首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108 m3 for sediment transfer and 4×108 m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.  相似文献   

2.
塔里木河下游生态需水估算   总被引:6,自引:0,他引:6  
量化生态需水是流域水权分配的重要依据。以塔里木河下游大西海子水库至尾闾台特玛湖段为研究区,借助湿周法计算了该段河道内最小生态需水量,并基于2009年和2010年河段地下水分布特征,计算沿线河道两岸各1 km范围地下水恢复至目标埋深(5~4 m)的地下水恢复量,采用潜水蒸发法和面积定额法估算了沿线天然植被生态需水量。结果表明:(1)塔里木河下游大西海子-台特玛湖河道内年最小生态需水量为1.455×108 m3;(2)以5年为恢复期限,确定该河段地下水埋深恢复至5~4 m的年恢复需水量为0.608×108~1.466×108 m3;(3)取潜水蒸发法和面积定额法计算结果均值,确定研究区天然植被生态需水量为1.042×108 m3;(4)综合考虑,塔里木河下游大西海子-台特玛湖年生态需水总量为3.105×108~3.963×108 m3。  相似文献   

3.
河湖水系连通特征及其利弊   总被引:9,自引:0,他引:9  
随着水资源以及水环境健康的恶化,河湖水系连通性作为河流健康以及提高水资源利用的一个重要指标在国家"十二五"战略规划中被着重提出。目前,中国对河湖水系连通特征及其对河流健康的影响缺乏足够的认识,本文主要对河湖水系连通的定义、分类、评判指标、影响因素及其对水环境健康的影响进行了一一阐述。分析表明:维持水系连通可以明显地改善...  相似文献   

4.
黄河流域环境对水资源开发承受力的思考   总被引:8,自引:0,他引:8  
尹国康 《地理学报》2002,57(2):224-231
根据黄河1919-1999年系列水沙资料,系统分析了其下游水沙变化时空过程,揭示了其发生断流原因及由此引发的环境问题,模拟了不同历史时期水情条件下环境用水需求量,并对如何提高黄河水资源开发承受能力,如何满足其环境用水提出看法。  相似文献   

5.
Although water has the central function of the bloodstream in the biosphere espe-cially in arid or semi-arid regions such as Yan’an region in northwestern China, yet the very limited attention is paid to the role of the water-related processes in ecosystem. In this re-search, based on continuous nearly 50-year data including runoff volume, sediment discharge as well as sediment accretion from hydrographic stations, and 10-year information of water quality from pollution monitoring stations, the method for measuring in-stream flow require-ment has been put forward supported by experiential models and GIS spatial analysis. Addi-tionally, the changes of in-stream flow requirement for environment and economic develop-ment have been addressed from spatial-temporal dimensions. The results show that: (1) According to the central streams in Yan’an region, mean annual in-stream flow requirement reaches 1.0619 billion m3, and the surface water for economic exploitation is 0.2445 billion m3. (2) Mean annual in-stream flow requirement for sediment transfers in flood period occupies over 80% of the integrated volume in a year. (3) From the 1950s to 1970s, in-stream flow requirement for sediment transfers is comparatively higher, while from the 1980s to 1990s, this requirement presents a decreasing tendency.  相似文献   

6.
黑河过正义峡河川径流量减少的原因及对策分析   总被引:33,自引:7,他引:26  
甘(甘肃)蒙(内蒙古)就黑河水量的分配问题由来已久。多年来,由于中游(甘肃)采用的是以开发河水为主,辅以开采地下水的水资源利用模式,导致了黑河过正义峡泄入下游(内蒙古)的河川径流量不断减少,近10a来尤为明显。文章在定量分析其减少原因的基础上,从兼顾中、下游用水角度出发,以《甘蒙分水原则》的最低值为约束条件,提出了中游地区应采取以开采地下水为主,辅以开发河水的水资源利用方案,从而确保了黑河过正义峡的径流量。  相似文献   

7.
塔里木河下游生态保护目标和措施   总被引:2,自引:0,他引:2  
针对2000-2009年塔里木河下游10次生态输水后生态环境的变化情况,提出新的生态保护目标:在距河500 m以内以胡杨(Populus euphratica)为主的重点保护带,地下水埋深保持在≤4 m,植被总盖度达到0.4~0.5;500~1 000 m为基本保护带,以柽柳(Tamarix spp.)为主,地下水埋深为4~6 m,植被总覆盖度达到0.3以上;>1 000 m为一般保护带,随着输水累积量增加,地下水埋深达到6~8 m,使现有植被不再退化;沿河两岸1 000 m的植被保护恢复总面积应达到1 028 km2;用水均衡法和潜水蒸散法重新估算的大西海子的下泄水量为2.3×108 m3 ,比原规划减少了1.2×108 m3 ,其中2.0×108 m3为维护生态所用,另外还有0.15×108~0.3×108 m3为向台特玛湖输水的水量;应保持输水连续性,大西海子以下年泄水量不小于0.36×108 m3;为了保证向下游输水,必须加强水资源调控,通过整治源流,使到达干流的水量为44.2×108 m3 ,干流严禁开荒,加强对防护堤修建后生态环境变化的监测,下游采用漫溢漂种增加植被面积。  相似文献   

8.
黑河下游额济纳绿洲生态需水关键期及需水量   总被引:6,自引:3,他引:3  
黑河流域中生态最为脆弱、植被退化最为严重而对全流域生态治理目标的实现极为关键的地区在下游额济纳绿洲。黑河分水方案主要控制年总量,由来水过程确定分水时机,采用“全线闭口、集中下泄” 的分水方式,这容易导致分水与下游绿洲需水的时间错位。要实现黑河分水对下游天然绿洲的作用和意义,不仅要充分保证分水量,更要选择适宜的分水时间,如果分水错过了下游绿洲生态需水的关键期,将会直接影响绿洲植被的正常生长。要维持黑河下游额济纳绿洲健康、稳定和持续发展,确定生态需水的关键期是首当其冲的问题。本文通过对黑河下游额济纳绿洲地下水位时空动态变化过程、天然植被耗水过程和绿洲生态过程及水文过程的关系研究,确定了黑河下游额济纳绿洲生态需水的关键期。建议在生态关键期保障输送必需的水量,合理调节水库出水量与河道径流量,保障4月和8月关键期的需水量,其中4月至少要保证0.80亿m3的输水量,8月至少要保证1.08亿m3的输水量,确保下游绿洲植被的生理需水,同时考虑到前期缺水和随后的月份水量消耗,尽可能增加关键月的配水量。  相似文献   

9.
Although water has the central function of the bloodstream in the biosphere especially in arid or semi-arid regions such as Yah'an region in northwestern China, yet the very limited attention is paid to the role of the water-related processes in ecosystem. In this research, based on continuous nearly 50-year data including runoff volume, sediment discharge as well as sediment accretion from hydrographic stations, and 10-year information of water quality from pollution monitoring stations, the method for measuring in-stream flow requirement has been put forward supported by experiential models and GIS spatial analysis. Additionally, the changes of in-stream flow requirement for environment and economic development have been addressed from spatial-temporal dimensions. The results show that: (1) According to the central streams in Yan'an region, mean annual in-stream flow requirement reaches 1.0619 billion m^3, and the surface water for economic exploitation is 0.2445 billion m3 (2) Mean annual in-stream flow requirement for sediment transfers in flood period occupies over 80% of the integrated volume in a year. (3) From the 1950s to 1970s, in-stream flow requirement for sediment transfers is comparatively higher, while from the 1980s to 1990s, this requirement presents a decreasing tendency.  相似文献   

10.
研究和确定流域生态基流及天然植被需水量是为了遏制因河道断流或流量减少而造成的生态环境退化,以确保流域生态系统健康发展.根据孔雀河流域植被类型分布及多年径流状况,将河道分为A、B两部分,A段为孔雀河上游塔什店至第三分水枢纽常年未断流河道;B段为第三分水枢纽以下天然植被主要分布区.基于塔什店水文站近50 a水文数据,结合T...  相似文献   

11.
Based on the author’s practice in river harnessing, this paper defines that a healthy river is a river whose social and natural functions can be balanced or compromised in terms of the socio-economic, ecological and environmental values associated with the river. The environmental values of river systems should be judged according to the following criteria: the signal of a healthy river should be associated with favorable riverbed, acceptable water quality, sustainable river ecosystem and compatible runoff. The river health criterion should reflect the river’s natural function status which includes the riverbed, water quality, river ecosystem and runoff. But, the variety and quantity would be different for different rivers depending on different natural features and social background. The standards to be adopted for a healthy river should be determined according to the requirements for maintaining river’s normal natural functions and the extent whether the social and natural functions could perform in a balanced way, and also the standards adopted should be adjusted according to the change of the given conditions. The key factor of river health is the enough and clean flow. The authors stressed that human activities would hurt the river health which include excessive water diversion and excessive power generation from the river, improper regulation of flood and sediment, and over discharge of sewage into the river and over change in fish habitat. Taking the Yellow River as a case, this paper also discussed the method to identify what are the standards of a healthy river as well as environmental flows.  相似文献   

12.
中国西北干旱内陆河流域分布式出山径流模型   总被引:1,自引:0,他引:1  
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover,etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km^2. The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years‘ data are used to simulate, while the last 5 years‘ data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681,5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapoWanspimtion decrease of the watershed, adjust the runoff orocess, and increase the soil water content.  相似文献   

13.
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km2. The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content.  相似文献   

14.
干旱区人水和谐治水思想的探讨   总被引:5,自引:3,他引:2  
邓铭江 《干旱区地理》2007,30(2):163-169
在温故古人治水思想的基础上,认真总结和深刻领悟现代治水新思路,并针对干旱区内陆河流域径流形成、利用、转化、耗散等水循环特征和经济社会发展与生态环境保护在用水方面的突出矛盾,反思水资源在开发、利用、治理、配置、节约和保护等水事活动中存在的诸多问题,提出了“治河之术,治水之学,治域之理,人水和谐之道”的治水思想。这是实施资源水利战略,实现水资源可持续利用目标的重要思想理论基础,对于其它流域或区域治水方略的确立也具有广泛的借鉴意义。  相似文献   

15.
黄河下游生态需水量及其估算   总被引:44,自引:3,他引:44  
石伟  王光谦 《地理学报》2002,57(5):595-602
通过分析黄河下游1958-2000年实测生态可用水,探讨生态需水量内涵,根据黄河特殊性及黄河生态需水量的研究现状,将维持和保护河流功能的黄河下游生态水量分为污期输运水量和非汛期生态基流量,在平滩流量输运能力最强的前提下,估算黄河下游汛期输运水量为80-120亿m^3,根据实测资料估算作为黄河下游水量控制断面花园口水文站和作为河口地区水量控制断面利津水文站的非汛期生态基分别为80-100亿m^3和50-60亿m^3,同时指出对黄河下游水沙调控和黄河流域水资源“准市场”的形成,是黄河下游生态需水量实现的保证。  相似文献   

16.
河流健康及其指标   总被引:1,自引:0,他引:1  
Based on the author’s practice in river harnessing, this paper defines that a healthy river is a river whose social and natural functions can be balanced or compromised in terms of the socio-economic, ecological and environmental values associated with the river. The environmental values of river systems should be judged according to the following criteria: the signal of a healthy river should be associated with favorable riverbed, acceptable water quality, sustainable river ecosystem and compatible runoff. The river health criterion should reflect the river’s natural function status which includes the riverbed, water quality, river ecosystem and runoff. But, the variety and quantity would be different for different rivers depending on different natural features and social background. The standards to be adopted for a healthy river should be determined according to the requirements for maintaining river’s normal natural functions and the extent whether the social and natural functions could perform in a balanced way, and also the standards adopted should be adjusted according to the change of the given conditions. The key factor of river health is the enough and clean flow. The authors stressed that human activities would hurt the river health which include excessive water diversion and excessive power generation from the river, improper regulation of flood and sediment, and over discharge of sewage into the river and over change in fish habitat. Taking the Yellow River as a case, this paper also discussed the method to identify what are the standards of a healthy river as well as environmental flows. Foundation: Chinese National Research Program, No.2006BAB06B; National Key Basic Research Development Program of China “973”, No.G1999043601 Author: Liu Changming, Academician  相似文献   

17.
黄淮海平原河道基本环境需水研究   总被引:30,自引:3,他引:27  
王西琴  刘昌明  张远 《地理研究》2003,22(2):169-176
针对我国北方地区水环境中最突出的污染问题,以满足河流最基本的稀释自净功能为目的,提出了一种计算河道基本环境需水量的方法,即月(年)保证率设定法,并以黄淮海平原为例,进行实证分析。结果是黄淮海平原总的河道环境需水最小为2176亿m3,约占多年平均径流量的15%,其中海河流域309亿m3、黄河下游52亿m3、淮河流域片1347亿m3。通过Tennant法验证,说明计算结果可靠。本文的研究不仅丰富了生态(环境)需水的理论内涵,为河道生态(环境)需水的进一步研究打下了良好的基础,同时为研究区水资源规划、水环境保护提供了有力的依据  相似文献   

18.
辽河流域生态需水估算   总被引:13,自引:0,他引:13  
从辽河流域存在的环境问题出发,在确定主要生态需水类型的基础上,基于水资源分区,分别估算各水资源分区的不同类型的生态需水,包括枯季河道生态需水、汛期输沙需水、入海需水、地下水恢复需补充的水量、河口湿地生态需水等。针对辽河流域季节性河流的特点,提出了枯水季节最小流量法的枯季河道生态需水计算方法。计算结果表明,辽河流域生态需水总量为130.44×108m3,占地表径流的48.3%,其中浑太河、东辽河2个水资源分区的生态需水量占地表径流的比例在60%以上,辽河干流生态需水量占地表径流的53.5%,其余水资源分区生态需水量占地表径流的比例均在50%以下。研究结果为流域水资源配置及水环境保护与恢复提供科学依据。  相似文献   

19.
黄河三角洲造陆过程中的陆域水沙临界条件研究   总被引:26,自引:5,他引:26  
许炯心 《地理研究》2002,21(2):163-170
黄河三角洲发育是河口区河流动力及陆域物质通量与海洋动力及海域物质通量相互作用的产物 ,三角洲造陆速率取决于上述两方面的对比关系。当上述两方面处于平衡时 ,三角洲造陆处于临界状态 ,即净造陆速率为零 ,与之相联系的入海泥沙量和径流量可视为黄河三角洲造陆过程的临界水沙条件。运用经验统计方法估算出 :当入海年沙量Qs为 2 78亿t/a、入海年水量Qw为 76 7亿m3时 ,或者当关系式 3 1934Qs+ 0 0 85 6Qw=17 94得到满足时 ,黄河三角洲造陆过程处于临界平衡状态。在黄河流域的环境管理中 ,应将上述两项临界值作为约束条件。黄河流域生态用水量的内涵应予以扩展 ,维持三角洲造陆平衡所必须的入海径流量 ,应作为黄河流域的生态用水量。  相似文献   

20.
黄河干流河道水量自然补损分析   总被引:2,自引:0,他引:2  
李春晖  杨志峰 《地理学报》2003,58(4):527-533
根据水量平衡原理建立干流区间河道水量平衡关系,得到干流河道水量自然补损计算方程。利用1956~1979年干流区间自产天然径流量与区间河道上下游控制站天然径流量、区间降水量系列之间的线性相关性,延长得到黄河流域1951~1998年龙羊峡以下6个干流区间逐月自产天然径流量,并计算分析各干流区间的干流河道自然补损水量。结果表明:多年平均河口镇-龙门干流区间和三门峡-花园口干流区间河道水量补充大于损失,其余区间干流河道水量为损失大于补充。总体上,龙羊峡以下区间干流河道净自然损失水量多年平均为35.43×108 m3,而且呈增大趋势,20世纪90年代达到最高,平均为44.16×108 m3/年。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号