首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Earthquakes in Kenya are common along the Kenya Rift Valley because of the slow divergent movement of the rift and hydrothermal processes in the geothermal fields. This implies slow but continuous radiation of seismic energy, which relieves stress in the subsurface rocks. On the contrary, the NW-SE trending rift/fault zones such as the Aswa-Nyangia fault zone and the Muglad-Anza-Lamu rift zone are the likely sites of major earthquakes in Kenya and the East African region. These rift/fault zones have been the sites of a number of strong earthquakes in the past such as the M w = 7.2 southern Sudan earthquake of 20 May 1990 and aftershocks of M w = 6.5 and 7.1 on 24 May 1990, the 1937 M s = 6.1 earthquake north of Lake Turkana close to the Kenya-Ethiopian border, and the 1913 M s = 6.0 Turkana earthquake, among others. Source parameters of the 20 May 1990 southern Sudan earthquake show that this earthquake consists of only one event on a fault having strike, dip, and rake of 315°, 84°, and ?3°. The fault plane is characterized by a left-lateral strike slip fault mechanism. The focal depth for this earthquake is 12.1 km, seismic moment M o = 7.65 × 1019 Nm, and moment magnitude, M w = 7.19 (?7.2). The fault rupture started 15 s earlier and lasted for 17 s along a fault plane having dimensions of ?60 km × 40 km. The average fault dislocation is 1.1 m, and the stress drop, , is 1.63 MPa. The distribution of historical earthquakes (M w ≥ 5) from southern Sudan through central Kenya generally shows a NW-SE alignment of epicenters. On a local scale in Kenya, the NW–SE alignment of epicenters is characterized by earthquakes of local magnitude M l ≤ 4.0, except the 1928 Subukia earthquake (M s = 6.9) in central Kenya. This NW–SE alignment of epicenters is consistent with the trend of the Aswa-Nyangia Fault Zone, from southern Sudan through central Kenya and further southwards into the Indian Ocean. We therefore conclude that the NW–SE trending rift/fault zones are sites of strong earthquakes likely to pose the greatest earthquake hazard in Kenya and the East African region in general.  相似文献   

2.
Following the December 2004 and March 2005 major shallow foci inter-plate earthquakes in the north Sumatra region, a slab-tear fault located within the subducting Indian plate ruptured across the West Sunda Trench (WST) within the marginal intra-plate region. Trend, length and movement pattern of this New Tear Fault (NTF) segment is almost identical to another such slab-tear fault mapped previously by Hamilton (1979), located around 160 km south of NTF. Seismic activity along the NTF remained quasi-stable till the end of the year 2011, when an earthquake of magnitude 7.2 occurred on 10.01.2012 just at the tip of NTF, only around ~100 km within the intra-plate domain west of WST. The NTF rupture propagated further towards SSW with the generation of two more large earthquakes on 11.04.2012. The foreshock (10.01.12; M7.2) — mainshock (11.04.12; M 8.6) — aftershock (11.04.12; M 8.2) sequence along with numerous smaller magnitude aftershocks unmistakably define the extension of NTF, a slab-tear fault that results tectonic segmentation of the convergent plate margin. Within the intra-plate domain most earthquakes display consistent left-lateral strike slip mechanism along NNE trending fault plane.  相似文献   

3.
The East Anatolian Fault Zone is a continental transform fault accommodating westward motion of the Anatolian fault. This study aims to investigate the source properties of two moderately large and damaging earthquakes which occurred along the transform fault in the last two decades using the teleseismic broadband P and SH body waveforms. The first earthquake, the 27 June 1998 Adana earthquake, occurred beneath the Adana basin, located close to the eastern extreme of Turkey’s Mediterranean coast. The faulting associated with the 1998 Adana earthquake is unilateral to the NE and confined to depths below 15 km with a length of 30 km along the strike (53°) and a dipping of 81° SE. The fixed-rake models fit the data less well than the variable-rake model. The main slip area centered at depth of about 27 km and to the NE of the hypocenter, covering a circular area of 10 km in diameter with a peak slip of about 60 cm. The slip model yields a seismic moment of 3.5?×?1018 N-m (Mw???6.4). The second earthquake, the 1 May 2003 Bingöl earthquake, occurred along a dextral conjugate fault of the East Anatolian Fault Zone. The preferred slip model with a seismic moment of 4.1?×?1018 N-m (Mw???6.4) suggests that the rupture was unilateral toward SE and was controlled by a failure of large asperity roughly circular in shape and centered at a depth of 5 km with peak displacement of about 55 cm. Our results suggest that the 1998 Adana earthquake did not occur on the mapped Göksun Yakap?nar Fault Zone but rather on a SE dipping unmapped fault that may be a split fault of it and buried under the thick (about 6 km) deposits of the Adana basin. For the 2003 Bingöl earthquake, the final slip model requires a rupture plane having 15° different strike than the most possible mapped fault.  相似文献   

4.
《International Geology Review》2012,54(10):1191-1201
On 28 March 1970, an unexpected and destructive earthquake (Ms = 7.2) originated along the Erdo?mu? fault (EF), which forms the southern margin of the modern Erdo?mu?–Yenigediz graben in the central part of the Ak?ehir–Simav fault system. The EF is a N-dipping normal fault, ~12 km long, generally E–W-trending, and characterized by a minor right-lateral strike–slip component. To determine its past activity, a palaeoseismological exploratory trenching study was conducted. Two trenches (EFT-1 and EFT-2) were excavated on the ground surface rupture of the 1970 Gediz earthquake near Erdo?mu? village. Based on the relative displacement between units observed and mapped in EFT-1, at least three events were identified. Two events were also identified in EFT-2. Only one of the events in EFT-1 can be dated via 14C. The estimated recurrence interval on the EF is ~910 ± 40 years.  相似文献   

5.
Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately uniform strike slip rate strongly supports the clockwise rotation model of the southeastern Tibetan crust. By approximating the geometry of the arc-shaped Xianshuihe-Xiaojiang fault system as a portion of a small circle on a spherical Earth, the 15±2 mm/a strike slip rate corresponds to clockwise rotation of the Southeastern Tibetan Block at the (5.2±0.7)×10-7 deg/a angular velocity around the pole (21°N, 88°E) relative to the Northeast Tibetan Block. The approximately uniform strike slip rate along the Xianshuihe-Xiaojiang fault system also implies that the Longmenshan thrust zone is not active, or at least its activity has been very weak since the Late Quaternary. Moreover, the total offset along the Xianshuihe-Xiaojiang fault system suggests that the lateral extrusion of the Southeastern Tibetan Block relative to Northeastern Tibetan Block is about 160 km and 200-240 km relative to the Tarim-North China block. This amount of lateral extrusion of the Tibetan crust should have accommodated about 13-24% convergence between India and Eurasia based on mass balance calculations. Assuming that the slip rate of 15±2 mm/a is constant throughout the entire history of the Xianshuihe-Xiaojiang fault system, 11±1.5 Ma is needed for the Xianshuihe-Xiaojiang fault system to attain the 160 km of total offset. This implies that left-slip faulting on the Xianshuihe-Xiaojiang fault system might start at 11±1.5 Ma.  相似文献   

6.
This paper presents the computation of time series of the 22 July 2007 M 4.9 Kharsali earthquake. It occurred close to the Main Central Thrust (MCT) where seismic gap exists. The main shock and 17 aftershocks were located by closely spaced eleven seismograph stations in a network that involved VSAT based real-time seismic monitoring. The largest aftershock of M 3.5 and other aftershocks occurred within a small volume of 4 × 4 km horizontal extent and between depths of 10 and 14 km. The values of seismic moment (M ) determined using P-wave spectra and Brune’s model based on f 2 spectral shape ranges from 1018 to 1023 dyne-cm. The initial aftershocks occurred at greater depth compared to the later aftershocks. The time series of ground motion have been computed for recording sites using geometric ray theory and Green’s function approach. The method for computing time series consists in integrating the far-field contributions of Green’s function for a number of distributed point source. The generated waveforms have been compared with the observed ones. It has been inferred that the Kharsali earthquake occurred due to a northerly dipping low angle thrust fault at a depth of 14 km taking strike N279°E, dip 14° and rake 117°. There are two regions on the fault surface which have larger slip amplitudes (asperities) and the rupture which has been considered as circular in nature initiated from the asperity at a greater depth shifting gradually upwards. The two asperities cover only 10% of the total area of the causative fault plane. However, detailed seismic imaging of these two asperities can be corroborated with structural heterogeneities associated with causative fault to understand how seismogenesis is influenced by strong or weak structural barriers in the region.  相似文献   

7.
On Thursday, 22 of May 2014, at 6 h 22 min 0.3.3 s (GMT?+?1) a moderate-sized earthquake struck the Mostaganem, Western Algeria, region. The main shock, recorded by many international and national seismological stations, was preceded by a foreshock, 3 hours before, on May 22, 2014 (Ml?=?4.1) at 3 h 57 min 41.4 s and followed by four well-felt aftershocks (M?>?3.0) that lasted about 1 year. The main shock did not cause loss of lives but serious panic among the population was reported. The main shock, however, caused cracks in walls and roofs, sometimes destroyed, the old non-engineered and precarious adobe dweller corresponding to I0?=?VI–VII (Msk scale). We used accelerograph records to (i) determine the epicenter location (longitude?=?0.3537 E, latitude?=?35.8598 N, (ii) perform waveforms inversion to calculate the earthquake parameters. The obtained results are, respectively, the seismic moment (M0)?=?2.71 E + 16, the Mw?=?4.9 and the focal depth?=?6 km. The obtained focal mechanism solution shows reverse faulting with small right lateral component with the following nodal plans: NP1, strike?=?193.5, dip?=?49.5, slip?=?57.6 and NP2, strike?=?57.8, dip?=?50, slip?=?122.1. On the other hand, the seismotectonic framework of the Dahra area exhibits a serie of NE-SW trending “en echelon” faulted folds that may be active as suggested by this study.  相似文献   

8.
Papadimitriou  P.  Voulgaris  N.  Kassaras  I.  Kaviris  G.  Delibasis  N.  Makropoulos  K. 《Natural Hazards》2002,27(1-2):15-33
On 7 September 1999 at 11:56 GMT a destructive earthquake (Mw = 6.0) occurred close to Athens (Greece). The rupture process is examined using data from the Cornet local permanent network, as well as teleseismic recordings. Data recorded by a temporary seismological network were analyzed to study the aftershock sequence. The mainshock was relocated at 38.105°N, 23.565°E, about 20 km northwest of Athens. Four foreshocks were also relocated close to the mainshock. The modeling of teleseismic P and SH waves provides a well-constrained focal mechanism of the mainshock (strike = 105°, dip = 55° and rake = -80°) at a depth of 8 km and a seismic moment M0 = 1.01025 dyn·cm. The obtained fault plane solution represents normal faulting indicating an almost north-south extension. More than 3500 aftershocks were located, 1813 of which present RMS < 0.1 s and ERH, ERZ < 1.0 km. Two main clusters were distinguished, while the depth distribution is concentrated between 2 and 11 km. Over 1000 fault plane solutions of aftershocks were constrained, the majority of which also correspond to N–S extension. No surface breaks were observed but the fault plane solution of the mainshock is in agreement with the tectonics of the area and with the focal mechanisms obtained by aftershocks. The hypocenter of the mainshock is located on the deep western edge of the fault plane. The relocated epicenter coincides with the fringe that represents the highest deformation observed on the differential interferometric image. The calculated source duration is 5 sec, while the estimated dimensions of the fault are 15 km length and 10 km width. The source process is characterized by unilateral eastward rupture propagation, towards the city of Athens. An evident stop phase observed in the recordings of the Cornet local stations is interpreted as a barrier caused by the Aegaleo Mountain.  相似文献   

9.
The Bolnay (Hangayn) fault is an active shear system which generated the M = 8.2-8.5 Bolnay earthquake of 23 July 1905, one of world’s largest recorded intracontinental event. The fault follows the Mesozoic suture formed during the closure of the Mongolia-Okhotsk ocean. The Late Cenozoic faulting in the region was induced by propagation of strain from the India-Eurasia collision that had reached Mongolia at about 5 ± 3 Ma. The left-lateral strike slip almost all over the fault length is compensated in its western end by Late Quaternary reverse motion. We estimated coseismic slip associated with the event of 1905 and the previous earthquakes in the eastern fault end and checked whether vertical offset compensates the strike slip in this part as well. The 1905 coseismic slip measured from a displaced dry stream bed and pebble bars in the Hasany-Gol river valley was 6.5-7.5 m. The 13 ± 1 m left-lateral displacement of pebble bars in the same valley represents a cumulative slip of two events. Paleoseismological studies across the strike of surface ruptures reveal at least two generations of rupture in two events that postdated the deposition of sediments with a 14C age of 4689 ± 94 yr. Hypsometry of the alluvial surface in the zone of deformation shows gradual elevation increase toward the mountains, but without abrupt change across the fault. This means the absence of vertical offset and reactivation of the fault as a left-lateral strike slip. The horizontal slip in the eastern extension of the Bolnay fault is compensated rather by parallel fault-bounded pull-apart basins trending northeastward oblique to the principal fault strike. The age of their sedimentary fill suggests no older than middle Pleistocene normal faulting that compensated the Bolnay strike slip.  相似文献   

10.
The paper presents a detailed analysis of 1st April 2015 earthquake, whose epicenter (30.16° N, 79.28° E) was located near Simtoli village of Chamoli district, Uttarakhand. The focal depth is refined to 7 km by the grid search technique using moment tensor inversion. The source parameters of the earthquake as estimated by spectral analysis method suggested the source radius of ~1.0 km, seismic moment as 1.99E+23 dyne-cm with moment magnitude (Mw) of 4.8 and stress drop of 69 bar. The fault plane solution inferred using full waveform inversion indicated two nodal planes, the northeast dipping plane having strike 334° and dip 5° and the southwest dipping plane with dip 86° and strike 118°. The parallelism of the nodal plane striking 334° with dip 5° as indicated in depth cross sections of the tectonic elements suggested the north dipping Main Boundary Thrust (MBT) to be the causative fault for this earthquake. Spatio-temporal distribution of earthquakes during the period 1960-2015 showed seismic quiescence during 2006-2010 and migration of seismicity towards south.  相似文献   

11.
This article is devoted to evaluating destructive earthquakes (magnitude >6) of Iran and determining properties of their source parameters. First of all, a database of documented earthquakes has been prepared via reliable references and causative faults of each event have been determined. Then, geometric parameters of each fault have been presented completely. Critical parameters such as Maximum Credible Rupture, MCR, and Maximum Credible Earthquake, MCE, have been compiled based on the geometrical parameters of the earthquake faults. The calculated parameters have been compared to the maximum earthquake and the surface rupture which have been recorded for the earthquake faults. Also, the distance between the epicenter of documented earthquake events and their causative faults has been calculated (the distance was less than 20 km for 90% of the data). Then, the distance between destructive earthquakes (with the magnitude more than 6) and the nearest active fault has been calculated. If the estimated distance is less than 20 km and the mechanism of the active fault and the event are reported the same, the active fault will be introduced as a probable causative fault of that earthquake. In the process, all of the available geological, tectonic, seismotectonic maps, aerial geophysical data as well as remote sensing images have been evaluated. Based on the quality and importance of earthquake data, the events have been classified into three categories: (1) the earthquakes which have their causative faults documented, (2) the events with magnitude higher than 7, and (3) the events with the magnitude between 6 and 7. For each category, related maps and tables have been compiled and presented. Some important faults and events have been also described throughout the paper. As mentioned in this paper, these faults are likely to be in high seismic regions with potential for large-magnitude events as they are long, deep and bound sectors of the margins characterized by different deformation and coupling rates on the plate interface.  相似文献   

12.
We present the estimated source parameters from SH-wave spectral modeling of selected 463 aftershocks (2002–06) of the 26 January 2001 Bhuj earthquake, the well-recorded largest continental intraplate earthquake. The estimated seismic moment (Mo), corner frequency (fc), source radius (r) and stress drop (Δσ) for aftershocks of moment magnitude 1.7 to 5.6 range from 3.55×1011 to 2.84×1017 N-m, 1.3 to 11.83 Hz, 107 to 1515 m and 0.13 to 26.7 MPa, respectively, while the errors in fc and Δσ are found to be 1.1 Hz and 1.1 MPa, respectively. We also notice that the near surface attenuation factor (k) values vary from 0.02 to 0.03. Our estimates reveal that the stress drop values show more scatter (Mo0.5 to 1 is proportional to Δσ) toward the larger Mo values (≥1014.5 N-m), while they show a more systematic nature (Mo3 is proportional to Δσ) for smaller Mo values (<1014.5 N-m), which can be explained as a consequence of a nearly constant rupture radius for smaller aftershocks in the region. The large stress drops (= 10 MPa) associated with events on the north Wagad fault (at 15–30 km depth) and Gedi fault (at 3–15 km depth) can be attributed to the large stress developed at hypocentral depths as a result of high fluid pressure and the presence of mafic intrusive bodies beneath these two fault zones.  相似文献   

13.
On February 13, 1981 a relatively strong earthquake occurred in the Lake Vänern region in south-central Sweden. The shock had a magnitude ofML = 3.3 and was followed within three weeks by three aftershocks, with magnitudes 0.5 ≤ ML ≤ 1.0. The focal mechanism solution of the main shock indicates reverse faulting with a strike in the N-S or NE-SW direction and a nearly horizontal compressional stress. The aftershocks were too small to yield data for a full mechanism solution, but first motions of P-waves, recorded at two stations, are consistent for the aftershocks. Dynamic source parameters, derived from Pg- and Sg-wave spectra, show similar stress drops for the main shock (2 bar) and the aftershocks (1 bar), while the differences in seismic moment (1.5·1020 resp. 4·1018dyne cm), fault length (0.7 resp. 0.2 km) and relative displacement (0.15 resp. 0.03 cm) are significant.  相似文献   

14.
On March 10 and September 13, 2007 two earthquakes with moment magnitudes 3.66 and 3.94, respectively, occurred in the eastern part of the United Arab Emirates (UAE). The two events were widely felt in the northern Emirates and Oman and were accompanied by a few aftershocks. Ground motions from these events were well recorded by the broadband stations of Dubai (UAE) and Oman seismological networks and provide an excellent opportunity to study the tectonic process and present day stress field acting in this area. In this study, we report the focal mechanisms of the two main shocks by two methods: first motion polarities and regional waveform moment tensor inversion. Our results indicate nearly pure normal faulting mechanisms with a slight strike slip component. We associated the fault plane trending NNE–SSW with a suggested fault along the extension of the faults bounded Bani Hamid area. The seismicity distribution between two earthquake sequences reveals a noticeable gap that may be a site of a future event. The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated from displacement spectra. The moment magnitudes were very consistent with waveform inversion. The recent deployment of seismic networks in Dubai and Oman reveals tectonic activity in the northern Oman Mountains that was previously unknown. Continued observation and analysis will allow for characterization of seismicity and assessment of seismic hazard in the region.  相似文献   

15.
A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network.Checkerboard tests show that our tomographic model has lateral and vertical resolution of~2 km.The high-resolution P-velocity model revealed interesting structures in the seismogenic layer:(1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian f...  相似文献   

16.
On the morning of 15 November 1990 local time, Armidale and the area to the west of Armidale was shaken by a magnitude 3.2 earthquake. The epicentre was located at 30.39° S, 150.88° E and the depth of focus at 12 ± 7 km. As the epicentre was close to the Peel Fault an attempt was made to constrain the focal mechanism of this earthquake. The conventional method, which is based on the analysis of P wave polarities, was not applicable because the event was not strong enough. In an alternative method, the amplitudes of various seismic phases recorded at a number of stations well distributed in azimuth were compared with theoretical amplitudes calculated with the reflectivity method for a point shear dislocation in a layered medium. The differences between observed and calculated amplitudes were minimized as a function of fault strike, fault dip and direction of the slip vector. The analysis indicates that none of the possible fault planes had the strike of the Peel Fault. The solution suggests predominantly strike slip motion along two possible, steeply dipping fault planes. The inferred direction of the maximum compressional stress. is east‐west which is in good agreement with other estimates of the stress field for eastern Australia.  相似文献   

17.
A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated.The epicenters for four large (M 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58° or 73°, respectively. A preferred nodal-plane dip of 36° was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required.  相似文献   

18.
In this study, seismological aspects and field observation of the 2010 Kuh-Zar earthquake has been investigated. The Kuh-Zar earthquake, of magnitude 5.7 (Mw), occurred in northeastern Iran on August 27, 2010. The area is surrounded by branches of the active faults which are coated by the quaternary alluvium. During the past several decades, this area has been struck by a number of earthquakes. This earthquake with a moderate magnitude caused a higher rate of damage contrasted with previous earthquakes of the same magnitude range in Iran. Fortunately, the source of the Kuh-Zar earthquake was in a sparsely populated area, and therefore, it caused a few loss of life with the highest observed intensity of shaking VII (modified Mercalli intensity) in the Kuh-Zar village. The shock killed 4 people, injured 40, and destroyed more than 12 villages. According to the field observation, the mechanism of this shock is defined as a left-lateral strike slip. We also checked out the properties of strong ground motions in this earthquake using the records availed by Iranian strong motion network. At KUZ station, about 7 km east of the epicenter, the recorded PGA and PGV in both horizontal and vertical components were remarkably large for an event of this size, and visual inspection of the velocity time history reveals a pulse-like shape. Unfortunately no other recording stations were located close enough to the fault to capture a directivity pulse. Finally, according to the strong-motion properties and observed information, ShakeMaps of the earthquake have been generated by the native intensity observations and the recorded strong motions.  相似文献   

19.
Study of the 26 December 2011 Aswan earthquake,Aswan area,South of Egypt   总被引:1,自引:1,他引:0  
The source process and parameters for a moderate earthquake of magnitude Ml 4.1 that occurred on the Kalabsha fault at the Aswan area are analyzed. The derived focal mechanisms of this event and other two aftershocks using polarities of P, SV, and SH waves show strike-slip fault with minor vertical movement of normal type. The solutions give two nodal planes trending ENE–WSW and NNW–SSE in close agreement with the surface traces of the faults crossing the area. The movement is right lateral along the first plane while left lateral along the second one. The rupture process characterization of this event has been investigated by using the empirical Green’s function deconvolution method. By inversion only for the P wave part of the records of these three events (main and other two aftershocks), the source time function for the master events and the azimuthally variations in the (RSTF) pulse amplitude are retrieved for estimating the rupture directivities. The estimated rupture direction is combined with the P-wave focal mechanisms for the three events to identify the fault plane solution for these earthquakes. Based on the width, amplitudes, and numbers of the isolated source time functions, a complex bi-lateral rupture of the studied earthquake is delineated. The source parameters of the master event is calculated and the derived corner frequencies f o for P-wave spectra show a value of 6.6 Hz; the seismic moment (M o ) is 4.2?×?1022 Nm; the average displacement (U) is 0.5 m; fault radius (r) 40 m; the average value of the stress drops (Δσ) is 0.6 Mpa, and the moment magnitude (M w ) is 4.4.  相似文献   

20.
Three magnitude >6 earthquakes struck Qaidam, Qinghai province, China, in November 10th 2008, August 28th and 31st 2009 respectively. The Zongwulongshan fault has often been designated as the active seismogenic structure, although it is at odd with the data. Our continuous GPS station (CGPS), the Xiao Qaidam station, located in the north of the Qaidam basin, is less than 30 km to the southwest of the 2008 earthquake. This CGPS station recorded the near field co-seismic deformation. Here we analyzed the co-seismic dislocation based on the GPS time series and the rupture processes from focal mechanism for the three earthquakes. The aftershocks were relocated to constrain the spatial characteristics of the 2008 and 2009 Qaidam earthquakes. Field geological and geomorphological investigation and interpretation of satellite images show that the Xitieshan fault and Zongwulongshan fault were activated as left lateral thrust during the late Quaternary. Evidence of folding can also be identified. Integrated analyses based on our data and the regional tectonic environment show that the Xitieshan fault is the fault responsible for the 2008 Qaidam earthquake, which is a low dip angle thrust with left lateral strike slip. The Zongwulongshan fault is the seismogenic fault of the 2009 earthquakes, which is a south dipping back thrust of the northern marginal thrust system of the Qaidam basin. Folding takes a significant part of the deformation in the northern marginal thrust system of the Qaidam basin, dominating the contemporary structure style of the northern margin of the Qaidam basin and Qilianshan tectonic system. In this region, this fault and fold system dominates the earthquake activities with frequent small magnitude earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号