首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Commercial digital photogrammetric software has been applied to convergent stereoscopic photography of human tooth replicas prepared to exhibit optical texture resulting in successful generation of 3D coordinate data. Tooth replicas were imaged using a semi-metric 35 mm camera and f = 100 mm macro lens on extension bellows. Model precision was within acceptable limits of 12  μ m or better for manual target matching and 21  μ m or better for automatic image matching. Further improvement in optical texture is required to achieve automatic image matching precision comparable to that of manual target matching. Small errors in interior orientation parameters attributed to instability in the bellows as well as small errors in the relative orientation resulted in some systematic errors. The use of a fixed camera lens system is expected to reduce these errors. When combined with commercially available, moderately priced, digital SLR cameras this brings 3D model generation closer to everyday clinical dental practice.  相似文献   

2.
This paper presents a procedure for assessing the quality of a digital elevation model (DEM) which has been applied to the output of a normalized cross correlation based stereomatching algorithm. Using semimetric photography of natural gravel river bed surfaces acquired in the field, digital photogrammetry was used to extract DEMs automatically for use in characterizing surface roughness properties. The procedure for assessing DEM quality involves examination of (i) ortho-images, to provide a qualitative check on stereomatching performance; (ii) DEM collection statistics which quantify the percentage of correctly matched pixels as a function of those interpolated; and (iii) height differences between check points, measured using independent field survey, and corresponding DEM points. The concepts of precision, accuracy and reliability are defined in the context of DEM quality assessment and methods are outlined which can be used to assess these variables. The assessment is conducted for two adjacent stereopairs with similar characteristics, considering the effects of both DEM collection parameters and different lens models upon DEM quality. Results show that digital photogrammetry, in conjunction with independent field survey, can be used successfully for extracting high resolution, small scale DEMs from natural gravel surfaces. Components (i) and (ii) of the quality assessment suggest the need to optimize DEM collection parameters, although the effects of not using a properly specified lens model were minimal at this scale. Method (iii) showed that increasing stereomatching success does not necessarily lead to more accurately estimated DEM points. However, the use of method (iii) remained difficult because of the scale of the photogrammetric application being used; check point positioning within the photogrammetric co-ordinate system was only possible to ±10 mm which, for a gravel bed surface, was associated with elevation variance of a similar, sometimes greater, magnitude. The next stage of this research will require the use of higher quality check data, possibly from laser profiling.  相似文献   

3.
The Digital Elevation Model (DEM) is one of the important parameters of soil erosion assessment and notable uncertainties are found in using different resolutions of the DEM. Revised Universal Soil Loss Equation model has been applied to analyze the effect of open-source DEMs with different resolution and accuracy on the uncertainties of soil erosion modelling in a part of the Narmada river basin in Madhya Pradesh in central India. Selected open-source DEMs are GTOPO30 (1 km), SRTM (30 and 90 m), CARTOSAT (30 m) and ASTER (30 m), used for estimating erosion rate. Results with better accuracy are achieved with the high-resolution DEMs (30 m) with higher vertical accuracy than the coarse resolution DEMs with lower accuracy. This study has presented potential uncertainties introduced by the open-source DEMs in soil erosion modelling for better understanding of appropriate selection and acceptable errors for researchers.  相似文献   

4.
Detailed understanding of the processes which control river bank erosion requires high resolution information concerning temporal changes in bank morphology. This paper describes the successful use of digital photogrammetry to extract high resolution digital elevation models (DEMs) from terrestrial oblique stereopairs of rapidly eroding river banks, using the commercial software package Erdas Imagine. This software was developed for use with aerial photography and satellite imagery; problems relating to the use of oblique terrestrial images are discussed and solutions presented. Photography was acquired using semi-metric cameras, mounted on tripods and positioned about 15m from the eroding bank. Data for DEM point spacings of 20mm were obtained, with accuracies of approximately ±12mm in depth. Digital photogrammetry can permit faster analysis, provide better accuracies and involve less ground disturbance than conventional methods of monitoring river channel change. Most importantly, DEM generation is considered to be more useful than traditionally acquired points or profiles for landform monitoring strategies.  相似文献   

5.
A raster and vector GIS was created for the North Appalachian Experimental Watershed (NAEW) from legacy (1960) 1:2,400‐scale contour maps. The intent of the study was to use terrain data for the spatial modeling of soil organic carbon. It was hypothesized that DEMs derived from these data would be more accurate and therefore more useful for terrain‐based soil modeling than those from USGS 1:24,000‐scale contour data. Central tasks for this study were to digitally capture the 1:2,400‐scale maps, convert digital contour data sources to raster DEMs at multiple resolutions, and derive terrain attributes. A flexible approach was adopted, using software outside of mainstream GIS sources where scientifically or practically advantageous. Elevation contours and streamlines were converted to raster DEMs using ANUDEM. DEMs ranging in resolution from 0.5–30 m were tested for accuracy against precision carrier‐phase GPS data. The residual standard deviation was 1.68 meters for the USGS DEM and 0.36 meters for the NAEW DEM. The optimal horizontal resolution for the NAEW DEM was 5 m and for the USGS 10 m. Five and 10 m resolution DEMs from both data sources were tested for carbon prediction. Multiple terrain parameters were derived as proxies for surficial processes. Soil samples (n = 184) were collected on four zero‐order watersheds (conventional tillage, no‐till, hay and pasture). Multiple least squares regressions (m.l.s.) were used to predict mass C (kg m?2, 30 cm depth) from topographic information. Model residuals were not spatially autocorrelated. Statistically significant topographic parameters were attained most consistently from the 5 m NAEW DEM. However, topography was not a strong predictor of carbon for these watersheds, with r2 ranging from 0.23 to 0.58.  相似文献   

6.
利用最小高差(LZD)法进行DEM匹配时,当待匹配DEM的分辨率比参考DEM高时,确定的同名点中存在冗余,将导致计算冗余和效率降低。为解决上述问题,对LZD法确定同名点的模型进行改化,提出一种改进的基于最小高差原理的快速DEM匹配方法。该方法根据参考DEM的格网点确定同名点以避免冗余,并通过近似确定同名点及其高差,有效简化了计算过程。实验结果表明,该方法在保证较高的收敛速度和匹配精度的基础上,可有效提高计算效率,且计算效率不随待匹配DEM分辨率提高而降低,DEM间分辨率差异越大,方法的优势越明显。  相似文献   

7.
It is well known that the grid cell size of a raster digital elevation model has significant effects on derived terrain variables such as slope, aspect, plan and profile curvature or the wetness index. In this paper the quality of DEMs derived from the interpolation of photogrammetrically derived elevation points in Alberta, Canada, is tested. DEMs with grid cell sizes ranging from 100 to 5 m were interpolated from 100 m regularly spaced elevation points and numerous surface‐specific point elevations using the ANUDEM interpolation method. In order to identify the grid resolution that matches the information content of the source data, three approaches were applied: density analysis of point elevations, an analysis of cumulative frequency distributions using the Kolmogorov‐Smirnov test and the root mean square slope measure. Results reveal that the optimum grid cell size is between 5 and 20 m, depending on terrain com‐plexity and terrain derivative. Terrain variables based on 100 m regularly sampled elevation points are compared to an independent high‐resolution DEM used as a benchmark. Subsequent correlation analysis reveals that only elevation and local slope have a strong positive relationship while all other terrain derivatives are not represented realistically when derived from a coarse DEM. Calculations of root mean square errors and relative root mean square errors further quantify the quality of terrain derivatives.  相似文献   

8.
Digital Elevation Models (DEMs) are indispensable tools in many environmental and natural resource applications. DEMs are frequently derived from contour lines. The accuracy of such DEMs depends on different factors. This research investigates the effect of sampling density used to derive contours, vertical interval between contours (spacing), grid cell size of the DEM (resolution), terrain complexity, and spatial filtering on the accuracy of the DEM and the slope derivative. The study indicated different alternatives to achieve an acceptable accuracy depending on the contour interval, the DEM resolution and the complexity of the terrain. The effect of these factors on the accuracy of the DEM and the slope derivative was quantified using models that determine the level of accuracy (RMSE). The implementation of the models will guide users to select the best combination to improve the results in areas with similar topography. For areas with variable terrain complexity, the suggestion is to generate DEMs and slope at a suitable resolution for each terrain separately and then to merge the results to produce one final layer for the whole area. This will provide accurate estimates of elevation and slope, and subsequently improve the analyses that rely on these digital derivatives.  相似文献   

9.
为了利用机载激光雷达点云生成高保真、多尺度的数字高程模型(DEM),提出了一种基于综合生成策略的方法:首先,利用点云数据中的地面点生成高分辨率、高保真的DEM作为基础DEM;然后,通过迭代的方式对上一层较高分辨的DEM进行综合获取较低分辨率、高保真的DEM。实验表明,本文方法不仅具有可行性,而且生成的多尺度DEM具有高保真的特性。  相似文献   

10.
SPOT 5 HRG Level 1A and 1B stereo scenes covering Zonguldak testfield in north-west Turkey have been analysed. They comprise the left and right image components with base to height ratio of 0·54. The pixel size on the ground is 5 m. The bundle orientation was executed by the PCI Geomatica V9.1.4 software package and resulted in 3D geopositioning to sub-pixel accuracies in each axis provided that at least six control points were used in the computation. Root mean square error (rmse) values and vectors of residual errors for Levels 1A and 1B are similar, even for different control and check point configurations. Based on the scene orientation, Level 1A and 1B digital elevation models (DEMs) of the testfield have been determined by automatic matching and validated by the reference DEM digitised from the 1:25 000 scale topographic maps, interferometric DEMs from Shuttle Radar Topography Mission (SRTM) X- and C-band SAR data and the GPS profiles measured along the main roads in the testfield. Although the accuracies of reference data-sets are too similar to the generated SPOT DEMs, these are the only high quality reference materials available in this area. Sub-pixel height accuracy was indicated by the comparison with profile points. However, they are in favourable locations where matching is always successful, so such a result may give a biased measure of the accuracy of the corresponding DEMs.  相似文献   

11.
Topographic corrections of synthetic aperture radar (SAR) images over hilly regions are vital for retrieval of correct backscatter values associated with natural targets. The coarse resolution external digital elevation models (DEM) available for topographic corrections of high resolution SAR images often result into degradation of spatial resolution or improper estimation of backscatter values in SAR images. Also, many a times the external DEMs do not spatially co-register well with the SAR data. The present study showcases the methodology and results of topographic correction of ALOS-PALSAR image using high resolution DEM generated from the same data. High resolution DEMs of Jaipur region, India were generated using multiple pair SAR images acquired from ALOS-PALSAR using interferometric (InSAR) techniques. The DEMs were validated using differential global positioning system measured elevation values as ground control points and were compared with photogrammetric DEM (advanced spaceborne thermal emission and reflection radiometer – ASTER) and SRTM (Shuttle Radar Topography Mission) DEM. It was observed that ALOS-PALSAR images with optimum baseline parameters produced high resolution DEM with better height accuracy. Finally, the validated DEM was used for topographic correction of ALOS-PALSAR images of the same region and were found to produce better result as compared with ASTER and SRTM-DEM.  相似文献   

12.
DEM matching for bias compensation of rigorous pushbroom sensor models   总被引:1,自引:0,他引:1  
DEM matching is a technique to match two surfaces or two DEMs, at different reference frames. It was originally proposed to replace the need of ground control points for absolute orientation of perspective images. This paper examines DEM matching for precise mapping of pushbroom images without ground control points. We proved that DEM matching based on 3D similarity transformation can be used when model errors are only on the platform’s position and attitude biases. We also proposed how to estimate bias errors and how to update rigorous pushbroom sensor models from DEM matching results. We used a SPOT-5 stereo pair at ground sampling distance of 2.5 m and a reference DEM dataset at grid spacing of 30 m and showed that rigorous pushbroom models with accuracy better than twice of the ground sampling distance both in image and object space have been achieved through DEM matching. We showed further that DEM matching based on 3D similarity transformation may not work for pushbroom images with drift or drift rate errors. We discussed the effects of DEM outliers on DEM matching and automated removal of outliers. The major contribution of this paper is that we validate DEM matching, theoretically and experimentally, for estimating position and attitude biases and for establishing rigorous sensor models for pushbroom images.  相似文献   

13.
Digital photogrammetry provides a tool with which to automatically generate digital elevation models (DEMs). The necessary equipment is now both readily available and affordable: thus there is considerable potential for this technique to be widely adopted in geomorphological studies. But is it possible for geomorphologists without a background in photogrammety to use it successfully? As part of a larger study into rill initiation by overland flow, a non‐metric digital camera and ERDAS IMAGINE OrthoMAX software were used to generate small‐scale DEMs of soil surface microtopography. This paper reports on the procedure used, highlights potential pitfalls, and comments on the quality of the resultant DEMs. Whilst acquisition of high‐quality images using a digital camera is relatively straightforward, problems were subsequently encountered due to the small size of the internal imager and the need for camera calibration. Potential stumbling blocks in the use of the software lay in the setting‐up of ground control points and the use of tie‐points and check‐points, as well as several software glitches not identified in the current manual. Nonetheless, once these problems were overcome the technique proved to be a simple, effective and fast tool for generating high quality microtopographical DEMs. This methodology shows great promise for future geomorphological studies that require these kinds of surface data.  相似文献   

14.
This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological response units (HRUs) in Sitla Rao watershed (North India). The HRUs were derived using water storage capacity and slope to produce surface runoff zones. The DEMs were evaluated on elevation accuracy and representation of morphometric features. The DEM derived from optical stereo pairs (ASTER and CARTOSAT) provided higher vertical accuracies than the SRTM and topographic map-based DEM. The SRTM with a coarse resolution of 90 m provided vertical accuracy but better morphometry compared to topographic map. The HRU maps derived from the fine resolution DEM (ASTER and CARTOSAT) were more detailed but did not provide much advantage for hydrological studies at the scale of Sitla Rao watershed (5800 ha).  相似文献   

15.
This paper is concerned with the application of automated digital photogrammetry, using 1:3000 scale photography, to complex, natural landform surfaces, of typical interest to geomorphologists. It assesses the quality of the results obtained using a relatively cheap and readily available area based stereomatching package, in terms of precision, accuracy and external reliability. Precision is investigated with reference to the confidence that can be placed in individual matches. Accuracy is evaluated using specially collected, independent datasets obtained from an area of complex topography in Glen Affric, Scotland. Data collection was stratified to areas of different surface roughness. External reliability is judged with respect to estimates of slope, a key parameter in geomorphological investigations. The results show that, whilst the effects of grid density and vegetation correction are the most important controls upon the accuracy and the external reliability of the photogrammetric results, collection parameters associated with the stereomatching process can also exert some control, particularly in areas of complex topography. It is impossible to generalize rules for choice of optimal collection parameters without careful consideration of the surface under investigation. Given that maximum grid densities are defined by the object space pixel resolution, the paper concludes that surface quality is largely governed by traditional controls upon photogrammetric data quality (camera calibration, base:distance ratio, ground control), combined with either scanning density or digital image resolution. However, over some surfaces, careful consideration has to be given to the effect of matching parameters.  相似文献   

16.
Accuracy assessment of GDEM,SRTM, and DLR-SRTM in Northeastern China   总被引:1,自引:0,他引:1  
This paper compares the accuracy of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), Shuttle Radar Topography Mission (SRTM) C-band and German Aerospace Centre (DLR)-SRTM X-band digital elevation models (DEMs) with the Ziyuan 3 (ZY-3) stereoscopic DEM and ground control points (GCPs). To date, the horizontal error of these DEMs has received little attention in accuracy assessments. Using the ZY-3 DEM as reference, this study examines (1) the horizontal offset between the three DEMs and the reference DEM using the normalised cross-correlation method, (2) the vertical accuracy of those DEMs using kinematic GPS data and (3) the relationship between the three DEMs and the reference ZY-3 DEM. The results show that the SRTM and DLR-SRTM have greater vertical accuracy after applying horizontal offset correction, whereas the vertical accuracy of the ASTER GDEM is less than the other two DEMs. These methods and results can be useful for researchers who use DEMs for various applications.  相似文献   

17.
作为"云控制"摄影测量理论和方法的发展,研究了DEM约束的立体卫星影像区域网平差方法。与DEM仅作为高程控制信息使用,或者是通过DEM表面匹配实现绝对定向的间接定位方法不同,DEM作为平高控制信息被直接引入至基于RFM模型的卫星影像区域网平差之中。本文方法将连接点地面高程与DEM格网内插高程之差作为虚拟观测值构建约束方程,不仅利用了DEM高程信息,并且利用了其地形曲面包含的平面信息,以"云控制"方式在区域网平差过程中有效消除卫星影像RPC参数中包含的整体偏移及区域网内部的扭曲变形,实现了无地面控制点条件下卫星影像平面及高程绝对定位精度的大幅提升。使用覆盖山东全境的330景天绘一号立体卫星影像进行试验,分别以AW3D30、ASTER GDEM和SRTM GL3共3种开源DEM作为控制信息,并使用100个外业实测控制点进行精度评测。试验表明,以DEM作为控制可显著提高区域网平差的平面与高程精度,卫星影像绝对定位精度与DEM自身精度有关。当使用AW3D30作为控制时,可以取得与使用100个外业控制点平差同等精度,平面中误差为5.0 m(约1像素),高程中误差为2.9 m。试验结果证明了DEM替代外业控制点作为平差控制信息的有效性与可行性。  相似文献   

18.
The drainage network of a sixth-order tropical river basin, viz. Ithikkara river basin, was extracted from different sources such as Survey of India topographic maps (1: 50,000; TOPO) and digital elevation data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (30 m) and Shuttle Radar Topography Mapping Mission (SRTM) (90 m). Basin morphometric attributes were estimated to evaluate the accuracy of the digital elevation model (DEM)-derived drainage networks for hydrologic applications as well as terrain characterization. The stream networks derived from ASTER and SRTM DEMs show significant agreement (with slight overestimation of lower order streams) with that of TOPO. The study suggests that SRTM (despite the coarser spatial resolution) provides better results, in drainage delineation and basin morphometry, compared to ASTER. Further, the variability of basin morphometry among the data sources might be attributed to spatial variation of elevation, raster grid size and vertical accuracy of the DEMs as well as incapability of the surface hydrologic analysis functions in the GIS platform.  相似文献   

19.
简要介绍了数字高程模型(digital elevation model,DEM)的起源与定义,根据4种不同的观测平台分类介绍了DEM数据获取方法,给出目前国际上发布的高分辨率全球DEM的主要性质和特点。重点介绍了9大类全球DEM,分析了DEM质量评估相关的评定方法和精度指标。论述了DEM在地质灾害监测、海岸带脆弱性分析方面的应用,以美国地质勘探局和德国航空太空中心正在开展的DEM项目为例,讨论了高精度、高分辨率全球同质DEM和地形测深高程模型的最新需求,最后总结展望全球高分辨率DEM的发展趋势。  相似文献   

20.
The aim of this study is to assess the impact of sensor size and resolution of different digital camera sensors upon the accuracy and precision of three dimensional data derived by photogrammetry. Kodak DC40, DCS420 and DCS460 digital cameras were used to produce digital images of retroreflective targets in a 4 m three dimensional test field. The image locations of the targeted points were automatically measured using an off the shelf image processing software package. Two different sub-pixel measurement approaches were examined: centre of gravity and weighted mean. From the automated sub-pixel measurement of the targeted points, results indicate that the high resolution DCS460 camera produces optimum results using either the weighted mean or centre of gravity approaches. Although this was perhaps expected, the far lower resolution DC40 camera performed better than was originally anticipated, suggesting potential for the cheaper DC40 for many applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号