首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Considering multiple ground motion intensity measures is important in seismic hazard analysis and ground motion selection process. Using the NGA strong motion database and recently developed ground-motion prediction models, empirical correlations are developed between cumulative absolute velocity (CAV) and spectral accelerations (Sa) at periods from 0.01 to 10 s. The CAV–Sa correlations at long periods are significantly influenced by rupture distance due to modification of the frequency content and duration of the acceleration time history through travel path. Similarly, the presence of strong velocity pulses in near-source ground motions also affects the correlations at moderate to long periods. On the other hand, the correlations are not particularly sensitive to the earthquake magnitude, orientation of the ground-motion recordings, selection of ground-motion prediction models and local site conditions. Piecewise linear fitting equations are provided to quantify the correlations for various cases. The application of the CAV–Sa correlations in ground motion selection process is also discussed.  相似文献   

2.
A large database of ground motions from shallow earthquakes occurring in active tectonic regions around the world, recently developed in the Pacific Earthquake Engineering Center’s NGA-West2 project, has been used to investigate what such a database can say about the properties and processes of crustal fault zones. There are a relatively small number of near-rupture records, implying that few recordings in the database are within crustal fault zones, but the records that do exist emphasize the complexity of ground-motion amplitudes and polarization close to individual faults. On average over the whole data set, however, the scaling of ground motions with magnitude at a fixed distance, and the distance dependence of the ground motions, seem to be largely consistent with simple seismological models of source scaling, path propagation effects, and local site amplification. The data show that ground motions close to large faults, as measured by elastic response spectra, tend to saturate and become essentially constant for short periods. This saturation seems to be primarily a geometrical effect, due to the increasing size of the rupture surface with magnitude, and not due to a breakdown in self similarity.  相似文献   

3.
At present, dense strong motion observation networks have been established in Japan. One of the important findings based on these networks is that strong ground motions are quite site-dependent. Characteristics of observed ground motions at nearby stations can exhibit a significant variation, even when the stations are within several hundreds of meters. These observations raise one important question; if characteristics of strong ground motions exhibit large variations even for smaller regions, we should be concerned about the application of observed or predicted ground motions for the assessment of structures. In particular, if ground-motion parameters such as PGA, PGV, Spectral Intensity, etc., exhibit large variations for smaller regions, their use for the seismic design and practice will be subject to restriction. In other words, the evaluation of variation of these parameters is an important issue. From such a point of view, the authors investigated the variation of observed ground motions within a very small distance in this study. First of all, fifteen couples of adjacent strong motion stations in Japan, where the distance is within 100 m, were listed up based on our field reconnaissance. Then, microtremor measurements were carried out at each of the station pairs. Next, variation of recorded earthquake ground motions for the station pairs was examined based on various ground motion parameters and response spectra. Moreover, we investigated the key factor which is affecting the variation of observed ground motions.  相似文献   

4.
A vital component of any seismic hazard analysis is a model for predicting the expected distribution of ground motions at a site due to possible earthquake scenarios. The limited nature of the datasets from which such models are derived gives rise to epistemic uncertainty in both the median estimates and the associated aleatory variability of these predictive equations. In order to capture this epistemic uncertainty in a seismic hazard analysis, more than one ground-motion prediction equation must be used, and the tool that is currently employed to combine multiple models is the logic tree. Candidate ground-motion models for a logic tree should be selected in order to obtain the smallest possible suite of equations that can capture the expected range of possible ground motions in the target region. This is achieved by starting from a comprehensive list of available equations and then applying criteria for rejecting those considered inappropriate in terms of quality, derivation or applicability. Once the final list of candidate models is established, adjustments must be applied to achieve parameter compatibility. Additional adjustments can also be applied to remove the effect of systematic differences between host and target regions. These procedures are applied to select and adjust ground-motion models for the analysis of seismic hazard at rock sites in West Central Europe. This region is chosen for illustrative purposes particularly because it highlights the issue of using ground-motion models derived from small magnitude earthquakes in the analysis of hazard due to much larger events. Some of the pitfalls of extrapolating ground-motion models from small to large magnitude earthquakes in low seismicity regions are discussed for the selected target region.  相似文献   

5.
Consistency of ground-motion predictions from the past four decades   总被引:2,自引:2,他引:0  
Due to the limited observational datasets available for the derivation of ground-motion prediction equations (GMPEs) there is always epistemic uncertainty in the estimated median ground motion. Because of the increasing quality and quantity of strong-motion datasets it would be expected that the epistemic uncertainty in ground-motion prediction (related to lack of knowledge and data) is decreasing. In this study the predicted median ground motions from over 200 GMPEs for various scenarios are plotted against date of publication to examine whether the scatter in the predictions (a measure of epistemic uncertainty) is decreasing with time. It is found that there are still considerable differences in predicted ground motions from the various GMPEs and that the variation between estimates is not reducing although the ground motion estimated by averaging median predictions is roughly constant. For western North America predictions for moderate earthquakes have show a high level of consistency since the 1980s as do, but to a lesser extent, predictions for moderate earthquakes in Europe, the Mediterranean and the Middle East. A good match is observed between the predictions from GMPEs and the median ground motions based on observations from similar scenarios. Variations in median ground motion predictions for stable continental regions and subduction zones from different GMPEs are large, even for moderate earthquakes. The large scatter in predictions of the median ground motion shows that epistemic uncertainty in ground-motion prediction is still large and that it is vital that this is accounted for in seismic hazard assessments.  相似文献   

6.
A Mw 7.9 earthquake event occurred on 15 August 2007 off the coast of central Peru, 60 km west of the city of Pisco. This event is associated with subduction processes at the interface of the Nazca and South American plates, and was characterised by a complex source mechanism involving rupture on two main asperities, with unilateral rupture propagation to the southeast. The rupture process is clearly reflected in the ground motions recorded during this event, which include two separate episodes of strong shaking. The event triggered 18 accelerographic stations; the recordings are examined in terms of their characteristics and compared to the predictions of ground-motion prediction equations for subduction environments, using the maximum-likelihood-based method of Scherbaum et al. (Bull Seismol Soc Am 94(6):2164–2185, 2004). Additionally, macroseismic observations and damage patterns are examined and discussed in the light of local construction practices, drawing on field observations gathered during the post-earthquake reconnaissance missions.  相似文献   

7.
Earthquake loss models are subject to many large uncertainties associated with the input parameters that define the seismicity, the ground motion, the exposure and the vulnerability characteristics of the building stock. In order to obtain useful results from a loss model, it is necessary to correctly identify and characterise these uncertainties, incorporate them into the calculations, and then interpret the results taking account of the influence of the uncertainties. An important element of the uncertainty will always be the aleatory variability in the ground-motion prediction. Options for handling this variability include following the traditional approach used in site-specific probabilistic seismic hazard assessment or embedding the variability within the vulnerability calculations at each location. The physical interpretation of both of these approaches, when applied to many sites throughout an urban area to assess the overall effects of single or multiple earthquake events, casts doubts on their validity. The only approach that is consistent with the real nature of ground-motion variability is to model the shaking component of the loss model by triggering large numbers of earthquake scenarios that sample the magnitude and spatial distributions of the seismicity, and also the distribution of ground motions for each event as defined by the aleatory variability.  相似文献   

8.
Simulation of Ground Motion Using the Stochastic Method   总被引:29,自引:0,他引:29  
  相似文献   

9.
The variation of ground motions at specific stations from events in six narrow areas was inspected by using K-NET and KiK-net records. A source-area factor for individual observation stations was calculated by averaging ratios between observed values for horizontal peak acceleration and velocity, as well as acceleration response spectra for 5% damping, and predicted values using a ground-motion model (usually known as an attenuation relation) by Kanno et al. (Bull Seismol Soc Am, 96:879–897, 2006). Standard deviations between observed and predicted amplitudes after the correction factor are less than 0.2 on the logarithmic scale and decrease down to around 0.15 in the short-period range. Intra-event standard deviation clearly increases with decreasing distance due to differing paths around near source area. Standard deviations may increase with amplitude or decrease with magnitude; however, both amplitude and magnitude of the data are strongly correlated with distance. The standard deviation calculated in this study is obviously much smaller than that of the original ground-motion model, as epistemic uncertainties are minimized by grouping ground motions at specific stations. This result indicates that the accuracy of strong ground motion prediction could be improved if ground-motion models for specified region are determined individually. For this to be possible, it is necessary to have dense strong-motion networks in high-seismicity regions, such as K-NET and KiK-net.  相似文献   

10.
The northern Tehran fault (NTF) is a principal active fault of the Alborz mountain belt in the northern Iran. The fault is located north of the highly populated Metropolitan Area of Tehran. Historical records and paleoseismological studies have shown that the NTF poses a high seismic risk for the Tehran region and the surrounding cities (e.g. Karaj). A series of ground-motion simulations are carried out using a hybrid kinematic-stochastic model to calculate broadband (0.1–20 Hz) ground-motion time histories for deterministic earthquake scenarios (M7.2) on the NTF. We will describe the source characteristics of the target event to develop a list of scenario earthquakes that are probably similar to a large earthquake on the NTF. The effect of varying different rupture parameters such as rupture velocity and rise time on the resulting broadband strong motions has been investigated to evaluate the range of uncertainty in seismic scenarios. The most significant parameters in terms of ground-shaking level are the rise time and the value of the rupture velocity. For the worst-case scenario, the maximum expected horizontal acceleration, and velocity at rock sites in Tehran range between 128 and 1315 cm/s/s and 11–191 cm/s, respectively. For the lowest scenario, the corresponding values range between 102 and 776 cm/s/s and 12 to 81 cm/s. Nonlinear soil effects may change these results but are not accounted for in this study. The largest variability of ground motion is observed in neighborhood of asperity and also in the direction of rupture propagation. The calculated standard deviation of all ground-motion scenarios is less than 30% of the mean. The capability of the simulation method to synthesize expected ground motions and the appropriateness of the key parameters used in the simulations are confirmed by comparing the synthetic peak ground motions (PGA, PGV and response spectra) with empirical ground-motion prediction equations.  相似文献   

11.
Peak ground motion predictions in India: an appraisal for rock sites   总被引:1,自引:0,他引:1  
Proper selection and ranking of Ground Motion Prediction Equations (GMPEs) is critical for successful logic-tree implementation in probabilistic seismic hazard analysis. The present study explores this issue in predicting peak ground accelerations at the rock sites in India. Macroseismic intensity data complemented with limited strong ground-motion recordings are used for the purpose. The findings corroborate the possible conformity between the GMPEs developed for tectonically active shallow crust across the globe. On the other hand, the relevant GMPEs in the intraplate regions cluster into two different groups with the equations of lower ranks catering to higher ground motions. The earthquakes in the subduction zones have significant regional implications. However, affinity in the ground-motion attenuations between the major interface events (M W > 7.4) in Andaman-Nicobar, Japan and Cascadia, respectively, is noted. This can be also observed for the intraslab events in the Hindukush and Taiwan respectively. Overall, we do not observe any significant advantage with the equations developed using the regional data. These findings are expected to be useful in probabilistic seismic hazard analysis across the study region.  相似文献   

12.
Accurate estimates of the ground motions that occurred during damaging earthquakes are a vital part of many aspects of earthquake engineering, such as the study of the size and cause of the uncertainties within earthquake risk assessments. This article compares a number of methods to estimate the ground shaking that occurred on Guadeloupe (French Antilles) during the 21st November 2004 (M w 6.3) Les Saintes earthquake, with the aim of providing more accurate shaking estimates for the investigation of the sources of uncertainties within loss evaluations, based on damage data from this event. The various techniques make differing use of the available ground-motion recordings of this earthquake and by consequence the estimates obtained by the different approaches are associated with differing uncertainties. Ground motions on the French Antilles are affected by strong local site effects, which have been extensively investigated in previous studies. In this article, use is made of these studies in order to improve the shaking estimates. It is shown that the simple methods neglecting the spatial correlation of earthquake shaking lead to uncertainties similar to those predicted by empirical ground-motion models and that these are uniform across the whole of Guadeloupe. In contrast, methods (such as the ShakeMap approach) that take account of the spatial correlation in motions demonstrate that shaking within roughly 10 km of a recording station (covering a significant portion of the investigated area) can be defined with reasonable accuracy but that motions at more distant points are not well constrained.  相似文献   

13.
Human activities, such as fluid injection as part of the stimulation of an enhanced geothermal system (EGS) for heat and power production, can cause damaging earthquake ground motions. A difficulty in quickly settling or rejecting insurance claims to the policy of the EGS operator is the lack of ground truth on the observed shaking at sites of reported damage. To overcome this problem a local seismic network could be installed prior to injection to constrain the ground-motion field at points of potential damage. Since the installation and maintenance of seismometers are costly there is an incentive to keep the number of instruments to a minimum. In this short communication, ground-motion fields are simulated and receiver operating characteristic analysis is conducted to guide decisions on the number of sensors required to obtain a certain confidence in the rate of false alarms and missed detections. For densities of 10–20 instruments per km2 the ability to estimate potentially damaging ground motions is reasonable but associated with a significant chance of missed detections and false alarms. If an EGS operator or regulatory authority does not want to accept such chances then network densities of 50–100 instruments per km2 are required and even in this case the exceedance/non-exceedance of a certain ground-motion threshold cannot be completely constrained.  相似文献   

14.
This brief article presents a quantitative analysis of the ability of eight published empirical ground-motion prediction equations (GMPEs) for subduction earthquakes (interface and intraslab) to estimate observed earthquake ground motions on the islands of the Lesser Antilles (specifically Guadeloupe, Martinique, Trinidad, and Dominica). In total, over 300 records from 22 earthquakes from various seismic networks are used within the analysis. It is found that most of the GMPEs tested perform poorly, which is mainly due to a larger variability in the observed ground motions than predicted by the GMPEs, although two recent GMPEs derived using Japanese strong-motion data provide reasonably good predictions. Analyzing separately the interface and intraslab events does not significant modify the results. Therefore, it is concluded that seismic hazard assessments for this region should use a variety of GMPEs in order to capture this large epistemic uncertainty in earthquake ground-motion prediction for the Lesser Antilles.  相似文献   

15.
Earthquake hazard along the Peru–Chile subduction zone is amongst the highest in the world. The development of a database of subduction-zone strong-motion recordings is, therefore, of great importance for ground-motion prediction in this region. Accelerograms recorded by the different networks operators in Peru and Chile have been compiled and processed in a uniform manner, and information on the source parameters of the causative earthquakes, fault-plane geometries and local site conditions at the recording stations has been collected and reviewed to obtain high-quality metadata. The compiled database consists of 98 triaxial ground-motion recordings from 15 subduction-type events with moment magnitudes ranging from 6.3 to 8.4, recorded at 59 different sites in Peru and Chile, between 1966 and 2007. While the database presented in this study is not sufficient for the derivation of a new predictive equation for ground motions from subduction events in the Peru–Chile region, it significantly expands the global database of strong-motion data and associated metadata that can be used in the derivation of predictive equations for subduction environments. Additionally, the compiled database will allow the assessment of existing predictive models for subduction-type events in terms of their suitability for the Peru–Chile region, which directly influences seismic hazard assessment in this region.  相似文献   

16.
In the Taiwan region, the empirical spectral models for estimating ground-motion parameters were obtained recently on the basis of recordings of small to moderate (5.0≤ML≤6.5) earthquakes. A large collection of acceleration records from the ML=7.3 Chi-Chi earthquake (21 September, 1999) makes it possible to test the applicability of the established relationships in the case of larger events. The comparison of ground-motion parameters (Fourier amplitude spectra, peak accelerations and response spectra), which were calculated using the models, and the observed data demonstrates that the models could provide an accurate prediction for the case of the Chi-Chi earthquake and the largest aftershocks. However, there are some peculiarities in the ground-motion frequency content and attenuation that, most probably, are caused by the features of the rupture process of the large shallow earthquake source.  相似文献   

17.
Strong-motion data from large (M ≥ 7.2) shallow crustal earthquakes invariably make up a small proportion of the records used to develop empirical ground motion prediction equations (GMPEs). Consequently GMPEs are more poorly constrained for large earthquakes than for small events. In this article peak ground accelerations (PGAs) observed in 38 earthquakes worldwide with M ≥ 7.2 are compared with those predicted by eight recent GMPEs. Well over half of the 38 earthquakes were not considered when deriving these GMPEs but the data were identified by a thorough literature review of strong-motion reports from the past 60 years. These data are provided in an electronic supplement for future investigations on ground motions from large earthquakes. The addition of these data provides better constraint of the between-event ground-motion variability in large earthquakes. It is found that the eight models generally provide good predictions for PGAs from these earthquakes, although there is evidence for slight under- or over-prediction of motions by some models (particularly for M > 7.6). The between-event variabilities predicted by most models match the observed variability, if data from two events (2001 Bhuj and 2005 Crescent City) that are likely atypical of earthquakes in active regions are excluded. For some GMPEs there is evidence that they are over-predicting PGAs in the near-source region of large earthquakes as well as over-predicting motions on hard rock. Overall, however, all the considered models, despite having been derived using limited data, provide reliable predictions of PGAs in the largest crustal earthquakes.  相似文献   

18.
The earthquake risk on Romania is one of the highest in Europe, and seismic hazard for almost half of the territory of Romania is determined by the Vrancea seismic region, which is situated beneath the southern Carpathian Arc. The region is characterized by a high rate of occurrence of large earthquakes in a narrow focal volume at depth from 70 to 160 km. Besides the Vrancea area, several zones of shallow seismicity located within and outside the Romanian territory are considered as seismically dangerous. We present the results of probabilistic seismic hazard analysis, which implemented the “logic tree” approach, and which considered both the intermediate-depth and the shallow seismicity. Various available models of seismicity and ground-motion attenuation were used as the alternative variants. Seismic hazard in terms of macroseismic intensities, peak ground acceleration, and response spectra was evaluated for various return periods. Sensitivity study was performed to analyze the impact of variation of input parameters on the hazard results. The uncertainty on hazard estimates may be reduced by better understanding of parameters of the Vrancea source zone and the zones of crustal seismicity. Reduction of uncertainty associated with the ground-motion models is also very important issue for Romania.  相似文献   

19.
This article points out some particular features conditioning seismic hazard assessments (SHA) in Spain, a region with low–moderate seismicity. Although sized earthquakes occurred in the past, as evidenced by historical documents and neotectonic studies, no large events occurred during the last decades. The absence of strong motion records corresponding to earthquakes with magnitude larger than 5.5 is an important obstacle for the development of ground motion models constrained by local data, with the consequent difficulty in SHA studies. In this paper, some recent developments aiming at providing solutions to these difficulties are presented. Specifically, a strong motion databank containing a massive collection of accelerograms and response spectra from different configurations source-path-site corresponding to earthquakes all over the world is introduced, together with software utilities for its management. A first application of this databank is the development of specific ground motion models for Spain and for the Mediterranean region that predict peak ground accelerations as a function of several definitions of magnitude, distance and soil class. The predictive power of these ground motion models is tested by contrasting their estimates with recently recorded ground motions. The comparison between our ground-motion models with others proposed in the literature for other areas reveals a regular overestimation of the expected ground motions at Spanish sites by the non-local models. Consequently, SHA studies based in external models may overestimate the predicted hazard at the Iberian sites. In the last part of the paper a method for checking whether the response spectra proposed in the Spanish Building Code (NCSE-02) are consistent with actual accelerometric data from recent low magnitude earthquakes is applied. The spectral shapes of the Spanish Building Code NCSE-02 are compared with the response spectral shapes deduced from the available accelerograms by normalising the response spectra with the recorded PGA. It is appreciated that the NCSE-02 spectral shapes are exceeded by a large number of actual spectral shapes for short periods (around 0.2 s), a result to be taken into account in further revisions of the NCSE-02 code. The issues tackled in this work constitute not only an improvement for ground-motion characterisation in Spain, but also provide guidelines of general interest for potential applications in other regions with similar seismicity.  相似文献   

20.
The most commonly used intensity measure in ground-motion prediction equations is the pseudo-absolute response spectral acceleration (PSA), for response periods from 0.01 to 10 s (or frequencies from 0.1 to 100 Hz). PSAs are often derived from recorded ground motions, and these motions are usually filtered to remove high and low frequencies before the PSAs are computed. In this article we are only concerned with the removal of high frequencies. In modern digital recordings, this filtering corresponds at least to an anti-aliasing filter applied before conversion to digital values. Additional high-cut filtering is sometimes applied both to digital and to analog records to reduce high-frequency noise. Potential errors on the short-period (high-frequency) response spectral values are expected if the true ground motion has significant energy at frequencies above that of the anti-aliasing filter. This is especially important for areas where the instrumental sample rate and the associated anti-aliasing filter corner frequency (above which significant energy in the time series is removed) are low relative to the frequencies contained in the true ground motions. A ground-motion simulation study was conducted to investigate these effects and to develop guidance for defining the usable bandwidth for high-frequency PSA. The primary conclusion is that if the ratio of the maximum Fourier acceleration spectrum (FAS) to the FAS at a frequency $f_{saa} $ corresponding to the start of the anti-aliasing filter is more than about 10, then PSA for frequencies above $f_{saa} $ should be little affected by the recording process, because the ground-motion frequencies that control the response spectra will be less than $f_{saa} $ . A second topic of this article concerns the resampling of the digital acceleration time series to a higher sample rate often used in the computation of short-period PSA. We confirm previous findings that sinc-function interpolation is preferred to the standard practice of using linear time interpolation for the resampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号