首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用近几年在川滇地区破坏性地震及汶川地震强余震中获得的951条加速度记录, 通过选取合适的衰减关系形式和距离参数, 经统计获得了川滇地区水平向峰值加速度与35个周期点对应的加速度反应谱(阻尼比0.05)衰减关系. 统计结果显示, 震级越大, 地震动随距离的衰减越慢; 加速度反应谱的短周期部分随距离的衰减明显快于长周期部分; 中强地震在近场也会产生较大的峰值加速度和较高的短周期加速度反应谱. 由于统计资料的非完整性, 本文统计结果尚不宜直接应用于相关工程场地的设计地震动参数确定中. 但本文结果与目前由转换方法得到的我国西部地震动参数衰减规律的较大差异提示: 进一步深入研究我国地震动参数衰减规律应是紧迫而重要的任务.   相似文献   

2.
王德才  叶献国  常磊 《地震学报》2011,33(1):91-102
建立简单适用的设计输入能量谱是将能量方法应用于实际工程设计及校核的前提.选择了Ⅰ类、Ⅱ类和Ⅲ类场地共694条水平地震动记录,分析了不同的场地类别和设计地震分组下输入能量谱的特点.通过12个不同地震动参数与能量谱值的相关性分析,得到了表征地震动输入能量的地震动参数.基于我国现行规范规定的设防烈度和设防水准,提出了地震分组...  相似文献   

3.
汶川地震远场地震动场地相关性与分析方法评价   总被引:1,自引:0,他引:1       下载免费PDF全文
为考查远场地震动的场地相关性并评价一些场地特性分析方法的适用性,采用不同方法对汶川地震山东省12个远场台站的强震记录进行了分析.选取台站分别位于按建筑抗震设计规范(CBC)场地划分中的Ⅰ—Ⅲ类场地上.地震动记录的分析方法包括傅里叶幅值谱法,地震反应谱法,水平与竖向谱比率法,参考点谱比率法,以及尾波分析等.结果表明,按傅里叶幅值谱法,地震反应谱法,水平与竖向谱比法计算得到的卓越周期均远大于台站场地的卓越周期,不同方法得到的结果之间也有较大差别,且主要反映长周期地震动的卓越频率;参考点谱比率法的结果未反映地震动的卓越周期,也与场地的卓越周期差别较大;对完整记录尾波分析所得的结果比较接近场地的卓越周期.希望本文能为考虑远场地震作用时设计谱的建立,以及场地特性估计时地震动分析方法的选取提供参考依据.  相似文献   

4.
This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes Ⅰ to Ⅲ. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.  相似文献   

5.
万卫  薄景山  郭晓云 《地震学报》2014,36(6):1032-1042
2008年汶川MS8.0地震获得了大量的强震动记录, 为研究反应谱特征参数衰减特性提供了重要的基础资料. 本文对已知场地条件的174个台站的记录进行研究, 计算其加速度反应谱并按照最小二乘分段拟合方法进行标定, 进而拟合了反应谱平台值的衰减关系;对比分析了水平方向与竖直方向反应谱平台值的衰减特性, 提出用“平台值的场地衰减影响系数”来定量研究不同场地类型对反应谱平台值的影响, 用“衰减曲线下降速率”来定量分析不同衰减曲线的衰减速率. 通过计算得出水平向Ⅰ, Ⅱ, Ⅲ类场地的平台值场地衰减影响系数平均值分别为0.5358, 1和1.579, 且Ⅲ类场地的加速度平台值衰减曲线的衰减速率最小.   相似文献   

6.
A representative attenuation relationship is one of the key components required in seismic hazard assessment of a region of interest. Attenuation relationships for peak ground acceleration, peak ground velocity and response spectral accelerations for Sumatran megathrust earthquakes, covering Mw up to 9.0, are derived based on synthetic seismograms obtained from a finite‐fault kinematic model. The relationships derived are for very hard rock site condition and for a long‐distance range between 200 and 1500 km. They are then validated with recorded data from giant earthquakes on the Sumatran megathrust occurring since year 2000. A close examination of the recorded data also shows that spectral shapes predicted by most of the existing attenuation relationships and that specified in the IBC code are not particularly suitable for sites where potential seismic hazard is dominated by large‐magnitude, distant, earthquakes. Ground motions at a remote site are typically signified by the dominance of long‐period components with periods longer than 1 s, whereas the predominant periods from most of the existing attenuation relationships and the IBC code are shorter than 0.6 s. The shifting of response spectrum towards longer period range for distant earthquakes should be carefully taken into account in the formulation of future seismic codes for Southeast Asia, where many metropolises are located far from active seismic sources. The attenuation relationship derived in the present study can properly reproduce the spectral shape from distant subduction earthquakes, and could hopefully give insights into the formulation of future seismic codes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In performance-based seismic design, as adopted by several building codes worldwide, the structural performance is verified against ground motions that have predetermined exceedance return periods at the site of interest. Such a return period is evaluated by means of probabilistic seismic hazard analysis (PSHA), and the corresponding ground motion is often represented by the uniform hazard spectrum (UHS). The structural performance for ground motions larger than those considered in this design approach is, typically, not explicitly controlled under the assumption that they are sufficiently rare. On one hand, this does not achieve uniform safety at sites characterized by different design ground motions corresponding to the same return period; on the other hand, exceedances of the design spectra are systematically observed over large areas, for example in Italy. The latter issue is because of the nature of UHS, the exceedance of which is likely-to-almost-certain when the construction site is in the epicentral area of moderate-to-high magnitude earthquakes (ie, the design spectrum may be not conservative at these locations), especially if PSHA is based on seismic source zones. The former is partially because of the systematic difference of ground motions for return periods larger than the design one at the different sites. Quantification of the expected ground motion given the exceedance of the design ground motions (ie, the recently introduced as the expected peak-over-threshold or POT) can be of help in quantitatively assessing these issues. In the study, a procedure to compute the POT distribution is derived first; second, POT spectra are introduced and used to help understanding why and how seismic structural reliability of code-conforming structures decreases as the seismic hazard of the site increases; third, expected and 95th percentile POT maps are shown for Italy to discuss how much high hazard sites are exposed to much larger peak-over-threshold with respect to mid-hazard and low-hazard sites; finally the POT is discussed with respect to the slope of the hazard curve (in log-log scale) at the threshold, a known proxy for ground motion beyond design. All data presented in the maps are made available for the interested reader as a supplemental archive.  相似文献   

8.
对意大利国家强震台网在2016年8月24日获得的其中部拉齐奥大区阿库莫利市发生的MW6.2地震强震动三分向记录进行处理和分析。完成原始数据基线校正、滤波等基本数据处理,回归此次地震动幅值衰减规律,发现其整体与ITA08及BA08的衰减趋势一致,但远场实际值低于预测值,不同场地条件下的衰减特性与ITA10一致,近震源幅值较大,且方向性明显;计算并回归分析几种持时,与全球经验预测方程均基本吻合;比较4个幅值较大的近震源台站的反应谱,发现其明显高于欧洲抗震设计规范中的设计反应谱。结合此次震害特点,该地区在实际建设中仍需提高抗震设防能力,以确保安全性等级。  相似文献   

9.
基于中国地震动参数区划图、华北平原地震带和汾渭地震带地震活动性参数、华北地区地震动参数衰减关系,计算北京地区50年、70年、100年不同超越概率水准下基岩峰值加速度.并分析不同年限各超越概率水准下的峰值加速度与该年限超越概率10%的峰值加速度比值,发现各计算格点的比值普遍偏小,按照当前抗震设防标准,所考虑的地震作用偏于保守且安全.  相似文献   

10.
We present numerical modeling of earthquake ground motion for various profiles across the Swiss Rhône Valley and characterize the seismic response in terms of spectral acceleration. First, we evaluate the relative amplification of 2D with respect to 1D response. Then, we show how the selected bedrock spectrum influences the response spectra of the valley sites. Particular attention is paid to how the internal sediment structure and the often weakly constrained Q-factor shape the seismic response. Results obtained for the different profiles are compared with reference spectra (Swiss building code and Eurocode 8) and for one profile with recorded data as well. From this comparison, we infer that the surficial layer strongly influences spectral acceleration values between 0.1 and 1 s. The total thickness of sediments significantly affects the seismic response at longer periods around the fundamental period of the studied valley sections between 1.8 and 3.6 s.  相似文献   

11.
An M4.9 earthquake occurred at the junction of Gaoyou and Baoying on July 20, 2012. In this paper, 43 sets of strong motion records of the main shock are analyzed. With these data, we analyzed the characteristics of the peak ground motion value, attenuation relation, duration and acceleration response spectrum. We draw the peak acceleration contour map of the region near the epicenter. The contour line is smooth and the trend of long axis is northwest-southeast. Distribution of peak acceleration of the observed records is basically consistent with the real intensity distribution. Compared with the predicted result based on the seismic attenuation relation proposed by Yu Yanxiang and Wang Suyunon for eastern China and the Fifth-generation ground motion zonation map, the horizontal PGA and PGV of Gaoyou-Baoying earthquake are higher than the predicted results that are based on the model of Fifth-generation ground motion zonation map, while the PGV is similar with the predicted results which are based on Yu Yanxiang and Wang Suyun's model. We regressively analyzed the spatial-temporal change curves of the two types of relative ground motion durations. Compared with the predicted results proposed by Bommer et al. (2009) based on the NGA strong motion records, the durations of all the three components of this earthquake are higher. 10 typical recordings' acceleration response spectra with 5% damping are calculated, their peak periods are around 0.1~0.3s. The acceleration response spectrum of the station 32BYT, which has the largest amplitude, is considerably larger than the Chinese code design spectra, while it becomes notably smaller when the period is larger than 0.4s. Compared with the horizontal bedrock acceleration response spectrum predicted by the attenuation relationship for the eastern part of China, the observed response spectrum shape is similar with the predicted ones, while almost all the observed response spectrum values (except station 32YCT)are smaller than the predicted bedrock acceleration response spectrum. These phenomena suggest that this earthquake has a weak impact on the seismic fortification standards in this area. Using H/V single-station spectral ratio method, amplitude and site amplification effect of the two typical stations are calculated, and the results show the H/V values are obviously larger than that of ground microtremor. This suggests that the site of the station has obvious amplification effect on ground motion.  相似文献   

12.
设计反应谱长周期区段的研究   总被引:24,自引:7,他引:17  
本文利用近20年国内外大地震时获得的数字强震仪记录分析强震动的长周期分量特性,给出了不同场地上的平均加速度反应谱及其拟合曲线。结果表明,现行抗震设计规范中设计谱的特征周期和长周期谱值明显偏小。在此基础上提出了长周期设计反应谱的修正建议。文中还根据统计分析提出了不同阻尼比的反应谱修正公式。  相似文献   

13.
This paper presents a methodology for constructing seismic design spectra in near-fault regions.By analyzing the characteristics of near-fault pulse-type ground motions,an equivalent pulse model is proposed,which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions.The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions,which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations.The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions.The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense.The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.  相似文献   

14.
樊剑  曾志和 《地震学报》2010,32(6):733-743
利用谐小波变换对实际强震记录的时变谱进行估计,并统计分析了远场3类不同场地上地震波的时变谱特征,分析发现对于硬场地上的远场地震波在时域内平稳段较短,下降段衰减较快,而在频域内则具有较大的中心频率和较宽的频带.利用均匀调制非平稳模型和时变修正Kanai-Tajimi非平稳模型模拟地震波的时变谱,把非线性函数的参数识别问题转化成求解无约束优化问题,利用拟牛顿迭代法求得最优解,得到3类不同场地上这两种模型的参数具体取值以及参数函数集的具体表达式.为了定量地确定模拟模型的精度,定义了误差函数,验证了所提时变谱参数识别方法的精度,给出了与建筑抗震规范相对应的不同场地不同烈度下多遇和罕遇地震的谱强度因子的大小.最后提出了利用求解时变线性微分方程组来合成非平稳地震波的方法.  相似文献   

15.
A series of housing collapses and other serious damage was caused by the 2008 Wenchuan MS 8.0 earthquake in the seismic intensity Ⅵ areas of the Loess Plateau, which is hundreds of kilometers away from the epicenter, and which showed a remarkable seismic intensity anomaly. The seismic disasters are closely related to the seismic response characteristics of the site, therefore, the systematic study of the far-field seismic response law of the Wenchuan earthquake in the Loess Plateau is of great significance to prevent the far-field disaster of great earthquake. In this paper, the seismic acceleration records of several bedrock stations and loess stations from the seismogenic fault of the Wenchuan earthquake to the Loess Plateau were collected, and the attenuation law of ground motion along the propagation path and the characteristics of seismic response on the loess site are studied, and the mechanism of amplification effect of ground motion is analyzed based on the dynamic feature parameters of the loess site obtained through the HVSR method. Taking a typical loess site of thick deposit as the prototype, a series of shaking table tests of dynamic response of loess site models with different thicknesses were carried out. Amplification effect, spectral characteristics of acceleration in model sites were analyzed under the action of a far-field seismic wave of the Wenchuan earthquake. The results show that seismic attenuation on the propagation path along the NE strike of the seismogenic fault to the Loess Plateau is slower than that in other directions, and the predominant period range of ground motion on bedrock site of the Loess Plateau presents broadband characteristics. Because the natural periods of loess sites with thick deposits are within the predominant period range of bedrock input wave, loess sites appear significant amplification effect of ground motion, the horizontal acceleration of ground motion exceeds 0.1 ?g, the seismic intensity reaches 7°. The thicker the loess deposit is, the more significant the change of spectral characteristics of ground motion on loess sites, and the narrower the predominant period range of ground motion becomes, and the closer it is to the natural period of loess sites. Therefore, for some old houses on thick loess sites, the poor seismic performance and strong seismic response eventually led to their collapses and damages because their natural periods are very close to the predominant period of ground motion of the Wenchuan earthquake on thick loess sites; For these damaged high-rise buildings, the resonance effect might be the main reason for their damages because their natural periods are included in the predominant period range of ground motion of the Wenchuan earthquake on thick loess sites.These research results would provide a basis for seismic disasters prediction and evaluation and seismic design of construction engineering in the Loess Plateau.  相似文献   

16.
In this study, the effect of ground geology on the acceleration response spectra is studied at 32 sites in Gujarat, India. The sites are grouped into Proterozoic, Mesozoic, Tertiary and Quaternary. The normalized acceleration response spectra at 5% damping of 407 strong ground motions (horizontal and vertical components) recorded at these sites varying in magnitude from 3.0 to 5.7 are determined. The study shows that the shape of the acceleration response spectra is influenced by the regional geology and local site conditions. The peak of maximum horizontal spectral amplification is between 0.03 and 0.05 s in Proterozoic formations, 0.06 and 0.10 s in Mesozoic formations, 0.06 and 0.08 s in Tertiary and 0.12 s in Quaternary formations. The maximum vertical spectral acceleration is at 0.025 s in Proterozoic, 0.07 s in Mesozoic, 0.05 s in Tertiary and 0.10 s in Quaternary formations. The average acceleration amplification factor in all the geological formations is between 2.5 and 3.0 both in horizontal and vertical components. It has been observed that acceleration response spectra at sites having same geological formations are also influenced by local site conditions. The study shows that the acceleration response spectrum in the current Indian code applicable for the entire country underestimates the seismic forces at hard-rock sites and overestimates at soft-soil sites. Using recorded strong motion data with Mw ranging from 3.5 to 5.7, an attenuation relationship is developed at six periods to predict geometric mean of horizontal spectral amplitudes for rock and soil sites. The spectral amplitudes predicted with the attenuation relationship match well with the observed one within statistical limits for hypocentral distances less than 200 km.  相似文献   

17.
18.
The characterisation of the seismic hazard input is a critical element of any seismic design code, not only in terms of the absolute levels of ground motion considered but also of the shape of the design spectrum. In the case of Europe, future revisions of the seismic design provisions, both at a national and a pan‐European level, may implement considerable modifications to the existing provisions in light of recent seismic hazard models, such as the 2013 European Seismic Hazard Model. Constraint of the shape of the long‐period design spectrum from seismic hazard estimates on such a scale has not been possible, however, owing to the limited spectral period range of existing ground motion models. Building upon recent developments in ground motion modelling, the 2013 European Seismic Hazard Model is adapted here with a new ground motion logic tree to provide a broadband Probabilistic Seismic Hazard Analysis for rock sites across a spectral period range from 0.05 seconds to 10.0 seconds. The resulting uniform hazard spectra (UHS) are compared against existing results for European and broadband Probabilistic Seismic Hazard Analysis and against a proposed formulation of a generalised design spectrum in which controlling parameters can be optimised to best fit the uniform hazard spectra in order to demonstrate their variability on a European scale. Significant variations in the controlling parameters of the design spectrum are seen both across and within stable and active regions. These trends can help guide recalibrations of the code spectra in future revisions to seismic design codes, particularly for the longer‐period displacement spectrum.  相似文献   

19.
Probabilistic seismic hazard analysis (PSHA) was performed to determine two alternate magnitude-distance combinations for the 475 yr event, and the worst-case scenario event in Perth, Western Australia. Regional strong ground motion (SGM) time histories on rock sites are used to modify an eastern North America (ENA) seismic model to suit southwest Western Australian (SWWA) conditions. This model is then used to stochastically simulate a set of 475 yr design events and a set of worst-case scenario event for rock sites in the Perth metropolitan area (PMA). The simulated time histories are then used as input to typical soft soil sites in the PMA to estimate surface ground motions. The spectral accelerations of the ground motions on rock and soil sites are calculated and compared with the corresponding design spectra defined in current and previous Australian earthquake loading code. Discussions of the adequacy of the code spectra and the differences to ours, along with implications on structural response and damage are made.  相似文献   

20.
Ground motion models for the Molise region (Southern Italy)   总被引:1,自引:0,他引:1  
The aim of this paper is to evaluate empirical attenuation relationships in order to validate peak values and pseudo-velocity spectra to calibrate shaking scenarios for the Molise area, which was struck by two earthquakes of Mw=5.7 (INGV-Harvard European-Mediterranean Regional Centroid-Moment tensor project) on October 31st and November 1st, 2002. Before the earthquake occurrence this region was classified as not hazardous, according to the former Italian seismic code. After the main-shocks, felt in many towns of the Molise and Puglia regions, a strong motion and a seismic temporary network were installed in the epicentral area and surrounding regions. This allowed the collection of a large data set, useful to characterize this area. The joint velocity-acceleration data set has been used to derive ground motion models for peak ground acceleration, peak ground velocity, and pseudo-velocity response spectra for both maximum horizontal and vertical components of the motion.The results obtained for the Molise area have been compared with the attenuation pattern of the Umbria-Marche region (central Italy) and the Italian territory. Remarkable differences have been observed leading to a discussion of the possible regional dependence of ground motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号