首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Typological study, including paragenic, morphological, textural, and chemical characteristics of zircon from nine rare metal granitic stocks and associated greisens, was carried out in order to identify the metallogenic processes of their host granitoids. The investigated zircon‐bearing granitoids and type occurrences can be categorized into magmatically and metasomatically specialized types. The magmatic type includes: (i) peralkaline, Zr + Nb‐enriched, A1‐granite (e.g. Um Hibal); (ii) metaluminous, Nb + Zr + Y‐enriched, A2‐type alkali granite (e.g. Hawashia and Ineigi); and (iii) peraluminous, Ta ≥ Nb + Sn + Be ± W‐enriched, Li‐albite granite (e.g. Nuweibi, Igla and Abu Dabbab). The metasomatized granites are Nb>>Ta + Sn + Zr + Y + U ± Be ± W‐enriched and hydrothermally altered alkali feldspar granite (i.e. apogranite; e.g. Um Ara, Abu Rusheid, and Um Naggat). Zircon of peralkaline granite is characteristically equant with well‐developed pyramidal faces and short prisms (i.e. pseudo‐octahedral form) with length/width ratios in the range of 2:1–1:1. It is of Zr0.990Hf0.007SiO4 composition and is associated with hypersolvus assemblage consisting of alkali feldspar, quartz, aegirine and minor reibeckite. Zircon of metaluminous alkali granites is of Zr0.99Hf0.01SiO4 composition and is associated with sub‐ to transolvus assemblage of K‐feldspar, quartz, plagioclase and annite‐siderophyllite mica. It is prismatic with length/width ratios in the range of 5:1–3:1, doubly terminated with small pyramidal faces. Compositionally, zircon of Li‐albite granite ranges between Zr0.925Hf0.075SiO4 and Zr0.705Hf0.295SiO4. It is idiomorphic with a simple combination of prism and bipyramidal terminations with a length/width ratio of 3:1–2:1. This zircon commonly exhibits a normal zoning with rims consistently higher in Hf than cores. The higher Hf content, of this zircon coupled with its association with topaz, tantalite and lithian micas (e.g. zinnwaldite and Li‐white mica), indicates a higher solubility of Hf‐fluoride complexes and their more stabilized state at lower temperature in Li‐ and F‐rich sodic melts. Zircon of apogranite association ranges in composition between Zr0.967Hf0.013SiO4 in the lower unaltered alkali feldspar granite zone and Zr0.805Hf0.064(Y, U, Th, heavy rare‐earth elements) [HREE])0.125SiO4 in the apical metasomatized (i.e. microclinized, albitized, and greisenized) apogranite zones. This compositional change appears to reflect a roofward increasing in μKF, μNaF, and μHF of the exsolved fluids. Columbite, xenotime, thorite, cassiterite, beryl and fluorite are common associates of this zircon. This zircon is of bipyramidal to typical octahedral form with complete absence of prism concurrently with conspicuous development of pyramid, thus the zircon crystals have a length/width ratio of 1:1–0.5:1. The neoformed metasomatic zircon commonly exhibits either normal or reverse zoning with rims consistently different in Hf, U, Y, and HREE than cores, reflecting disequilibrium conditions (e.g. sudden change in P, T, salinity, and pH) between the growing crystals and the exsolved fluids.  相似文献   

2.
The Sakharjok Y-Zr deposit in Kola Peninsula is related to the fissure alkaline intrusion of the same name. The intrusion ∼7 km in extent and 4–5 km2 in area of its exposed part is composed of Neoarchean (2.68–2.61 Ma) alkali and nepheline syenites, which cut through the Archean alkali granite and gneissic granodiorite. Mineralization is localized in the nepheline syenite body as linear zones 200–1350 m in extent and 3–30 m in thickness, which strike conformably to primary magmatic banding and trachytoid texture of nepheline syenite. The ore is similar to the host rocks in petrography and chemistry and only differs from them in enrichment in zircon, britholite-(Y), and pyrochlore. Judging from geochemical attributes (high HSFE and some incompatible element contents (1000–5000 ppm Zr, 200–600 ppm Nb, 100–500 ppm Y, 0.1–0.3 wt % REE, 400–900 ppm Rb), REE pattern, Th/U, Y/Nb, and Yb/Ta ratios), nepheline syenite was derived from an enriched mantle source similar to that of contemporary OIB and was formed as an evolved product of long-term fractional crystallization of primary alkali basaltic melt. The ore concentrations are caused by unique composition of nepheline syenite magma (high Zr, Y, REE, Nb contents), which underwent subsequent intrachamber fractionation. Mineralogical features of zircon-the main ore mineral—demonstrate its long multistage crystallization. The inner zones of prismatic crystals with high ZrO2/HfO2 ratio (90, on average) grew during early magmatic stage at a temperature of 900–850°C. The inner zones of dipyramidal crystals with average ZrO2/HfO2 = 63 formed during late magmatic stage at a temperature of ∼500°C. The zircon pertaining to the postmagmatic hydrothermal stage is distinguished by the lowest ZrO2/HfO2 ratio (29, on average), porous fabric, abundant inclusions, and crystallization temperature below 500°C. The progressive decrease in ZrO2/HfO2 ratio was caused by evolution of melt and postmagmatic solution. The metamorphic zircon rims relics of earlier crystals and occurs as individual rhythmically zoned grains with an averaged ZrO2/HfO2 ratio (45, on average) similar to that of the bulk ore composition. The metamorphic zircon is depleted in uranium in comparison with magmatic zircon, owing to selective removal of U by aqueous metamorphic solutions. Zircon from the Sakharjok deposit is characterized by low concentrations of detrimental impurities, in particular, contains only 10–90 ppm U and 10–80 ppm Th, and thus can be used in various fields of application.  相似文献   

3.
This paper reports the results of a geochemical investigation of zircon from a migmatized aluminous gneiss (gn), melanosome (M), and sequential leucosome generations (Lc2, Lc3, Lc4, and Lc5) from an outcrop in the northwestern Ladoga region. The contents of REE, Y, Ti, Hf, Th, U, and P were determined using a Cameca IMS-4f ion microprobe in 12 zircon grains from the aforementioned rocks, in two-three spots in each grain. All of the specimens show rather uniform REE distribution patterns. More significant variations were observed in the light and medium REE (at smaller variations in the heavy REE), as well as in Ti, Y, Th, and U contents between zircons from the host rocks and from the leucosomes. It was supposed that REE-rich zircons from the gneiss and melanosome (without oscillatory zoning) are relics, whereas rhythmically zoned zircons with lower REE contents crystallized in the gneiss in the presence of dispersed anatectic melt. The contents of most REE and Y increase from core to rim in zircons from the gneiss, melanosome, Lc2, Lc4, and Lc5, which is opposite to the compositional trend of zircons from Lc3. It was shown that the decrease of HREE and Y content in zircon in the sequence Lc5gn → Lc2, Lc3, Lc4 is related to a decrease in the abundance of these elements in the rocks. The leucosomes do not correspond to a differentiation series of a single melt (there is no variation trends of Rb/Sr, K/Rb, and Rb/Ba in the rock series). The lower Lu/Hf and Sm/Nd values in the leucosomes relative to the host rocks allowed us to suppose that their protolith was gneisses (for Lc2) and migmatites (for Lc4 and Lc3). The similarity of the early migmatites and gneisses to Lc3 with respect to major and some trace elements and almost identical Lu/Hf and Sm/Nd values support the possibility of the formation of this leucosome generation during the beginning of the diatexis of migmatites, which was promoted by a temperature increase. This resulted in a specific trend in the content of some elements during zircon growth in Lc3, which is different from the trend of zircons from other leucosomes.  相似文献   

4.
The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), A12O3 (>13%) and Na2O+K2O (6.28%-7.33%, equal for NaO2 and K2O). Trace element and REE analyses show that the granite is rich in LILE such as of Rb, Sr, Ba and Th, and poor in HFSE like Yb, Y, Zr and Hf. Its Rb/Sr ratio is greater than 1; the contents of Nb and Ta, and the ratio of Nb/Ta as well as the REE geochemical features (e.g. REE abundance, visible fractionation of LREE and HREE and medium to pronounced negative Eu anomalies) are all similar to those of crust-origin, continent-continent syn-collisional granite. Moreover, the granite exhibits almost the same pattern as that of the typical continent-continent syn-collisional granite on the spider diagram and all samples fall within the syn-collisional granite field.The cathodoluminescence (CL) investigations have revealed that the zircon f  相似文献   

5.
Exposures in many quarries in southern India exhibit field evidence for incipient charnockitization of tonalitic and granitic gneiss (prograde relationship), or retrogression of charnockite to produce tonalitic gneiss (retrograde relationship). Few systematic geochemical relationships exist between adjacent gneisscharnockite sample pairs during either prograde or retrograde reactions. Most elements and element ratios exhibit inconsistent variations; however, prograde chamockites appear enriched in Ta, Pb, volatiles (chiefly CO2), and in transition metals relative to Mg, and depleted in REE and Y compared to adjacent gneiss protoliths. Retrograde gneisses have higher Rb, Pb, Th, Hf, Zn relative to Co, Nb relative to Ta, Hf relative to Zr, and volatiles (chiefly H2O) compared to parental charnockites. Of those elements (U, Th, Rb, Cs, Pb) significantly depleted in high-pressure charnockites exposed south of the prograde transition zone, only Pb is significantly replenished during retrogression. Evidence suggests that prograde fluids are relatively rich in CO2 and retrograde fluids in H2O and that the typical non-systematic geochemical variations during prograde and retrograde reactions reflect local effects at the wave front.  相似文献   

6.
Extremely U-depleted (<1 ppm) zircons from H8 banded ores in the East Orebody of the Bayan Obo REE–Nb–Fe deposit are presented, with mineral compositions, textures, 232Th–208Pb SHRIMP ages and petrological context. Cores of East Orebody zircon contain up to 7 wt% HfO2 and are zoned, depicting bipyramidal crystal forms. A distinct generation of patchy, epitaxial rim zircon, similarly depleted in U, is intergrown with rare earth ore minerals (bastnäsite, parisite, monazite). Overprinting aegirine textures indicate paragenetically late, reactive Na-rich fluids. Chondrite-normalized REE patterns without Eu anomalies match closely with those from the Mud Tank and Kovdor carbonatitic zircons. Increased HREE in rims ((Lu/Gd)N 43–112) relative to cores ((Lu/Gd)N 6–7.5) and the localized presence of xenotime are attributable to reactive, mineralizing fluid compositions enriched in Y, REE and P. Cathodoluminescence further reveals HREE fractionation in rims, evidenced by a narrow-band Er3+ emission at 405 nm. The extreme depletion of U in core and rim zircon is characteristic for this mineral deposit and is indicative of a persistent common source. U depletion is also a characteristic for zircons from carbonatitic or kimberlitic systems. 232Th–208Pb (SHRIMP II) geochronological data reveal the age of zircon cores as 1,325 ± 60 Ma and a rim-alteration event as 455.6 ± 28.27 Ma. The combined findings are consistent with a protolithic igneous origin for zircon cores, from a period of intrusive, alkaline–carbonatitic magmatism. Fluid processes responsible for the REE–Nb mineralizations affected zircon rim growth and degradation during the widely reported Caledonian events, providing a new example in a localized context of HREE enrichment processes.  相似文献   

7.
The Late Cenozoic volcanics of the Lesser Caucasus have similar trace-element and REE patterns with negative anomalies of Nb, Ta, Hf, and Zr. They are highly enriched in Rb, Ba, Th, and La and depleted in Ti, Yb, and Y with respect to N-MORB, which indicates their formation from the subduction-metasomatized lithospheric mantle. Partial melting of the subcontinental mantle lithosphere and crustal assimilation and fractional crystallization controlled the magma evolution in the collisional magmatic belts.  相似文献   

8.
滇东南老君山地区发育猛洞岩群前寒武系斜长角闪岩,呈港湾状分布在片岩、片麻岩中,并为后期变质-变形作用叠加改造。斜长角闪岩SiO_2质量分数为47.0%~50.4%,西蒙尼图解、DF及A-K图解均显示其原岩为正变质岩,因此推测为一套变质基性岩。斜长角闪岩地球化学特征显示,稀土总量w(ΣREE)=(214~267)×10~(-6),高于洋岛玄武岩,其配分模式与洋岛玄武岩相似,为轻稀土富集的右倾曲线;蛛网图显示Ba、Zr、Hf、Y元素亏损,富集Rb、Th、Ta、Nb、Ce、Sm元素,与板内碱性玄武岩特征类似;Zr/TiO_2-Nb/Y、TiO_2-10MnO-10P_2O_5、La/10-Nb/8-Y/15、Th/Zr-Nb/Zr、Th/Hf-Ta/Hf等判别图解显示,原岩为一套亚碱性—碱性玄武岩岩浆系列,其形成可能与大陆裂谷环境有关。角闪石及斜长石内部指示的(亚)显微结构较为发育,主要有自由位错、位错列,偶见位错环或位错偶极,与角闪石-斜长石矿物对获得的平均温度和压力(646℃、0.88GPa)一致,最高变质程度达低角闪岩相;同时,前人获得榍石U-Pb年代学及南温河片麻岩状花岗岩变质增生锆石均为230 Ma左右,代表印支期构造-热事件,此时老君山变质核杂岩雏形开始形成。  相似文献   

9.
Data are reported for rare earth elements (REE), Y, Th, Zr, Hf, Nb and Ta in four geological reference materials using sodium peroxide (Na2O2) sintering and inductively coupled plasma-mass spectrometry. The described procedure was used by students during their thesis work. A compilation of their reference material data acquired over one year of laboratory work demonstrates the ease and reliability of the method and the high reproducibility of the analytical results. Relative standard deviations of up to thirty six measurements of one reference material were lower than 5% for Y and the REE. Reproduciblities of Zr, Hf, Nb, Ta and Th were higher at between 5% and 10%, and can be attributed to the inhomogeneous distribution of zircon and other trace mineral phases and uncorrected drift effects. The concentration data are compared to reference and literature values and demonstrate that the procedure is also accurate. New data on G-3 show some systematic deviations from G-2, which are statistically significant.  相似文献   

10.
Most rare-metal granites in South China host major W deposits with few or without Ta–Nb mineralization. However, the Yashan granitic pluton, located in the Yichun area of western Jiangxi province, South China, hosts a major Nb–Ta deposit with minor W mineralization. It is thus important for understanding the diversity of W and Nb–Ta mineralization associated with rare-metal granites. The Yashan pluton consists of multi-stage intrusive units, including the protolithionite (-muscovite) granite, Li-mica granite and topaz–lepidolite granite from the early to late stages. Bulk-rock REE contents and La/Yb ratios decrease from protolithionite granite to Li-mica granite to topaz–lepidolite granite, suggesting the dominant plagioclase fractionation. This variation, together with increasing Li, Rb, Cs and Ta but decreasing Nb/Ta and Zr/Hf ratios, is consistent with the magmatic evolution. In the Yashan pluton, micas are protolithionite, muscovite, Li-mica and lepidolite, and zircons show wide concentration ranges of ZrO2, HfO2, UO2, ThO2, Y2O3 and P2O5. Compositional variations of minerals, such as increasing F, Rb and Li in mica and increasing Hf, U and P in zircon are also in concert with the magmatic evolution from protolithionite granite to Li-mica granite to topaz–lepidolite granite. The most evolved topaz–lepidolite granite has the highest bulk-rock Li, Rb, Cs, F and P contents, consistent with the highest contents of these elements and the lowest Nb/Ta ratio in mica and the lowest Zr/Hf ratio in zircon. Ta–Nb enrichment was closely related to the enrichment of volatile elements (i.e. Li, F and P) in the melt during magmatic evolution, which raised the proportion of non-bridging oxygens (NBOs) in the melt. The rims of zoned micas in the Li-mica and topaz–lepidolite granites contain lower Rb, Cs, Nb and Ta and much lower F and W than the cores and/or mantles, indicating an exotic aqueous fluid during hydrothermal evolution. Some columbite-group minerals may have formed from exotic aqueous fluids which were originally depleted in F, Rb, Cs, Nb, Ta and W, but such fluids were not responsible for Ta–Nb enrichment in the Yashan granite. The interaction of hydrothermal fluids with previously existing micas may have played an important role in leaching, concentrating and transporting W, Fe and Ti. Ta–Nb enrichment was associated with highly evolved magmas, but W mineralization is closely related to hydrothermal fluid. Thus these magmatic and hydrothermal processes explain the diversity of W and Ta–Nb mineralizations in the rare-metal granites.  相似文献   

11.
The petrographic and geochemical features of two zoisite–celsian gneiss outcrops from the Berisal Complex, characterised by a syn-kinematic mineral assemblage that contains celsian and barium white micas and a maximum whole-rock BaO content of 8.36 wt%, are described. The outcrops are enclosed in a larger body of garnet-bearing two-mica augen-gneiss, which has intrusive contacts with the surrounding garnet–biotite–muscovite paragneiss, and also contains small outcrops of two-mica clinozoisite gneiss. The zoisite–celsian gneisses are strongly enriched in all alkaline-earth elements, are depleted in the alkali elements, and have high Zr/Hf and Nb/Ta ratios compared with the surrounding gneisses. The zoisite–celsian, two-mica clinozoisite, and garnet-bearing two-mica augen-gneisses have Al/CNK molar ratios >1, and the zoisite–celsian gneisses are also enriched in Zr, Y, and Nb. Chondrite-normalised patterns for the rare earth elements (REE) show light REE enrichment, with a negative Eu anomaly. On the basis of field and geochemical data it is argued that the barium anomalies in the Berisal complex are the result of igneous fractionation of barium into anorthosite-dominated cognate inclusions within a larger volume of calc-alkaline peraluminous melt. On the basis of U–Pb zircon ages, a conservative estimate for the age of magma crystallisation is placed at 460 ± 10 Ma, and thus was related to significant late Ordovician granitoid magmatism in Gondwana-derived microcontinents during collision between Avalonia-Cadomia and Gondwana.  相似文献   

12.
The two drill holes, which penetrated sub‐horizontal rare earth element (REE) ore units at the Nechalacho REE in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify the enrichment mechanism of the high‐field‐strength elements (HFSE: Zr, Nb and REE). The REE ore units occur in the albitized and potassic altered miaskitic syenite. Zircon is the most common REE mineral in the REE ore units, and is divided into five types as follows: Type‐1 zircon occurs as discrete grains in phlogopite, and has a chemical character similar to igneous zircon. Type‐2 zircon consists of a porous HREE‐rich core and LREE–Nb–F‐rich rim. Enrichment of F in the rim of type‐2 zircon suggests that F was related to the enrichment of HFSE. The core of type‐2 zircon is regarded to be magmatic and the rim to be hydrothermal in origin. Type‐3 zircon is characterized by euhedral to anhedral crystals, which occur in a complex intergrowth with REE fluorocarbonates. Type‐3 zircon has high REE, Nb and F contents. Type‐4 zircon consists of porous‐core and ‐rim, but their chemical compositions are similar to each other. This zircon is a subhedral crystal rimmed by fergusonite. Type‐5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircon grains are filled by fergusonite. Type‐4 and type‐5 zircon grains have low REE, Nb and F contents. Type‐1 zircon is only included in one unit, which is less hydrothermally altered and mineralized. Type‐2 and type‐3 zircon grains mainly occur in the shallow units, while those of type‐4 and type‐5 are found in the deep units. The deep units have high HFSE contents and strongly altered mineral textures (type‐4 and type‐5) compared to the shallow units. Occurrences of these five types of zircon are different according to the depth and degree of the hydrothermal alteration by solutions rich in F and CO3, which permit a model for the evolution of the zircon crystallization in the Nechalacho REE deposit as follows: (i) type‐1 (discrete magmatic zircon) is formed in miaskitic syenite. (ii) LREE–Nb–F‐rich hydrothermal zircon formed around HREE‐rich magmatic zircon (type‐2). (iii) type‐3 zircon crystallized through the F and CO3‐rich hydrothermal alteration of type‐2 zircon which formed the complex intergrowth with REE fluorocarbonates; (iv) the CO3‐rich hydrothermal fluid corroded type‐3, forming REE–Nb‐poor zircon (type‐4). Niobium and REE were no longer stable in the zircon structure and crystallized as fergusonite around the REE–Nb‐leached zircon (type‐4); (v) type‐5 zircon is formed by the more CO3‐rich hydrothermal alteration of type‐4 zircon, suggested by the fact that type‐4 and type‐5 zircon grains are often included in ankerite. Type‐3 to type‐5 zircon grains at the Nechalacho REE deposit were continuously formed by leaching and/or dissolution of type‐2 zircon in the presence of F‐ and/or CO3‐rich hydrothermal fluid. These mineral associations indicate that three representative hydrothermal stages were present and related to HFSE enrichment in the Nechalacho REE deposit: (i) F‐rich hydrothermal stage caused the crystallization of REE–Nb‐rich zircon (type‐2 rim and type‐3), with abundant formation of phlogopite and fluorite; (ii) F‐ and CO3‐rich hydrothermal stage led to the replacement of a part of REE–Nb–F‐rich zircon by REE fluorocarbonate; and (iii) CO3‐rich hydrothermal stage resulted in crystallization of the REE–Nb–F‐poor zircon and fergusonite, with ankerite. REE and Nb in hydrothermal fluid at the Nechalacho REE deposit were finally concentrated into fergusonite by way of REE–Nb–F‐rich zircon in the hydrothermally altered units.  相似文献   

13.
Volcanic-hosted rare-metals deposit at Brockman,Western Australia   总被引:1,自引:0,他引:1  
Rare-metals mineralization at Brockman, Western Australia, is the product of early pyroclastic eruption of trachytic magma enriched in volatiles and incompatible elements such as Zr, Hf, Nb, Ta, Be, Y and REE and Ga. The mineralization is fine-grained (<20 m) and is the result of alteration and re-mobilization of comparatively simple magmatic precursor minerals such as columbite and zircon by F-rich deuteric solutions that were retained in an ash-flow tuff (the Niobium Tuff) following eruption. Chondrite normalized REE distributions show strong enrichment in HREE. Gel-zircon is the principal residence of the HREE, disseminated bastnaesite (±parisite and synchisite) carries the LREE and bertrandite, in late-stage calcite veins, is the host for Be. Ga occurs in K-mica in the groundmass. Trachytic flows overlying the Niobium Tuff contain many of the same ore minerals, but in trace amounts.  相似文献   

14.
通过野外和室内研究结果表明,石桥片麻岩是由沉积岩变质组成。在化学成分上,表现为高硅(SiO2=75.22%~76.42%)、低铝(Al2O3=11.02%~12.29%)、富碱(Na2O+K2O=8.00%~8.68%)和贫钙(CaO=0.30%~0.82%),富集Rb、Ba、Th、U等大离子亲石元素,贫Nb、Ta、Zr、Hf、Ti 等高场强元素,以及轻稀土相对富集(LREE/HREE=6.06~7.14)、铕负异常较明显(δEu=0.18~0.56)等。通过锆石成因类型及定年研究,获得超高压变质作用时间为254 Ma和退变质作用时间为217 Ma,老核(继承锆石)岩浆碎屑锆石是异地多时代(元古代-古生代),其寄主岩的原岩为沉积岩,时代不会早于古生代。  相似文献   

15.
Hydrothermal zircon can be used to date fluid-infiltration events and water/rock interaction. At the Boggy Plain zoned pluton (BPZP), eastern Australia, hydrothermal zircon occurs with hydrothermal scheelite, molybdenite, thorite and rutile in incipiently altered aplite and monzogranite. The hydrothermal zircon is texturally distinct from magmatic zircon in the same rocks, occurring as murky-brown translucent 20–50 μm-thick mantles on magmatic cores and less commonly as individual crystals. The hydrothermal mantles are internally textureless in back-scatter electron and cathodoluminescence images whereas magmatic zircon is oscillatory zoned. The age of the hydrothermal zircon is indistinguishable from magmatic zircon, indicating precipitation from a fluid evolved from the magma during the final stages of crystallization. Despite indistinguishable U-Pb isotopic compositions, the trace-element compositions of the hydrothermal and magmatic zircon are distinct. Hydrothermal zircon is enriched in all measured trace-elements relative to magmatic zircon in the same rock, including V, Ti, Nb, Hf, Sc, Mn, U, Y, Th and the rare-earth elements (REE). Chondrite-normalized REE abundances form two distinct pattern groupings: type-1 (magmatic) patterns increase steeply from La to Lu and have Ce and Eu anomalies—these are patterns typical for unaltered magmatic zircon in continental crust rock types; type-2 (hydrothermal) patterns generally have higher abundances of the REE, flatter light-REE patterns [(Sm/La)N = 1.5–4.4 vs. 22–110 for magmatic zircon] and smaller Ce anomalies (Ce/Ce* = 1.8–3.5 vs. 32–49 for magmatic zircon). Type-2 patterns have also been described for hydrothermally-altered zircon from the Gabel Hamradom granite, Egypt, and a granitic dyke from the Acasta Gneiss Complex, Canada.Hadean (∼4.5–4.0 Ga) zircon from the Jack Hills, Western Australia, have variable normalized REE patterns. In particular, the oldest piece of Earth—zircon crystal W74/2-36 (dated at 4.4 Ga)—contains both type-1 and type-2 patterns on a 50 μm scale, a phenomenon not yet reported for unaltered magmatic zircon. In the context of documented magmatic and hydrothermal zircon compositions from constrained samples from the BPZP and the literature, the type-2 patterns in crystal W74/2-36 and other Jack Hills Hadean (JHH) zircon are interpreted as hydrothermally-altered magmatic compositions. An alteration scenario, constrained by isotope and trace-element data, as well as α-decay event calculations, involving fluid/zircon cation and oxygen isotope exchange within partially metamict zones and minor dissolution/reprecipitation, may have occurred episodically for some JHH zircon and at ∼4.27 Ga for zircon W74/2-36. Type-2 compositions in JHH zircon are interpreted to represent localized exchange with a light-REE-bearing, high δ18O (∼6–10‰ or higher) fluid. Thus, a complex explanation involving “permanent” liquid water oceans, large-scale water/rock interaction and plate tectonics in the very early Archean is not necessary as the zircon textures and compositions are simply explained by exchange between partially metamict zircon and a low volume ephemeral fluid.  相似文献   

16.
The Dajia Salento-type bauxite deposit in western Guangxi is hosted within the Quaternary ferrallitic soil profile, and it formed via breaking up, weathering and oxidizing of Permian bauxite orebodies occurring as a semi-continuous layer in the upper Permian. Mineralogical analyses reveal that diaspore, hematite and kaolinite are the major minerals in bauxite ores with small amounts of anatase, chamosite, gibbsite, goethite, illite, zircon, quartz and pyrite. The ore texture and mineral assemblage reveal that the depositional/diagenetic environment of the Dajia bauxite was much close to phreatic environment. Both the ore texture and the morphology of zircon grains also indicate that most of the bauxitic soils were transported a short distance. Diaspore is suggested to be non-metamorphic in origin and mainly formed in a reducing condition of diagenetic environment, while kaolinite is the product of the in situ epigenetic replacement of alumina in diaspore by dissolved silica. Geochemical analyses indicate that Al2O3, Fe2O3, SiO2 and TiO2 are the main components of the bauxite ores and trace elements such as Zr, Hf, Nb, Ta, Th and U were enriched during the bauxitization process. Simultaneously, Zr vs. Hf and Nb vs. Ta show a high correlation. Geochemical indices such as Zr/Hf, Nb/Ta and Eu/Eu* (among others) denote that the magmatic rocks related to the Emeishan plume in western Guangxi and the carbonates in the underlying Maokou Formation provided the main sources of material for the bauxite ores.  相似文献   

17.
冀东秦皇岛地区位于华北板块东部,广泛发育中生代火山岩,为进一步研究该地区中生代岩浆作用的构造背景及其运动机制,本文对秦皇岛茹各庄流纹质晶屑凝灰岩开展了LA-ICP-MS锆石U-Pb年代学,Hf同位素组成以及全岩主量、微量元素测试分析。研究结果显示:锆石具有清晰的环带结构,Th/U值为0.37~0.83,为岩浆锆石,测年结果为(113±1)Ma;岩石具高硅(平均质量分数为75.95%)、富碱(平均质量分数为8.47%)、明显贫钙(平均质量分数为0.39%)的特点;岩石中富集高场强元素(Th、U、Ce、Nd、Zr、Hf),亏损大离子亲石元素(Ba、Sr、P、Ti),稀土元素配分型式为微弱右倾型,δEu强负异常(0.02~0.30),暗示斜长石大量晶出;岩浆在演化过程中伴随磷灰石、钛铁矿等矿物晶出,Nb/Ta值接近陆壳,暗示岩石具地壳岩石特征;锆石Hf同位素组成和演化说明该岩石的岩浆源区为古元古代晚期—中元古代中期华北板块古老下地壳幔源岩浆底侵热源引起部分熔融的产物。研究结果表明茹各庄流纹质晶屑凝灰岩为早白垩世岩浆活动的产物,形成于古太平洋板块俯冲后撤而驱动的板内拉张环境。   相似文献   

18.
塔里木北部二叠纪长英质火山岩年代学及地球化学特征   总被引:5,自引:2,他引:3  
大面积分布于塔里木盆地的二叠纪玄武岩构成了面积250000km2的大火成岩省(LIP),长英质火山岩的发现为塔里木二叠纪火山作用的研究打开了新的窗口。本文从塔北地区约5000m深的钻井中收集了4件二叠纪长英质火山岩的样品。通过对其进行锆石U-Pb同位素测试,得出其形成时代为274~282Ma,为塔里木大火成岩省晚期岩浆作用的产物。岩石具有高钾的特征K2O+Na2O=7.29%~8.34%,K2O/Na2O>1,大部分属于高钾钙碱性系列,且属于过铝质(A/CNK=1.32~1.53)。具有富集LREE和Zr、Hf、Y,亏损Sr、P、Ti、Nb、Ta等特征,微量元素分布曲线形态与地壳相近,具有右倾的稀土元素配分曲线,且显示出一定的负铕异常。通过Sr-Nd-Pb同位素的分析得出其源区有大量地壳物质,这与其具有较高的Th、U含量和与地壳平均值相似的Nb/La、Nb/U、Th/Ta相一致。综合年代学、地球化学特征及构造环境的判断,认为塔北地区二叠纪长英质火山岩形成于地幔柱活动背景下的地壳物质的部分熔融。  相似文献   

19.
The Songshugang granite, hidden in the Sinian metasedimentary stratum, is a highly evolved rare-element granite in northeastern Jiangxi province, South China. The samples were systematically taken from the CK-102 drill hole at the depth of 171–423 m. Four types of rocks were divided from the bottom upwards: topaz albite granite as the main body, greisen nodules, topaz K-feldspar granite and pegmatite layer. Electron-microprobe study reveals that the rare-element minerals of the Songshugang granite are very different from those of other rare-element granites. Mn# [Mn/(Fe + Mn)] and Ta# [Ta/(Nb + Ta)] of columbite-group minerals and Hf# [Hf/(Zr + Hf)] of zircon are nearly constant within each type of rocks. However, back-scattered electron imaging revealed that Nb–Ta oxides and zircon of the Songshugang granite, especially those of topaz albite granite, topaz K-feldspar granite and greisen, are commonly characterized by a specific two-stage texture on the crystal scale. The early-stage Nb–Ta oxide is simply subhedral-shaped columbite-(Fe) (CGM-I) with low Mn# (0.16–0.37) and Ta# (0.05–0.29). Columbite-(Fe) is penetrated by the later-stage tantalite veinlets (CGM-II) or surrounded by complex Nb–Ta–Sn–W mineral assemblages, including tantalite-(Fe), wodginite (sl), cassiterite, and ferberite. Tantalite has wide range of Mn# values (0.15–0.88) from Fe-dominance to Mn-dominance. Wodginite with Ta>Nb has large variable concentrations of W, Sn and Ti. Cassiterite and ferberite are all enriched in Nb and Ta (Nb2O5 + Ta2O5 up to 20.12 wt.% and 31.42 wt.%, respectively), with high Ta# (>0.5). Similar to Nb–Ta oxides and Nb–Ta–Sn–W mineral assemblages, the early-stage zircon is commonly included by the later-stage zircon with sharply boundary. They have contrasting Hf contents, and HfO2 of the later-stage zircon is up to 28.13 wt.%. Petrographic features indicate that the early-stage of columbite and zircon were formed in magmatic environment. However, the later-stage of rare-element minerals were influenced by fluxes-enriched fluids. Tantalite, together with wodginite, cassiterite, and ferberite implies a Ta-dominant media. An interstitial fluid-rich melt enriched in Ta and flux at the magmatic–hydrothermal transitional stage is currently a favored model for explaining the later-stage of rare-element mineralization.  相似文献   

20.
辽西医巫闾山变质核杂岩经历过两阶段演化,晚侏罗世发育了围绕核部医巫闾山岩体周缘展布的长环形韧性剪切带(称为医巫闾山剪切带),早白垩世西侧叠加了北北东走向瓦子峪伸展韧性剪切带.在医巫间山剪切带及其变形下盘中侵入了大量的晚侏罗世花岗岩脉,其所含的锆石包括古老继承锆石、新生岩浆锆石、热液锆石等多种类型.根据锆石阴极发光图像、...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号