首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
The resistance of a soil layer to steady horizontal vibration of an elastic pile is theoretically investigated. The pile is assumed to be vertical and of circular cross-section. The soil is modelled as a linear viscoelastic layer with hysteretic material damping. A closed form solution is obtained for the resistance of the soil layer to the motion. This resistance depends on shear modulus of soil, frequency, pile slenderness, material damping and Poisson's ratio. A parametric study of the effect of these parameters is included. The soil layer resistance is expressed in a form which can be used directly in the solution of the soil-pile interaction problem which is treated in a subsequent paper. The approach also applies for rigid deeply embedded footings.  相似文献   

2.
This paper presents an experimental study on the lateral resistance of a pile subjected to liquefaction-induced lateral flow. To observe the soil surrounding the pile during liquefaction, it was modeled as a buried cylinder that corresponded to a sectional model of the prototype pile at a certain depth in the subsoil. In order to create a realistic stress condition in the model ground, the model was prepared in a sealed container and the overburden pressure was applied to the ground surface by a rubber pressure bag. The model pile was actuated back and forth through rods attached on each side by an electro-hydraulic actuator.This paper focuses on observing the deformation of the liquefied soil surrounding the pile when a large relative displacement between the pile and the soil is induced. The loading rate effect on the lateral resistance of the pile in the liquefied sand and the influence of the relative density are also investigated.Test results show that a larger resistance is mobilized as the loading rate becomes higher. When the loading rate is higher, the cylinder displacement required for the lateral resistance becomes smaller. It has been also observed that as the relative density of the soil increases, dilatancy of the soil in front of the pile also increases.  相似文献   

3.
薛富春  张建民 《地震工程学报》2015,37(2):310-316,323
高速铁路中的桥梁常采用灌注桩基础以控制沉降,地震作用是桩基础的设计工况之一。建立桥梁-桥墩-桩基础-地基为一体的耦合系统非线性三维数值分析模型,以典型地震波为输入,考虑上部结构和基础的共同工作、土-结构动力相互作用、材料非线性和土层对桩的侧阻及端阻作用,开展三向地震作用下的动力有限元计算,并对地基主要土层压缩模量、桩体材料弹性模量、桩径和桩长进行参数敏感性分析。计算结果表明:现行的桩基础设计方案能有效控制地震荷载作用下桥梁的变形;地震过程中的不同时刻,桩侧阻发挥程度不同且不可忽略,以单纯的梁单元模拟桩的动力学行为的适用性值得商榷;桩长和地基主要土层压缩模量对桥梁地震反应影响最大,桩体材料弹性模量的影响次之,桩径的影响最小。  相似文献   

4.
现浇X型混凝土桩的荷载传递机理初探   总被引:3,自引:0,他引:3  
现浇X型混凝土桩技术是河海大学开发研制的用于地基加固处理的一项新技术。在模型试验的基础上,通过有限元方法研究了现浇X型混凝土桩的荷载传递机理,并与模型槽试验结果进行了对比,分析中考虑了桩和土之间的接触和土的非线性。通过数值分析,揭示了X型桩的截面形式对侧摩阻力分布、端阻力发挥的影响。计算结果表明,由于桩的泊松比效应,X型桩截面周边不同位置的侧阻力大小有所不同;X型桩中出现了类似于H型桩的“半封闭土塞”,与圆截面桩相比,桩端附近的侧摩阻力有较明显的增加;X型桩的桩端承载力系数要小于圆截面桩的情况,体现了X型桩截面形状的影响。  相似文献   

5.
Fiber-reinforced polymers (FRP)–concrete composites provide an attractive alternative to conventional pile materials such as steel, concrete and wood by improving the durability of deep foundations. In the current study, FRP tubes with different taper angles are filled with self-consolidating concrete (SCC) and driven into dense sand that is enclosed in a large pressurized soil chamber. Driving tests are conducted on FRP–SCC composite piles to determine how the pile material and geometric configuration affect its driving performance. Dynamic data is employed to determine the soil parameters in the TNO model (i.e., soil quake and damping constant) using the DLTWAVE signal-matching program. The driveability of FRP–SCC and traditional pile materials is compared using the wave equation analysis program PDPWAVE. The experimental data and the wave equation analyses indicate that the taper shape has a favourable effect on the driveability and static resistance of piles. It is also found that the driveability of FRP–SCC composite piles is similar to that of conventional prestressed concrete and steel piles. However, empty FRP tubes required a much higher driving energy. Their low flexural resistance along with risk of buckling can hinder their driveability in different soil conditions.  相似文献   

6.
Fiber reinforced soil behaves as a composite material in which fibers of relatively high tensile strength are embedded in a matrix of soil. Shear stresses in the soil mobilize tensile resistance in the fibers, which in turn imparts greater strength to the soil. In this paper a study on the influence of synthetic fibrous materials in improving the dynamic response characteristics of fine sandy soil is reported. The project aims at converting fibrous carpet waste into a value-added product for soil reinforcement. A series of five shaking table tests using rigid box were carried out on Toyoura sand specimens reinforced with randomly distributed geotextile strips. The dynamic deformation characteristics of the reinforced sand are defined in terms of wall lateral deformation and rotation. The results clearly indicate the effectiveness of fiber reinforcement in improving dynamic properties of fine sand and deformation characteristics of fiber reinforced sheet pile retaining wall during shaking.  相似文献   

7.
A numerical analysis of pile driving for tapered piles is presented in this paper. A three-dimensional finite difference analysis for tapered angle and geometry effects has been used on pile driving response of tapered piles. The simulation considers an idealization for pile–soil system in drivability. The vertical pile is assumed to have linear and elastic behavior. It is also assumed that the soil is elasto-plastic material and its failure stage is controlled using the Mohr–Coulomb failure criterion. At the soil–pile contact surfaces along the pile shaft and pile toe, slip is allowed to occur during the driving procedure using interface elements. Quiet boundaries are used to prevent waves traveling in the lateral and vertical directions for the soil. Cylindrical, fully tapered, and semi-tapered piles were analyzed. The results obtained from numerical analyses were compared with those obtained from available laboratory tests and also other available numerical data, resulting in a satisfactory agreement. The results have shown that among piles of the same length and material volume, with increasing the taper angle from zero (representing a cylindrical pile), the driving stresses decrease and the permanent pile toe settlement (set) increases. These are interesting in pile driving and are on the safe side for driven piles and increasing the driving efficiency. It has also been found that the geometry of the pile can generally influence the pile drivability. Generally speaking, tapered and partially tapered piles offer better drivability performance than cylindrical piles of the same volume and length.  相似文献   

8.
A key issue in the design of pile-supported structures on sloping ground is soil–pile interaction, which becomes more complicated in case of dynamic loading. This study aimed to evaluate the effect of slope on the dynamic behavior of pile-supported structures by performing a series of centrifuge tests. Three models were prepared by varying the slope and soil density of dry sand grounds. The mass supported on 3 by 3 group piles was shaken applying sinusoidal wave with various amplitudes. Test results showed that the location of maximum values and distribution shape of the bending moment below the ground surface varied noticeably with the pile position in the slope case. The relationship between the soil resistance and pile deflection (pyp loops) was carefully evaluated by applying the piecewise cubic spline method to fit the measured bending moment curves along piles. It was found that the shape of the pyp loops was irregular due to the effect of slope, and immensely influenced by the movement of the unstable zone. In addition, the effect of the pile group in the horizontal case was evaluated by comparing with the previously suggested curves that represent the relationship between the soil resistance and pile–soil relative displacement (py curves) to propose the multiplier coefficients.  相似文献   

9.
以郑州城郊铁路工程中独柱高架车站为例,将土体化为一系列弹簧,描述土体的变形性质。通过比较《城市轨道交通结构抗震设计规范》中的非线性土弹簧、《铁路桥涵地基和基础设计规范》中的m系数法弹簧及Mindlin解弹簧进行建模计算得到的车站结构的地震响应,由结果可知结构地震响应对承台处弹簧刚度最为敏感。另外,将分布弹簧模型等代为六弹簧模型进行地震反应计算,结果表明桩体质量的影响与承台质量相比很小。  相似文献   

10.
工程上广泛采用基于Winkler模型的层状地基反力系数法对桩土水平动力响应进行分析,该方法忽略了地基土剪切作用的影响,与工程实际有一定偏差。另外,对桩土的非线性相互作用和如扩底桩、楔形桩等变截面桩问题常用的传递矩阵法或中心差分法,计算过程较为繁琐。基于Pasternak地基模型和Adomian分解方法,提出一种考虑地基土剪切作用的桩土水平动力相互作用近似计算方法,该方法计算简便且结果精度较高,对变截面桩问题有很好的适用性;并基于该方法,对扩底桩水平动力响应问题和影响因素进行分析。结果指出,扩底半径和上部桩周土弹性模量对扩底桩水平动力响应影响较大,随着扩底半径的增加和桩周土弹性模量的增大,扩底桩水平振动位移幅值逐渐减小。另外,在较低频率的荷载激励下,应考虑土层对桩的剪切作用。  相似文献   

11.
钢管桩在贯入过程中土塞效应的正确判断对打桩阻力及承载力的预测有重要影响,常用的静力平衡土塞效应判断方法主要适用于小直径钢管桩。随着海洋平台工作水深的不断增加及海上风电工程的建设,直径大于2m的大直径钢管桩被广泛采用,管桩直径的增加改变了桩管内土体的受力与变形特征。通过数值模拟方法获得砂土中不同径长比的钢管桩在打桩过程中桩周土体的破坏模式,确定采用梅耶霍夫公式计算打桩过程中桩端土体阻力,同时分析锤击惯性力对桩管内土塞的影响,提出采用拟静力平衡法判断大直径钢管桩的土塞闭塞效应。开展不同径长比管桩的室内小比尺打桩模型试验,并对实际工程中的土塞闭塞效应进行判断,验证拟静力平衡法对判断大直径钢管桩土塞效应的适用性。  相似文献   

12.
This paper presents the results of lateral impact load field tests conducted on a near-shore steel pipe pile vibro-driven into soft marine clay. Two series of tests are carried out, the first 1 week and the second 10 weeks after the vibro-driving. The pile is instrumented with an unconventional technique for field tests in marine environment which includes an accelerometer at the pile head, strain gauges and pore pressure transducers along the pile. Instruments are properly protected from marine environment and pile driving installation method. Tests are aimed at investigating the dynamic soil-water-pile interaction and determining the dynamic characteristics of the whole system at very small strain. The obtained results show the complex dynamic behaviour of the vibrating soil-water-pile system in terms of natural frequencies, damping and mode shapes. The variation in the dynamic behaviour in time, due to reconsolidation of soil subsequent to vibro-driving is also discussed. Furthermore, the horizontal dynamic impedance function of the whole system is derived from the experimental data over a wide frequency range and compared with that obtained from a numerical soil–pile interaction model.  相似文献   

13.
可液化倾斜场地中桩基动力响应振动台试验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究倾斜场地中桩基的动力响应,以2011年新西兰地震中受损的Dallington桥为原型,设计并完成可液化倾斜场地桥梁桩-土相互作用的振动台模型试验。试验再现了喷砂、冒水、地裂缝、场地流滑等宏观现象。试验结果表明,土层足够的液化势及惯性是造成倾斜场地侧向流滑的必要条件;浅层土相比深层土更易液化,液化层中的加速度由下至上呈现逐渐衰减的趋势,而未液化砂土层却表现为逐渐增大的特征;深部测点的桩侧土压力明显大于浅部测点,且土体的液化会弱化土对结构的压力;结构应变最大值位于上部桥台,而结构弯矩在桩身中部及土层分界面附近出现两个较大值,桩端嵌固及倾斜场地流滑是造成出现两个弯矩较大值的主要原因。  相似文献   

14.
Storms, hurricanes, and earthquakes may cause seabed instability, especially if the seabed is weak. The seabed instability, manifested in movement of soil layers, exerts lateral forces that may cause large stresses in offshore foundations. The induced stresses may compromise the stability of the foundation and supported structure. The effect of seabed instability on a fixed offshore structure is examined in this study. The method used accounts for soil nonlinearity, dynamic soil resistance, and pile–soil–pile interaction within the stable soil layer. Dynamic py curves, dynamic tz curves and qz curves have been used to simulate the soil resistance in the lateral and axial directions. The effect of different parameters that influence the response of offshore structures to seabed instability is evaluated. The parameters considered include the value of soil movement, the sliding layer depth, the wave loading, the pile flexibility, the soil movement profile, and the axial loading at the pile head. The response predicted using the proposed analysis compared well with that calculated using a boundary element solution for a case history of a failed offshore platform.  相似文献   

15.
Under the action of Rayleigh waves, pile head is easy to rotate with a concrete pile cap, and pure fixed-head condition is rarely achieved, which is a common phenomenon for it usually occurs on the precast piles with insufficient anchorage. In addition, the propagation characteristics of Rayleigh wave have been changed significantly due to the existence of capillary pressure and the coupling between phases in unsaturated soil, which significantly affects the pile-soil interaction. In order to study the above problems, a coupled vibration model of unsaturated soil–pile system subjected to Rayleigh waves is established on the basis that the pile cap is equivalent to a rigid mass block. Meanwhile, the soil constitution is simplified to linear-elastic and small deformations are assumed to occur during the vibration phase of soil–pile system. Then, the horizontal dynamic response of a homogeneous free-field unsaturated soil caused by propagating Rayleigh waves is obtained by using operator decomposition theory and variable separation method. The dynamic equilibrium equation of a pile is established by using the dynamic Winkler model and the Timoshenko beam theory, and the analytical solutions of the horizontal displacement, rotation angle, bending moment and shear force of pile body are derived according to the boundary conditions of flexible constraint of pile top. Based on the present solutions, the rationality of the proposed model is verified by comparing with the previous research results. Through parametric study, the influence of rotational stiffness and yield bending moment of pile top on the horizontal dynamic characteristics of Rayleigh waves induced pile is investigated in detailed. The analysis results can be utilized for the seismic design of pile foundation under Rayleigh waves.  相似文献   

16.
Kinematic pile–soil interaction is investigated analytically through a Beam-on-Dynamic-Winkler-Foundation model. A cylindrical vertical pile in a homogeneous stratum, excited by vertically-propagating harmonic shear waves, is examined in the realm of linear viscoelastic material behaviour. New closed-form solutions for bending, displacements and rotations atop the pile, are derived for different boundary conditions at the head (free, fixed) and tip (free, hinged, fixed). Contrary to classical elastodynamic theory where pile response is governed by six dimensionless ratios, in the realm of the proposed Winkler analysis three dimensionless parameters suffice for describing pile–soil interaction: (1) a mechanical slenderness accounting for geometry and pile–soil stiffness contrast, (2) a dimensionless frequency (which is different from the classical elastodynamic parameter a0=ω d/Vs), and (3) soil material damping. With reference to kinematic pile bending, insight into the physics of the problem is gained through a rigorous superposition scheme involving an infinitely-long pile excited kinematically, and a pile of finite length excited by a concentrated force and a moment at the tip. It is shown that for long piles kinematic response is governed by a single dimensionless frequency parameter, leading to a unique master curve pertaining to all pile lengths and pile–soil stiffness ratios.  相似文献   

17.
Interaction between soil and an elastic pile vibrating horizontally is theoretically examined. The soil is modelled as a linear, viscoelastic layer overlying rigid bedrock. The pile is assumed to be vertical and point bearing. This study utilizes the definition of soil resistance presented in a preceding paper.1 A direct solution is developed which yields closed form formulas for pile displacement, stiffness and damping. A parametric study clarifies the role of the parameters involved, illustrates the interaction between the soil and the pile and shows the stiffness and damping properties of the soil-pile system for typical values of the governing parameters.  相似文献   

18.
The interaction between a soil layer and an end bearing pile in vertical vibration induced through the frictional interface is theoretically investigated. The pile is assumed to be vertical and elastic, whereas the soil is considered as a linear visco-elastic layer with hysteretic damping. Slip between the pile and the soil is allowed to occur along the frictional interface, in which the hysteretic frictional stress is linearized to permit modal decomposition. Approximate solutions of the pile and the soil for steady-harmonic loads are obtained in closed form by composing the wave modes of the layer. The displacement amplitudes of the pile and the soil, the critical slip force, the stiffness of the pile head, and the modal stiffness contribution of the soil to the pile are evaluated numerically with respect to the ratio of applied force level to the slip stress level and the slenderness ratio, at various frequencies.  相似文献   

19.
A continuum model for the interaction analysis of a fully coupled soil–pile–structure system under seismic excitation is presented in this paper. Only horizontal shaking induced by harmonic SH waves is considered so that the soil–pile–structure system is under anti‐plane deformation. The soil mass, pile and superstructure were all considered as elastic with hysteretic damping, while geometrically both pile and structures were simplified as a beam model. Buildings of various heights in Hong Kong designed to resist wind load were analysed using the present model. It was discovered that the acceleration of the piled‐structures at ground level can, in general, be larger than that of a free‐field shaking of the soil site, depending on the excitation frequency. For typical piled‐structures in Hong Kong, the amplification factor of shaking at the ground level does not show simple trends with the number of storeys of the superstructure, the thickness and the stiffness of soil, and the stiffness of the superstructure if number of storeys is fixed. The effect of pile stiffness on the amplification factor of shaking is, however, insignificant. Thus, simply increasing the pile size or the superstructure stiffness does not necessarily improve the seismic resistance of the soil–pile–structure system; on the contrary, it may lead to excessive amplification of shaking for the whole system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Multi-layered soil profiles, where one or more layers consist of loose liquefiable material, most commonly require pile foundations extending beyond the liquefiable layer to competent material. Under seismic loads, if the loose layer liquefies, then large localized plastic demands may be generated in the piles. To study this behavior and provide detailed data to validate numerical models, a 1-g shaking table experiment was conducted considering a single reinforced concrete pile embedded in a three-layer soil system. The model pile of 25 cm diameter was tested under increasing amplitude earthquake excitation in a sloped laminar soil box. The test specimen was designed at the lower bound of typical design to promote yielding, per ATC-32 (Applied Technology Council, 1996) [1]. The pile penetrated 7D (D=pile diameter) into a multi-layered soil configuration composed of a stiff uppermost crust overlying a saturated loose sand layer and a lower dense layer of sand. Plastic demands in the pile were characterized using curvature profiles coupled with back-calculation of the plastic hinge length and post-test physical observations. Results from this test quantify the post-yield behavior of the pile and serve as a complement to previously conducted centrifuge tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号