure.  相似文献   

12.
Diffusion of water was experimentally investigated for melts of albitic (Ab) and quartz-orthoclasic (Qz29Or71, in wt %) compositions with water contents in the range of 0 to 8.5 wt % at temperatures of 1100 to 1200 °C and at pressures of 1.0 and 5.0 kbar. Apparent chemical diffusion coefficients of water (D water) were determined from concentration-distance profiles measured by FTIR microspectroscopy. Under the same P-T condition and water content the diffusivity of water in albitic, quartz-orthoclasic and haplogranitic (Qz28Ab38 Or34, Nowak and Behrens, this issue) melts is identical within experimental error. Comparison to data published in literature indicates that anhydrous composition only has little influence on the mobility of water in polymerized melts but that the degree of polymerization has a large effect. For instance, Dwater is almost identical for haplogranitic and rhyolitic melts with 0.5–3.5 wt % water at 850 °C but it is two orders of magnitude higher in basaltic than in haplogranitic melts with 0.2–0.5 wt % water at 1300 °C. Based on the new water diffusivity data, recently published in situ near-infrared spectroscopic data (Nowak 1995; Nowak and Behrens 1995), and viscosity data (Schulze et al. 1996) for hydrous haplogranitic melts current models for water diffusion in silicate melts are critically reviewed. The NIR spectroscopy has indicated isolated OH groups, pairs of OH groups and H2O molecules as hydrous species in polymerized silicate melts. A significant contribution of isolated OH groups to the transport of water is excluded for water contents above 10 ppm by comparison of viscosity and water diffusion data and by inspection of concentration profiles from trace water diffusion. Spectroscopic measurements have indicated that the interconversion of H2O molecules and OH pairs is relatively fast in silicate glasses and melts even at low temperature and it is inferred that this reaction is an active step for migration of water. However, direct jumps of H2O molecules from one cavity within the silicate network to another one can not be excluded. Thus, we favour a model in which water migrates by the interconversion reaction and, possibly, small sequences of direct jumps of H2O molecules. In this model, immobilization of water results from dissociation of the OH pairs. Assuming that the frequency of the interconversion reaction is faster than that of diffusive jumps, OH pairs and water molecules can be treated as a single diffusing species having an effective diffusion coefficient . The shape of curves of Dwater versus water content implies that increases with water content. The change from linear to exponential dependence of Dwater between 2 and 3 wt % water is attributed to the influence of the dissociation reaction at low water content and to the modification of the melt structure by incorporation of OH groups. Received: 26 March 1996 / Accepted: 23 August 1996  相似文献   

13.
Solubility and solution mechanisms of H2O in depolymerized melts in the system Na2O-Al2O3-SiO2 were deduced from spectroscopic data of glasses quenched from melts at 1100 °C at 0.8-2.0 GPa. Data were obtained along a join with fixed nominal NBO/T = 0.5 of the anhydrous materials [Na2Si4O9-Na2(NaAl)4O9] with Al/(Al+Si) = 0.00-0.25. The H2O solubility was fitted to the expression, XH2O=0.20+0.0020fH2O-0.7XAl+0.9(XAl)2, where XH2O is the mole fraction of H2O (calculated with O = 1), fH2O the fugacity of H2O, and XAl = Al/(Al+Si). Partial molar volume of H2O in the melts, , calculated from the H2O-solulbility data assuming ideal mixing of melt-H2O solutions, is 12.5 cm3/mol for Al-free melts and decreases linearly to 8.9 cm3/mol for melts with Al/(Al+Si) ∼ 0.25. However, if recent suggestion that is composition-independent is applied to constrain activity-composition relations of the hydrous melts, the activity coefficient of H2O, , increases with Al/(Al+Si).Solution mechanisms of H2O were obtained by combining Raman and 29Si NMR spectroscopic data. Degree of melt depolymerization, NBO/T, increases with H2O content. The rate of NBO/T-change with H2O is negatively correlated with H2O and positively correlated with Al/(Al+Si). The main depolymerization reaction involves breakage of oxygen bridges in Q4-species to form Q2 species. Steric hindrance appears to restrict bonding of H+ with nonbridging oxygen in Q3 species. The presence of Al3+ does not affect the water solution mechanisms significantly.  相似文献   

14.
Micro-Raman spectroscopy, even though a very promising technique, is not still routinely applied to analyse H2O in silicate glasses. The accuracy of Raman water determinations critically depends on the capability to predict and take into account both the matrix effects (bulk glass composition) and the analytical conditions on band intensities. On the other hand, micro-Fourier transform infrared spectroscopy is commonly used to measure the hydrous absorbing species (e.g., hydroxyl OH and molecular H2O) in natural glasses, but requires critical assumptions for the study of crystal-hosted glasses. Here, we quantify for the first time the matrix effect of Raman external calibration procedures for the quantification of the total H2O content (H2OT = OH + H2Om) in natural silicate glasses. The procedures are based on the calibration of either the absolute (external calibration) or scaled (parameterisation) intensity of the 3550 cm−1 band. A total of 67 mafic (basanite, basalt) and intermediate (andesite) glasses hosted in olivines, having between 0.2 and 4.8 wt% of H2O, was analysed. Our new dataset demonstrates, for given water content, the height (intensity) of Raman H2OT band depends on glass density, reflectance and water environment. Hence this matrix effect must be considered in the quantification of H2O by Raman spectroscopy irrespective of the procedure, whereas the parameterisation mainly helps to predict and verify the self-consistency of the Raman results. In addition, to validate the capability of the micro-Raman to accurately determine the H2O content of multicomponent aluminosilicate glasses, a subset of 23 glasses was analysed by both micro-Raman and micro-FTIR spectroscopy using the band at 3550 cm−1. We provide new FTIR absorptivity coefficients (ε3550) for basalt (62.80 ± 0.8 L mol−1 cm−1) and basanite (43.96 ± 0.6 L mol−1 cm−1). These values, together with an exhaustive review of literature data, confirm the non-linear decline of the FTIR absorptivity coefficient (ε3550) as the glass depolymerisation increases. We demonstrate the good agreement between micro-FTIR and micro-Raman determination of H2O in silicate glasses when the matrix effects are properly considered.  相似文献   

15.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

16.
We studied the systematics of Cl, F and H2O in Izu arc front volcanic rocks using basaltic through rhyolitic glass shards and melt inclusions (Izu glasses) from Oligocene to Quaternary distal fallout tephra. These glasses are low-K basalts to rhyolites that are equivalent to the Quaternary lavas of the Izu arc front (Izu VF). Most of the Izu glasses have Cl ∼400-4000 ppm and F ∼70-400 ppm (normal-group glasses). Rare andesitic melt inclusions (halogen-rich andesites; HRA) have very high abundances of Cl (∼6600-8600 ppm) and F (∼780-910 ppm), but their contents of incompatible large ion lithophile elements (LILE) are similar to the normal-group glasses. The preeruptive H2O of basalt to andesite melt inclusions in plagioclase is estimated to range from ∼2 to ∼10 wt% H2O. The Izu magmas should be undersaturated in H2O and the halogens at their preferred levels of crystallization in the middle to lower crust (∼3 to ∼11 kbar, ∼820° to ∼1200°C). A substantial portion of the original H2O is lost due to degassing during the final ascent to surface. By contrast, halogen loss is minor, except for loss of Cl from siliceous dacitic and rhyolitic compositions. The behavior of Cl, F and H2O in undegassed melts resembles the fluid mobile LILE (e.g.; K, Rb, Cs, Ba, U, Pb, Li). Most of the Cl (>99%), H2O (>95%) and F (>53%) in the Izu VF melts appear to originate from the subducting slab. At arc front depths, the slab fluid contains Cl = 0.94 ± 0.25 wt%, F = 990 ± 270 ppm and H2O = 25 ± 7 wt%. If the subducting sediment and the altered basaltic crust were the only slab sources, then the subducted Cl appears to be almost entirely recycled at the Izu arc (∼77-129%). Conversely, H2O (∼13-22% recycled at arc) and F (∼4-6% recycled) must be either lost during shallow subduction or retained in the slab to greater depths. If a seawater-impregnated serpentinite layer below the basaltic crust were an additional source of Cl and H2O, the calculated percentage of Cl and H2O recycled at arc would be lower. Extrapolating the Izu data to the total length of global arcs (∼37,000 km), the global arc outflux of fluid-recycled Cl and H2O at subduction zones amounts to Cl ∼2.9-3.8 × 1012 g/yr and H2O ∼0.7-1.0 × 1014 g/yr, respectively—comparable to previous estimates. Further, we obtain a first estimate of global arc outflux of fluid-recycled F of ∼0.3-0.4 × 1012g/yr. Despite the inherent uncertainties, our results support models suggesting that the slab becomes strongly depleted in Cl and H2O in subduction zones. In contrast, much of the subducted F appears to be returned to the deep mantle, implying efficient fractionation of Cl and H2O from F during the subduction process. However, if slab devolatilization produces slab fluids with high Cl/F (∼9.5), slab melting will still produce components with low Cl/F ratios (∼0.9), similar to those characteristic of the upper continental crust (Cl/F ∼0.3-0.9).  相似文献   

17.
The mechanism and rate of hydration of rhyolitic glass during weathering were studied. Doubly polished thin sections of two rhyolites with different duration of weathering (Ohsawa lava: 26,000 yr, Awanomikoto lava: 52,000 yr) were prepared. Optical microscope observation showed that altered layers had developed along the glass surfaces. IR spectral line profile analysis was conducted on the glass sections from the surface to the interior for a length of 250 μm and the contents of molecular H2O (H2Om), OH species (OH) and total water (H2Ot) were determined. The diffusion profile of H2Om in Ohsawa lava extends beyond the layer observed by optical microscope. The content of H2Om in the hydrated region is much higher than that of OH species. Thus, the reaction from H2Om to OH appears to be little and H2Om is the dominant water species moving into the glass during weathering. Based on the concentration profiles, the diffusion coefficients of H2Om(DH2Om) and H2Ot(DH2Ot) were determined to be 2.8 × 10−10 and 3.4 × 10−10 μm2 s−1 for Ohsawa lava, and 5.2 × 10−11 and 4.1 × 10−11 μm2 s−1 for Awanomikoto lava, respectively. The obtained DH2Om during weathering are more than 2-3 orders of magnitude larger than the diffusion coefficient at ∼20 °C that is extrapolated from the diffusivity data for >400 °C. This might suggest that the mechanism of water transport is different at weathering conditions and >400 °C.  相似文献   

18.
The Newtonian viscosity of synthetic rhyolitic liquids with 0.15-5.24 wt% dissolved water was determined in the interval between 580 and 1640 °C and pressures of 1 atm and 5-25 kbar. Measurements were performed by combining static and accelerated (up to 1000g) falling sphere experiments on water-bearing samples, with high temperature concentric cylinder experiments on 0.15 wt% H2O melts. These methods allowed viscosity determinations between 102 and 107 Pa s, and cover the complete range of naturally occurring magmatic temperatures, pressures, and H2O-contents for rhyolites.Our viscosity data, combined with those from previous studies, were modeled by an expression based on the empirical Vogel-Fulcher-Tammann equation, which describes viscosities and derivative properties (glass transition temperature Tg, fragility m, and activation volume of viscous flow Va) of silicic liquids as a function of P-T-X(H2O). The fitted expressions do not account for composition-dependent parameters other than X(H2O) and reproduce the entire viscosity database for silicic liquids to within 3.0% average relative error on log η (i.e. std. error of estimate of 0.26 log units).The results yield the expected strong decrease of viscosity with temperature and water content, but show variable pressure dependencies. Viscosity results to be strongly affected by pressure at low pressures; an effect amplified at low temperatures and water contents. Fragility, as a measure for the deviation from Arrhenian behavior, decreases with H2O-content but is insensitive to pressure. Activation volumes are always largely negative (e.g., less than −10 cm3/mol) and increase strongly with H2O-content. Variations in melt structure that may account for the observed property variations are discussed.  相似文献   

19.
A 2.4-year controlled-cooling-rate experiment was carried out to investigate the dependence of hydrous species concentrations in rhyolitic melt on cooling rate. The experiment allows us to obtain speciation for a cooling rate of 1.68 × 10−6 K/s, extending previous experimental data by two orders of magnitude. Furthermore, a viscosity as high as 1017.2 Pa s is inferred for this hydrous rhyolitic melt with 0.85 wt% total H2O at 671 K. The results are applied to examine whether a geospeedometry model and four viscosity models may be extrapolated to slower cooling rates or lower temperatures. Two of the viscosity models and the geospeedometry model can be extrapolated by two orders of magnitude upwards in terms of viscosity or downwards in terms of cooling rate.  相似文献   

20.
The development of an accurate analytical procedure for determination of dissolved water in complex alumino-silicate glasses via micro-Raman analysis requires the assessment of the spectra topology dependence on glass composition. We report here a detailed study of the respective influence of bulk composition, iron oxidation state and total water content on the absolute and relative intensities of the main Raman bands related to glass network vibrations (LF: ∼490 cm−1; HF: ∼960 cm−1) and total water stretching (H2OT: ∼3550 cm−1) in natural glasses. The evolution of spectra topology was examined in (i) 33 anhydrous glasses produced by the re-melting of natural rock samples, which span a very large range of polymerisation degree (NBO/T from 0.00 to 1.16), (ii) 2 sets of synthetic anhydrous basaltic glasses with variable iron oxidation state (Fe3+/FeT from 0.05 to 0.87), and (iii) 6 sets of natural hydrous glasses (CH2OT from 0.4 to 7.0 wt%) with NBO/T varying from 0.01 to 0.76.In the explored domain of water concentration, external calibration procedure based on the H2OT band height is matrix-independent but its accuracy relies on precise control of the focusing depth and beam energy on the sample. Matrix-dependence strongly affects the internal calibrations based on H2OT height scaled to that of LF or HF bands but its effect decreases from acid (low NBO/T, SM) to basic (high NBO/T, SM) glasses. Structural parameters such as NBO/T (non-bridging oxygen per tetrahedron) and SM (sum of structural modifiers) describe the matrix-dependence better than simple compositional parameters (e.g. SiO2, Na2O + K2O). Iron oxidation state has only a minor influence on band topology in basalts and is thus not expected to significantly affect the Raman determinations of water in mafic (e.g. low SiO2, iron-rich) glasses. Modelling the evolution of the relative band height with polymerisation degree allows us to propose a general equation to predict the dissolved water content in natural glasses:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号