首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying changes in reference evapotranspiration (ETo) can help in future planning of crop water requirements and water resources for high water-use efficiency. This study analyzes the ETo trends on a seasonal and annual timescale by applying various statistical tools to data from 41 Iranian weather stations during the period between 1966 and 2005. The Mann–Kendall test after removal of significant serial correlation was used to determine the statistical significance of the trends, and the change point in the ETo time series was determined using the cumulative sum technique. The results showed that (1) the significant increasing trends of annual ETo were observed at seven stations which are located in different parts of Iran, (2) the stations located at the southeast, northeast, and northwest corners of Iran experienced the highest positive change of annual ETo, and (3) the changes in seasonal ETo were most pronounced in the winter season, both in terms of trend magnitude and the number of stations with significant trends.  相似文献   

2.
近46a虎林市气候变化的趋势分析   总被引:2,自引:0,他引:2  
利用累积距平法和线性趋势分析法对虎林市1961~2006年的年、季平均气温、降水和相对湿度的长期变化特征进行分析,结果表明:近46a来虎林市的气候表现出向暖干型发展的趋势:年和季平均气温均呈上升趋势,各季气温上升幅度略有不同;年降水量有略微增加趋势,相对湿度有略微减小趋势。  相似文献   

3.
Summary This paper describes measurements of the Hartheim forest energy budget for the 157-day period of May 11 – Oct. 14, 1992. Data were collected as 30-min means. Energy available to the forest was measured with net radiometers and soil heat flux discs; sensible heat exchange between the canopy and atmosphere was measured with two One-Propeller Eddy Correlation (OPEC) systems, and latent energy (evapotranspiration orET) was determined as a residual in the surface energy balance equation. Net rediation, change in thermal storage, and sensible heat flux were verified by independent measurements during the Hartheim Experiment (HartX, May 11–12), and again during the HartX2 experiment over 20 days late in the summer (Sep. 10–29). Specifically, sensible heat estimates from the two adjacent OPEC sensor sets were in close agreement throughout the summer, and in excellent agreement with measurements of sonic eddy correlation systems in May and September. The eddy correlation/energy balance technique was observed to overestimate occurrence of dew, leading to an underestimate of dailyET of about 5%. After taking dew into account, estimates of OPECET totaled 358 mm over the 5.1-month period, which is in quite good agreement with an ET estimate of 328 mm from a hydrologic water balance. An observed decrease in forestET in July and August was clearly associated with low rainfall and increased soil water deficit. The OPEC system required only modest technical supervision, and generated a data yield of 99.5% over the period DOY 144–288. The documented verification and precision of this energy budget appears to be unmatched by any other long-term forest study reported to date.With 9 Figures  相似文献   

4.

The study focuses on the impacts of climate variability and change on maize yield in Mt. Darwin District. The rainfall and temperature data for the period under study that is from 1992 to 2012 were obtained from Meteorological Services Department of Zimbabwe at daily resolution while crop yield data were obtained from Department of Agricultural, Technical and Extension Services (AGRITEX) and Zimbabwe Statistics Agency (ZIMSTAT) at seasonal/yearly resolution. In order to capture full rainfall seasons, a year was set to begin on 1 June and end on 31 July the next year. Yearly yield, temperature and rainfall data were used to compute time series analysis of rainfall, temperature and yield. The relationship between temperature, rainfall, quality of season (start, cessation, dry days, wet days and length) and yield was also investigated. The study also investigated the link between meteorological normal and maize yield. The study revealed that temperature is rising while rainfall is decreasing with time hence increasing risk of low maize yield in Mt. Darwin. Correlation between maize yield was higher using a non-linear (R 2 = 0.630) than a linear regression model (R 2 = 0.173). There was a very high correlation between maize yield and number of dry days (R = −0.905) as well as between maize yield and length of season (R = 0.777). We also observed a strong correlation between percentage normal rainfall and percentage normal maize yield (R 2 = 0.753). This was also agreed between rainfall tessiles and maize yield tessiles as 50 % of the seasons had normal and above normal rainfall coinciding with normal and above normal maize yield. Of the 21 seasons considered, only one season had above normal rainfall while maize yield was below normal. The study concluded that there is a strong association between meteorological normal and maize yield in a rain-fed agricultural system. Climate information remains crucial to agricultural productivity hence the need to train farmers to access the information and use it for the benefit of their activities.

  相似文献   

5.
Abstract

Since 1969, meteorological and limnological measurements required for evaporation estimates by the energy budget method have been made almost continuously during the open water season at Perch Lake, a small (0.45 km2), shallow (mean depth 2 m) lake on the Canadian Shield. Hydrological measurements required for water budget calculations have been made continuously since 1970. Since ground water input to the lake has been found to be significant, energy budget estimates of evaporation are used in the water budget equation to estimate ground water inflow. Results are summarized as the long‐term averages along with the ranges of variation of the budget components observed during the eleven‐year period.  相似文献   

6.
The surface energy budget is closely related to freeze-thaw processes and is also a key issue for land surface process research in permafrost regions.In this study,in situ data collected from 2005 to 2015 at the Tanggula site were used to analyze surface energy regimes,the interaction between surface energy budget and freeze-thaw processes.The results confirmed that surface energy flux in the permafrost region of the Qinghai-Tibetan Plateau exhibited obvious seasonal variations.Annual average net radiation(Rn)for 2010 was 86.5 W m-2,with the largest being in July and smallest in November.Surface soil heat flux(G0)was positive during warm seasons but negative in cold seasons with annual average value of 2.7 W m-2.Variations in Rn and G0 were closely related to freeze-thaw processes.Sensible heat flux(H)was the main energy budget component during cold seasons,whereas latent heat flux(LE)dominated surface energy distribution in warm seasons.Freeze-thaw processes,snow cover,precipitation,and surface conditions were important influence factors for surface energy flux.Albedo was strongly dependent on soil moisture content and ground surface state,increasing significantly when land surface was covered with deep snow,and exhibited negative correlation with surface soil moisture content.Energy variation was significantly related to active layer thaw depth.Soil heat balance coefficient K was>1 during the investigation time period,indicating the permafrost in the Tanggula area tended to degrade.  相似文献   

7.
Meteorological stations, which measure all the required meteorological parameters to estimate reference evapotranspiration (ETo) using the Food and Agriculture Organization Penman?CMonteith (FAO56-PM) method, are limited in Korea. In this study, alternative methods were applied to estimate these parameters, and the applicability of these methods for ETo estimation was evaluated by comparison with a complete meteorological dataset collected in 2008 in Korea. Despite differences between the estimation and observation of radiation and wind speed, the comparison of ETo showed small differences [i.e., mean bias error (MBE) varying ?0.22 to 0.25?mm?day?1 and root-mean-square-error (RMSE) varying 0.06?C0.50?mm?day?1]. The estimated vapor pressure differed considerably from the observed, resulting in a larger discrepancy in ETo (i.e., MBE of ?0.50?mm?day?1 and RMSE of 0.60?C0.73?mm?day?1). Estimated ETo showed different sensitivity to variations of the meteorological parameters??in order of vapor pressure?>?wind speed?>?radiation. It is clear that the FAO56-PM method is applicable for reasonable ETo estimation at a daily time scale especially in data-limited regions in Korea.  相似文献   

8.
Reference crop evapotranspiration (ET0) is one of the most important climatic parameters which plays a key role in estimating crop water demand and scheduling irrigation. Under global warming and climate change conditions, it is needed to survey the trend of ET0 in Iran. In this study, ET0 values were determined based on FAO-56 Penman-Monteith equation over 32 synoptic meteorological stations during 1960–2005; and analyzed spatially and temporally in monthly, seasonal and annual time scales. After removing the significant lag-1 serial correlation effect by pre-whitening, non-parametric statistical Mann–Kendall (MK) test was used to detect the trends. The slope of the changes was determined by Sen’s slope estimator. In order to facilitate in trend analysis, the 10 moving average low pass filter were also applied on the normalized annual ET0 time series. Annual ET0 time series and filtered ones were then classified by hierarchical clustering in three clusters and then mapped in order to show the patterns of different clusters. Results showed that the significant decreasing trends were more considerable than increasing ones. Among surveyed stations, and on an annual time scale, the highest and lowest annual values of Sen’s slope estimator were observed in Tabas with (+) 72.14 mm per decade and Shahrud with (?) 62.22 mm per decade, respectively. Results also indicated that the clustered map based on normalized and filtered annual ET0 time series is in accordance with another map which showed spatial distribution of increasing, decreasing and non-significant trends of ET0 on annually time scale. Exploratory and visual analysis of smoothed time series showed increasing trend in recent years especially after 1980 and 1995. In brief, the upward trend of ET0 in recent years is a crucial issue with regard to the high cost of dam construction for agricultural aims in arid and semi-arid regions e.g. Iran.  相似文献   

9.
The monthly rainfall data from 1901 to 2011 and maximum and minimum temperature data from 1901 to 2005 are used along with the reference evapotranspiration (ET0) to analyze the climate trend of 45 stations of Madhya Pradesh. ET0 is calculated by the Hargreaves method from 1901 to 2005 and the computed data is then used for trend analysis. The temporal variation and the spatial distribution of trend are studied for seasonal and annual series with the Mann-Kendall (MK) test and Sen’s estimator of slope. The percentage of change is used to find the rate of change in 111 years (rainfall) and 105 years (temperatures and ET0). Interrelationships among these variables are analyzed to see the dependency of one variable on the other. The results indicate a decreasing rainfall and increasing temperatures and ET0 trend. A similar pattern is noticeable in all seasons except for monsoon season in temperature and ET0 trend analysis. The highest increase of temperature is noticed during post-monsoon and winter. Rainfall shows a notable decrease in the monsoon season. The entire state of Madhya Pradesh is considered as a single unit, and the calculation of overall net change in the amount of the rainfall, temperatures (maximum and minimum) and ET0 is done to estimate the total loss or gain in monthly, seasonal and annual series. The results show net loss or deficit in the amount of rainfall and the net gain or excess in the temperature and ET0 amount.  相似文献   

10.

Extreme rainfall events have serious implications for economic sectors with a close link to climate such as agriculture and food security. This holds true in the Central Rift Valley (CRV) of Ethiopia where communities rely on highly climate-sensitive rainfed subsistence farming for livelihoods. This study investigates changes in ten extreme rainfall indices over a period of 40 years (1970–2009) using 14 meteorological stations located in the CRV. The CRV consists of three landscape units: the valley floor, the escarpments, and the highlands all of which are considered in our data analysis. The Belg (March–May) and Kiremt (June–September) seasons are also considered in the analysis. The Mann-Kendall test was used to detect trends of the rainfall indices. The results indicated that at the annual time scale, more than half (57 %) of the stations showed significant trends in total wet-day precipitation (PRCPTOT) and heavy precipitation days (R10mm). Only 7–35 % of stations showed significant trends, for the other rainfall indices. Spatially, the valley floor received increasing annual rainfall while the escarpments and the highlands received decreasing annual rainfall over the last 40 years. During Belg, 50 % of the stations showed significant increases in the maximum number of consecutive dry days (CDD) in all parts of the CRV. However, most other rainfall indices during Belg showed no significant changes. During Kiremt, considering both significant and non-significant trends, almost all rainfall indices showed an increasing trend in the valley floor and a decreasing trend in the escarpment and highlands. During Belg and Kiremt, the CDD generally showed increasing tendency in the CRV.

  相似文献   

11.
Summary Changes in the thermal climate due to inter-annual climatic variability can potentially modify existing cropping pattern by forcing farmers to rearrange transplanting and harvesting dates. In the present study, a crop climate model, the YIELD, has been applied to 12 meteorological stations located in major rice growing regions in Bangladesh to estimate the effect of thermal climate variations on the transplanting and harvesting dates of boro rice and the resultant potential changes in cropping pattern and spatial shift. The abnormal thermal climate scenarios have been created by synthetically perturbing mean air temperatures (Tair) up to −5 °C to +5 °C with an interval of 1 °C for each of these stations. Historical meteorological records of air temperature in Bangladesh have been used to prepare these scenarios. The study finds that under abnormally cool conditions transplanting dates will be pushed well into February to avoid plant injury and harvesting dates will be moved into the monsoon. The growing seasons will be longer under cooler than normal thermal conditions. Under abnormally warm conditions harvesting dates will be established well into March and will cause reduction of yield due to a shorter growing season. These conditions will also cause spatial shift in crop potential and changes in the cropping pattern. Due to a longer boro rice growing season farmers will lose a significant amount of cropping land which is usually used for low and deep water rice cultivation. New crops will need to be introduced during the beginning of a year to overcome the loss of production under abnormally cool conditions. Wheat and potato can be good options for the farmers for such conditions. New aus rice variety needs to be introduced after the boro harvesting under warmer than the normal conditions to overcome the loss of yield due to a shorter growing season. Received September 16, 1996 Revised September 8, 1997  相似文献   

12.
呼伦湖湿地消长对气象水文因子变化的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1961—2005年呼伦湖湿地的气象及水文资料,基于灰色关联度分析、Mann-Kendall检验及小波分析、回归统计等方法,分析了湿地消长对气象水文因子变化的响应特征。结果表明:年与夏季气候在湿地消长中起主导作用。区域年降水量每增加10 mm,年降水量的直接作用是使湿地水域面积和水位深度分别增加2.6 km2和1.6 cm;年径流量每增加1×108 m3,湿地水域面积和水位深度分别增加4.8 km2和3.0 cm。45年来,湿地消长对影响因子连续变化过程的响应特征具有一致性,特别在20世纪90年代后响应更显著,湿地萎缩加快;气温与降水量变化在湿地水域面积、水位深度消长中的贡献率分别为33.1%与66.9%,22.5%与77.5%,降水量变化起主导作用。湿地消长对影响因子的多时间尺度周期性具有很好的响应。在27年的年代际尺度主周期与11~16年次周期、2~10年年际尺度准周期的叠加作用下,45年来,湿地消长出现了2次减少、1次增加的周期过程,并呈现短周期波动特征。  相似文献   

13.
Summary As a result of climatic change associated with global warming, aridity is an increasing problem in many parts of the world, including south-eastern and southern regions of Romania. This paper clarifies the concept of aridity, and discusses related concepts including indices of aridity, and their influence on some landscape and soil features including climatic water deficit (WD) and the depth to soil carbonates (DC). As used here, WD is calculated as the difference between precipitation sum (P) and the Penman-Monteith reference evapotranspiration sum (ETo-PM) over certain periods. Another three well-known aridity indices are also considered: De Martonne’s index (Iar-DM), Thornthwaite’s index (Iar-TH), the UNESCO (1979) P/ETo-PM ratio index (Iar-P/ETo-PM). WD is as high as −450 mm during the growing season in the most arid, south-eastern and southern regions of Romania, especially in the Dobrogea and Baragan areas. In other regions of Romania, including most of the plains and plateaus where agriculture is an important branch of the economy, WD reaches −100 to −300 mm during the growing season. The above aridity indices were spatially interpolated for specific periods by kriging, to generate relatively homogeneous areas. WD can also be seen as an aridity index which has the advantage of a more accurate quantification of the water supply needed for a reference crop, e.g. grass under standardised conditions, for various geographical regions. WD is significantly correlated with the other aridity indexes and with DC. This paper also examines the risk of aridity spreading, and suggests improvements to the water management system for agriculture in Romania.  相似文献   

14.
基于SPEI的中国干湿变化趋势归因分析   总被引:3,自引:0,他引:3  
选用1960—2012年中国气象站点资料,利用标准化降水蒸散指数SPEI(Standardized Precipitation Evapotranspiration Index),研究了中国干湿变化趋势及其原因。过去52 a,中国干湿变化由西北向东南呈现"+-+"的空间分布状况,其中黄河流域、长江流域西部、西南流域东南及珠江流域西部显著变干;淮河流域中西部和西北流域大部显著变湿;通过数值试验,定量计算了参考蒸散发及降水对干湿趋势的贡献状况。就中国总体而言,年平均参考蒸散发显著减少抵消了由年降水量减少导致的干化趋势,呈微弱变湿趋势;其次,降水仍然是多数区域干湿变化的主导因素(黄河流域中部、长江流域、西南流域、珠江流域及东南流域);同时,参考蒸散的影响值得引起注意,其在辽河流域、海河流域、淮河流域及西北流域对干湿趋势的贡献均超过降水贡献。  相似文献   

15.

A long-term (1948 to 2012) trend of precipitation (annual, pre-monsoon, monsoon, and post-monsoon seasons) in Bangladesh was analyzed in different regions using both parametric and nonparametric approaches. Moreover, the possible teleconnections of precipitation (annual and monsoon) variability with El Niño/Southern Oscillation (ENSO) episode and Indian Ocean Dipole (IOD) were investigated using both average and individual (both positive and negative) values of ENSO index and IOD. Our findings suggested that for annual precipitation, a significant increasing monotonic trend was found in whole Bangladesh (4.87 mm/year), its western region (5.82 mm/year) including Rangpur (9.41 mm/year) and Khulna (4.95 mm/year), and Sylhet (10.12 mm/year) and Barisal (6.94 mm/year) from eastern region. In pre-monsoon, only Rangpur (2.88 mm/year) showed significant increasing trend, while in monsoon, whole Bangladesh (3.04 mm/year), Sylhet (7.17 mm/year), and Barisal (6.94 mm/year) showed similar trend. In post-monsoon, there was no significant trend. Our results also revealed that the precipitation (annual or monsoon) of whole Bangladesh and almost all of the spatial regions did not show any significant correlation with ENSO events, whereas the average IOD values showed significant correlation only in monsoon precipitation of western region. The individual positive IODs showed significant correlation in whole Bangladesh, western region, and its two divisions (Rajshahi and Khulna). So, in the context of Bangladesh climate, IOD has the more teleconnection to precipitation than that of ENSO. Our findings indicate that the co-occurrence of ENSO and IOD events may suppress their influence on each other.

  相似文献   

16.
湿地是由陆地和水体形成的自然综合体,具有重要的生态、水文和生物地球化学功能,黄河源高寒湿地作为黄河重要的水源涵养区,对其下垫面水热交换特征及关键影响参数的研究具有非常重要的意义。本文利用中国科学院西北生态环境资源研究院麻多黄河源气候与环境变化观测站2014年6~8月观测资料,分析了黄河源区高寒湿地-大气间暖季水热交换特征,并利用公用陆面模式(Community Land Model,简称CLM)模拟了热通量变化,提出针对高寒湿地的粗糙度优化方案。主要结果如下:(1)暖季向上、向下短波与净辐射的平均日变化规律一致,向上、向下长波平均日变化平缓,地表温度升高相对于向下短波具有滞后性,潜热通量始终为正值并大于感热通量;(2)温度变化显著层结为20 cm以上土壤浅层,存在明显的日循环规律,土壤中热量09:00(北京时,下同)下传至5 cm深度,温度升高,11:00至10 cm深度,13:00至20 cm深度,18:00后开始上传,温度降低,40 cm及以下深度受此影响较小,热量在土壤中整体由浅层向深层输送;(3)土壤湿度平均日变化小,5 cm深度为土壤湿度最小层,10 cm深度为最大层;(4)麻多高寒湿地动力学粗糙度Z0m在暖季变化稳定,可作为常数,Z0m=0.0143 m;(5)提出更加适合高寒湿地下垫面暖季附加阻尼kB-1参数化方案,使得热通量模拟效果较CLM原始方案有所提高。以上结果对于研究湿地下垫面陆面过程具有重要意义。  相似文献   

17.
The present study is an attempt to analyse the precipitable water vapour (PWV) derived from Global Positioning System (GPS) and observed meteorological data over Almora, Central Himalayan Region. The PWV values derived using GPS study is compared with the corresponding moderate resolution imaging spectro-radiometer (MODIS) data. The statistical analysis reveals a positive correlation between both methods. Moderate resolution imaging spectroradiometer near-infrared (MODIS NIR) clear column water vapour product shows a higher correlation (R 2 = 90–93 %) with GPS-derived precipitable water vapour on annual scale as compared to the seasonal scale (R 2 = 62–87 %). MODIS is found to be overestimating in NIR clear column where the magnitude of bias and RMSE show systematic changes from season to season. Monsoon is an important phenomenon in the Indian weather context and holds significant importance in Central Himalayan ecosystem. The monthly and seasonal variation in precipitable water vapour is related with monsoon onset in the region. Diurnal variations in precipitable water vapour are studied with other meteorological data over Almora during dry and wet season. The precipitable water vapour had minimum value in the morning, increases in the afternoon to evening and again decreases to the midnight in both the dry and wet seasons. These results suggest that diurnal variation of water vapour is caused by the transport of water vapour by thermally induced local circulation.  相似文献   

18.
《大气与海洋》2012,50(4):279-294
ABSTRACT

The authors propose a modified complementary method to estimate regional evapotranspiration (ET) under different climatic and physical conditions using only meteorological data. The purpose of this study is to investigate the applicability of the modified complementary method for estimating global ET distribution and corresponding water balance. Gridded data from the Climate Research Unit, University of East Anglia, with 30 min spatial resolution and monthly time steps are used. Using the Thornthwaite water budget, monthly maps of global water surplus (precipitation minus ET) are produced. The results show good agreement with many previous studies. The average annual precipitation, ET, and water surplus are 690, 434, and 256?mm, respectively. The results show that the modified model can predict regional ET using meteorological data and can be used to assess global water resources. Consequently, the proposed method has strong potential for projecting water resource balance under future climate change.  相似文献   

19.
Towards Closing the Surface Energy Budget of a Mid-latitude Grassland   总被引:4,自引:1,他引:3  
Observations for May and August, 2005, from a long-term grassland meteorological station situated in central Netherlands were used to evaluate the closure of the surface energy budget. We compute all possible enthalpy changes, such as the grass cover heat storage, dew water heat storage, air mass heat storage and the photosynthesis energy flux, over an averaging time interval. In addition, the soil heat flux was estimated using a harmonic analysis technique to obtain a more accurate assessment of the surface soil heat flux. By doing so, a closure of 96% was obtained. The harmonic analysis technique appears to improve closure by 9%, the photosynthesis for 3% and the rest of the storage terms for a 3% improvement of the energy budget closure. For calm nights (friction velocity u * < 0.1 m s−1) when the eddy covariance technique is unreliable for measurement of the vertical turbulent fluxes, the inclusion of a scheme that calculates dew fluxes improves the energy budget closure significantly.  相似文献   

20.
Using rain-gauge-observation daily precipitation data from the Global Historical Climatology Network (V3.25) and the Chinese Surface Daily Climate Dataset (V3.0), this study investigates the fidelity of the AHPRODITE dataset in representing extreme precipitation, in terms of the extreme precipitation threshold value, occurrence number, probability of detection, and extremal dependence index during the cool (October to April) and warm (May to September) seasons in Central Asia during 1961–90. The distribution of extreme precipitation is characterized by large extreme precipitation threshold values and high occurrence numbers over the mountainous areas. The APHRODITE dataset is highly correlated with the gauge-observation precipitation data and can reproduce the spatial distributions of the extreme precipitation threshold value and total occurrence number. However, APHRODITE generally underestimates the extreme precipitation threshold values, while it overestimates the total numbers of extreme precipitation events, particularly over the mountainous areas. These biases can be attributed to the overestimation of light rainfall and the underestimation of heavy rainfall induced by the rainfall distribution–based interpolation. Such deficits are more evident for the warm season than the cool season, and thus the biases are more pronounced in the warm season than in the cool season. The probability of detection and extremal dependence index reveal that APHRODITE has a good capability of detecting extreme precipitation, particularly in the cool season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号