首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Ground-motion models (GMMs) are widely used in probabilistic seismic hazard analysis (PSHA) to estimate the probability distributions of earthquake-induced ground-motion intensity measures (IMs) at a site, given an earthquake of a certain magnitude occurring at a nearby location. Accounting for spatial and cross-IM correlations in earthquake-induced ground motions has important implications on probabilistic seismic hazard and loss estimates. This study first develops a new Italian GMM with spatial correlation for 31 amplitude-related IMs, including peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped elastic pseudo-spectral accelerations (PSAs) at 29 periods ranging from 0.01 to 4 seconds. The model estimation is performed through a recently developed one-stage nonlinear regression algorithm proposed by the authors, known as the Scoring estimation approach. In fact, current state-of-practice approaches estimate spatial correlation separately from the GMM estimation, resulting in inconsistent and statistically inefficient estimators of interevent and intraevent variances and parameters in the spatial correlation model. We test whether this affects the subsequent cross-IM correlation analysis. To this aim, based on the newly developed GMM, the empirical correlation coefficients from interevent and intraevent residuals are investigated. Finally, a set of analytical correlation models between the selected IMs are proposed. This is of special interest as several correlation models between different IMs have been calibrated and validated based on advanced GMMs and global datasets, lacking earthquakes in extensional regions; however, modeling the correlation between different IM types has not been adequately addressed by current, state-of-the-art GMMs and recent ground-motion records for Italy.  相似文献   

2.
Traditional probabilistic seismic hazard analysis (PSHA) uses ground-motion models that are based on the ergodic assumption, which means that the distribution of ground motions over time at a given site is the same as their spatial distribution over different sites. Evaluations of ground-motion data sets with multiple measurements at a given site and multiple earthquakes in a given region have shown that the ergodic assumption is not appropriate as there are strong systematic region-specific source terms and site-specific path and site terms that are spatially correlated. We model these correlations using a spatial Gaussian process model. Different correlations functions are employed, both stationary and non-stationary, and the results are compared in terms of their predictive power. Spatial correlations of residuals are investigated on a Taiwanese strong-motion data set, and ground motions are collected at the ANZA, CA array. Source effects are spatially correlated, but provide a much stronger benefit in terms of prediction for the ANZA data set than for the Taiwanese data set. We find that systematic path effects are best modeled by a non-stationary covariance function that is dependent on source-to-site distance and magnitude. The correlation structure estimated from Californian data can be transferred to Taiwan if one carefully accounts for differences in magnitudes. About 50% of aleatory variance can be explained by accounting for spatial correlation.  相似文献   

3.
An empirical spectral ground-motion model for Iran   总被引:4,自引:3,他引:1  
A new ground-motion prediction equation for 5%-damped horizontal spectral acceleration applicable to Iran is presented. On the basis of analysis of variance (ANOVA), selected West-Eurasian records are added to an existing dataset of Iranian accelerometric data to yield a ground-motion prediction equation applicable at wider ranges of magnitude and distance. The advantages of using this model rather than those proposed previously for Iran are discussed by considering the distribution of residuals against the explanatory variables, magnitude and distance. The applicability of the proposed model, as well as those of several other models developed for shallow crustal environments, is also investigated by means of statistical tools. The results reveal the overall suitability of the new model as well as the validity of models developed using mainly Eurasian strong-motion records. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

4.
In this paper, empirical ground-motion models for the vertical and average horizontal components of peak ground-motion and acceleration response spectra from shallow crustal earthquakes are derived using near-source database. These attenuation relationships were derived using a worldwide dataset consisted of corrected and processed accelerograms of 678 strong-motion records recorded with 60 km of the rupture plane of earthquakes between Mw 5.2 and 7.9. Ground motion models are functions of earthquake mechanism, distance from source to site, local average shear wave velocity, nonlinear soil response, sediment depth, depth-to-top of the rupture, hanging wall effects and faulting mechanism.  相似文献   

5.
The published version 1.0 of the new Italian strong-motion database ITACA (Italian ACcelerometric Archive, ) includes to date (December 2010) about 4,000 three-component waveforms up to M 6.9, from more than 1,800 earthquakes up to 6.9, recorded by about 400 stations in the period 1972–2009. The uncorrected and corrected strong motion data are archived and can be retrieved with their metadata, concerning events, stations and waveforms. The aim of this paper is to present the procedures for processing the records included in ITACA, accounting for the heterogeneity of this data set, both in terms of quality and amplitude of records as well as illustrating the main features of the ITACA strong-motion dataset. Later, we focus on the “exceptional” ground-motion records, that we, conventionally, denote as those having peak acceleration and peak velocity larger than 300 cm/s2 and 15 cm/s, respectively. These records are less than 2% of the whole ITACA dataset but they are the most relevant for the seismic hazard and engineering implications. Such large peak values, recorded at distances up to 30 km, are related not only to the strongest Italian earthquakes, but also to events with magnitude down to 4. Furthermore, we investigate the dependence of the largest peak values on horizontal and vertical directions and on source-to-site distance.  相似文献   

6.
Considering multiple ground motion intensity measures is important in seismic hazard analysis and ground motion selection process. Using the NGA strong motion database and recently developed ground-motion prediction models, empirical correlations are developed between cumulative absolute velocity (CAV) and spectral accelerations (Sa) at periods from 0.01 to 10 s. The CAV–Sa correlations at long periods are significantly influenced by rupture distance due to modification of the frequency content and duration of the acceleration time history through travel path. Similarly, the presence of strong velocity pulses in near-source ground motions also affects the correlations at moderate to long periods. On the other hand, the correlations are not particularly sensitive to the earthquake magnitude, orientation of the ground-motion recordings, selection of ground-motion prediction models and local site conditions. Piecewise linear fitting equations are provided to quantify the correlations for various cases. The application of the CAV–Sa correlations in ground motion selection process is also discussed.  相似文献   

7.
Processing of strong-motion accelerograms: needs, options and consequences   总被引:13,自引:2,他引:13  
Recordings from strong-motion accelerographs are of fundamental importance in earthquake engineering, forming the basis for all characterizations of ground shaking employed for seismic design. The recordings, particularly those from analog instruments, invariably contain noise that can mask and distort the ground-motion signal at both high and low frequencies. For any application of recorded accelerograms in engineering seismology or earthquake engineering, it is important to identify the presence of this noise in the digitized time-history and its influence on the parameters that are to be derived from the records. If the parameters of interest are affected by noise then appropriate processing needs to be applied to the records, although it must be accepted from the outset that it is generally not possible to recover the actual ground motion over a wide range of frequencies. There are many schemes available for processing strong-motion data and it is important to be aware of the merits and pitfalls associated with each option. Equally important is to appreciate the effects of the procedures on the records in order to avoid errors in the interpretation and use of the results. Options for processing strong-motion accelerograms are presented, discussed and evaluated from the perspective of engineering application.  相似文献   

8.
地震动预测具有较大不确定性,利用强震动观测记录对已有地震动预测模型进行检验评估对于模型的合理使用具有重要参考意义。针对2021年2月13日发生在日本福岛县东部海域的MW7.1地震,基于残差分析和对数似然函数法对俯冲带地震动预测模型SMA2020的路径项和场地项表征合理性、模型的预测精确性进行了评估。得到结果:(1) SMA2020模型对于地震动的路径衰减表征较为合理,在路径项中考虑了莫霍面反射效应,可以更真实地表征俯冲带深源地震的路径效应。(2) SMA2020模型对于PGV的场地效应表征较为合理,但对于PGA及PSA的场地效应表征有所偏差,还需要进一步检验验证。(3) SMA2020模型对于此次板内地震的短周期IM预测精确性要优于中长周期,对于T=1s的PSA预测表现最不佳。研究结果可为模型的潜在使用者提供有价值的辅助信息,也可以为我国地震动预测模型的开发研究提供理论参考。  相似文献   

9.
局部场地条件是决定场地地震动强度和频谱的重要因素,基于强震动和脉动记录的统计分析,获取表征场地条件影响的特征参数已成为确定工程场地设计地震动的较经济和实用方法,特别是对于大范围或难以开展现场勘测的工程场地.利用日本KiK-net台网强震动记录计算分析了台站场地地震动水平/竖向谱比(HVSR)与地表/基底谱比(SBSR)...  相似文献   

10.
Reference database for seismic ground-motion in Europe (RESORCE)   总被引:7,自引:5,他引:2  
This paper presents the overall procedure followed in order to assemble the most recent pan-European strong-motion databank: Reference Database for Seismic Ground-Motion in Europe (RESORCE). RESORCE is one of the products of the SeIsmic Ground Motion Assessment (SIGMA; projet-sigma.com) project. RESORCE is intended to be a single integrated accelerometric databank for Europe and surrounding areas for use in the development and testing of ground-motion models and for other engineering seismology and earthquake engineering applications. RESORCE aims to contribute to the improvement of earthquake risk studies in Europe and surrounding areas. RESORCE principally updates and extends the previous pan-European strong-motion databank (Ambraseys et al. in Bollettino di Geofisica Teorica ed Applicata 45:113–129, 2004a) with recently compiled Greek, Italian, Swiss and Turkish accelerometric archives. The updates also include earthquake-specific studies published in recent years. The current content of RESORCE includes 5,882 multi-component and uniformly processed accelerograms from 1,814 events and 1,540 strong-motion stations. The moment magnitude range covered by RESORCE is $2.8 \le \hbox {M}_{\mathrm{w}} \le 7.8$ . The source-to-site distance interval extends to 587 km and distance information is given by the common point- and extended-source distance measures. The paper presents the current features of RESORCE through simple statistics that also quantify the differences in metadata and strong-motion processing with respect to the previous version of the pan-European strong-motion databank.  相似文献   

11.
To estimate the demand of structures, investigating the correlation between engineering demand parameters and intensity measures (IMs) is of prime importance in performance-based earthquake engineering. In the present paper, the efficiency and sufficiency of some IMs for evaluating the seismic response of buried steel pipelines are investigated. Six buried pipe models with different diameter to thickness and burial depth to diameter ratios, and different soil properties are subjected to an ensemble of 30 far-field earthquake ground motion records. The records are scaled to several intensity levels and a number of incremental dynamic analyses are performed. The approach used in the analyses is finite element modeling. Pipes are modeled using shell elements while equivalent springs and dashpots are used for modeling the soil. Several ground motion intensity measures are used to investigate their efficiency and sufficiency in assessing the seismic demand and capacity of the buried steel pipelines in terms of engineering demand parameter measured by the peak axial compressive strain at the critical section of the pipe. Using the regression analysis, efficient and sufficient IMs are proposed for two groups of buried pipelines separately. The first one is a group of pipes buried in soils with low stiffness and the second one is those buried in soils with higher stiffness. It is concluded that for the first group of pipes, \(\sqrt {{\text{VSI}}[\upomega_{1} ({\text{PGD}} + {\text{RMS}}_{\text{d}} )]}\) followed by root mean square of displacement (RMSd) are the optimal IMs based on both efficiency and sufficiency; and for the second group, the only optimal IM is PGD2/RMSd.  相似文献   

12.
The variation of ground motions at specific stations from events in six narrow areas was inspected by using K-NET and KiK-net records. A source-area factor for individual observation stations was calculated by averaging ratios between observed values for horizontal peak acceleration and velocity, as well as acceleration response spectra for 5% damping, and predicted values using a ground-motion model (usually known as an attenuation relation) by Kanno et al. (Bull Seismol Soc Am, 96:879–897, 2006). Standard deviations between observed and predicted amplitudes after the correction factor are less than 0.2 on the logarithmic scale and decrease down to around 0.15 in the short-period range. Intra-event standard deviation clearly increases with decreasing distance due to differing paths around near source area. Standard deviations may increase with amplitude or decrease with magnitude; however, both amplitude and magnitude of the data are strongly correlated with distance. The standard deviation calculated in this study is obviously much smaller than that of the original ground-motion model, as epistemic uncertainties are minimized by grouping ground motions at specific stations. This result indicates that the accuracy of strong ground motion prediction could be improved if ground-motion models for specified region are determined individually. For this to be possible, it is necessary to have dense strong-motion networks in high-seismicity regions, such as K-NET and KiK-net.  相似文献   

13.
Earthquake‐induced slope displacement is an important parameter for safety evaluation and earthquake design of slope systems. Traditional probabilistic seismic hazard analysis usually focuses on evaluating slope displacement at a particular location, and it is not suitable for spatially distributed slopes over a large region. This study proposes a computationally efficient framework for fully probabilistic seismic displacement analysis of spatially distributed slope systems using spatially correlated vector intensity measures (IMs). First, a spatial cross‐correlation model for three key ground motion IMs, that is, peak ground acceleration (PGA), Arias intensity, and peak ground velocity, is developed using 2686 ground motion recordings from 11 recent earthquakes. To reduce the computational cost, Monte Carlo simulation and data reduction techniques are utilized to generate spatially correlated random fields for the vector IMs. The slope displacement hazards over the region are further quantified using empirical predictive equations. Finally, an illustrative example is presented to highlight the importance of the spatial correlation and the advantage of using spatially correlated vector IMs in seismic hazard analysis of spatially distributed slopes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Predictive models for estimating strong-motion duration in sites characterized by soft-soil profiles are presented in this paper. The models were developed using a strong-motion database that includes observations from subduction interface earthquakes that occurred from 1989 to 2020 and recorded in Mexico City, which is located at source-to-site distances up to 600 km. A linear mixed-effects regression model, which is a statistical fitting procedure that allows to consider the correlation structure of grouped data, was used to develop the predictive models. Relative significant duration was selected to measure strong-motion duration. This measure can be directly associated with the accumulation of energy of the ground movement. The proposed predictive models relate relative significant duration with moment magnitude, either hypocentral distance or closest distance to the rupture plane, and dominant period of the soil. Regression analyses were performed grouping the ground-motion data by both seismic event and site class. Model assumptions, such as homoscedasticity, normality, and linearity of effects, were verified from residual analyses. From the results, the expected value of the natural logarithm of relative significant duration was found to be ~1.2 times greater for an earthquake with a moment magnitude equal to 8.0 than for one of 6.0. An insightful discussion about the sources and character of the uncertainties detected in the proposed predictive models is also presented in this study. The predictive models proposed in this paper are of valuable application in seismic and structural engineering because they allow to circumscribe properly the dimension and randomness of strong-motion duration.  相似文献   

16.
Estimates of the earthquake ground motion intensity over a geographical area have multiple uses, that is, emergency management, civil protection and seismic fragility assessment. In particular, with reference to fragility assessment, it is of interest to have estimates of the values of different ground-motion intensity measures in order to correlate them with the observed damage. To this purpose, the present paper uses a procedure recently proposed in the literature to estimate the ground-motion intensity for the 2012 Emilia mainshocks, considering different ground motion intensity measures and directionality effects. Ground motion prediction equations based on different site effect models, and spatial correlation models are calibrated for the Emilia earthquakes. The paper discusses the accuracy of the shakemaps obtained using the different soil effect models considered and presents the obtained shakemaps as supplementary material. The procedure presented in the paper is aimed at providing ground motion intensity values for seismic fragility assessment and is not intended as a tool to estimate shakemaps for rapid emergency assessment.  相似文献   

17.
This study presents a ground-motion selection and scaling methodology that preserves the basic seismological features of the scaled records with reduced scatter in the nonlinear structural response. The methodology modifies each strong-motion recording with known fundamental seismological parameters using the estimations of ground-motion prediction equations for a given target hazard level. It provides robust estimations on target building response through scaled ground motions and calculates the dispersion about this target. This alternative procedure is not only useful for record scaling and selection but, upon its further refinement, can also be advantageous for the probabilistic methods that assess the engineering demand parameters for a given target hazard level. Case studies that compare the performance of the proposed procedure with some other record selection and scaling methods suggest its usefulness for building performance assessment and loss models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Earthquake ground-motion relationships for soil and rock sites in Iran have been developed based on the specific barrier model (SBM) used within the context of the stochastic modeling and calibrated against up-to-date Iranian strong-motion data. A total of 171 strong-motion accelerograms recorded at distances of up to 200 km from 24 earthquakes with moment magnitudes ranging from Mw 5.2 to 7.4 are used to determine the region-specific source parameters of this model. Regression analysis was conducted using the “random effects” methodology that considers both earthquake-to-earthquake (inter-event) variability and within-earthquake (intra-event) variability to effectively handle the problem of weighting observations from different earthquakes. The minimization of the error function in each iteration of the “random effects” procedure was performed using the genetic algorithm method. The residuals are examined against available Iranian strong-motion data to confirm that the model predictions are unbiased and that there are no significant residual trends with distance and magnitude. No evidence of self-similarity breakdown is observed between the source radius and its seismic moment. To verify the robustness of the results, tests were performed to confirm that the results are unchanged if the number of observations is changed by removing different randomly selected datasets from the original database. Stochastic simulations, using the derived SBM, are then performed to predict peak ground-motion and response spectra parameters for a wide range of magnitudes and distances. The stochastic SBM predictions agree well with the new empirical regression equations proposed for Iran, Europe and Middle East in the magnitude–distance ranges well represented by the data. It has been shown that the SBM of this study provides unbiased ground-motion estimates over the entire frequency range of most engineering interests (1–10 Hz) for the Iranian earthquakes. Our results are also important for the assessment of hazards in other seismically active environments in the Middle East and Mediterranean regions.  相似文献   

19.
Khartoum, the capital of Sudan, is located at the confluence of White and Blue Niles. The city is heavily populated. Central Khartoum with its high-rise buildings is the center of governmental and business activities and is located on a strip adjacent to the Blue Nile. Geological and geotechnical data indicate that the subsoil conditions at Central Khartoum are characterized by alluvial deposits underlain by Nubian Sandstone at a depth of 25 m. The alluvial deposits, locally known as Gezira formations, consist of clays grading into silt and sand with depth. Macro seismic zonation of Sudan and its vicinities, developed by the authors, gave the ground acceleration at the bedrock surface. The effect of alluvial deposits in Central Khartoum on propagation of seismic motion parameters to the ground surface is investigated in this study. Correlations are proposed for pertinent cyclic soil properties such as shear modulus, damping, and shear wave velocity. The Equivalent-Linear Earthquake Response Analyses (EERA) Model was used to study the effect of local soil conditions on ground-motion parameters. In the absence of strong-motion records in Khartoum, available worldwide strong-motion records are used. Plots showing the time histories of ground motion parameters at the ground surface are obtained. The results indicate amplification of ground motion of up to 4.93. The predicted fundamental period of soils is about 0.5 s which is typical for these types of soils. The maximum spectral acceleration varied from 0.76 to 0.95 g. For design purposes, a response spectrum curve is proposed.  相似文献   

20.
Duration models are one of the important parameters in ground-motion simulations. This model varies in different study areas, and plays a critical role in nonlinear structural response analysis. Currently, available empirical models are being globally used in ground-motion simulations, with limited research focusing on path duration in specific regions. In this study, we collected 6,486 sets of three-component strong-motion records from 29 K-NET stations in the Sagami Bay, Japan, and its surrounding areas between January 2000 to October 2018. We extracted the effective duration of 386 pieces of ground-motion records by manually picking up the S-wave arrival time and calculating the significant duration. We then obtained the path duration model of the study area based on the empirical equation of dynamic corner frequency and source duration of [7]. Compared with the results of the available empirical models, the Fourier spectrum of the simulated ground motion from our effective duration model showed higher accuracy in the long-term range, with less fitting residuals. This path duration model was then applied to simulate two earthquakes of MW5.4 and MW6.2, respectively, in the region using the stochastic finite-fault method with a set of reliable source, path, and site parameters determined for the study area. The simulation results of most stations fit well with observation records in the 0–30 Hz frequency band. For the MW5.4 earthquake, the simulated ground motions at KNG005/KNG010/SZO008 stations were relatively weak in the mid to high frequency band (1–30 Hz) because the quality factor and geometric diffusion model used in the simulation were the averages of the entire Sagami Bay region, causing a bias in the results of a few stations owing to local crustal velocity anomalies and topographic effects. For the MW6.2 earthquake, the simulated ground motions were relatively weak at all SZO and TKY stations, mainly because of the close distance from these stations to the epicenter and the complex seismic-wave propagation paths. The analysis suggests that the differences between the simulation results of the two earthquakes were mainly related to complex geological conditions and seismic-wave propagation paths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号