首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current seismic design requirements for special concentrically braced frames (SCBFs) in chevron configurations require that the beams supporting the braces be designed to resist the demands resulting from the simultaneous yielding of the tension brace and degraded, post-buckling strength of the compression brace. Recent research, including large-scale experiments and detailed finite-element analyses, has demonstrated that limited beam yielding is not detrimental to chevron braced frame behavior and actually increases the story drift at which the braces fracture. These findings have resulted in new expressions for computing beam demands in chevron SCBFs that reduce the demand in the tension brace to be equal to the expected compressive capacity at buckling of the compression brace. In turn, the resultant force on the beam is reduced as is the required size of the beam. Further study was undertaken to investigate the seismic performance of buildings with SCBFs, including chevron SCBFs with and without yielding beams and X-braced frames. Prototype three- and nine-story braced frames were designed using all three framing systems, that is, chevron, chevron with yielding beams, and X SCBFs, resulting in six building frames. The nonlinear dynamic response was studied for ground motions simulating two different seismic hazard levels. The results were used to characterize the seismic performance in terms of the probability of salient damage states including brace fracture, beam vertical deformation, and collapse. The results demonstrate that the seismic performance of chevron SCBFs with limited beam yielding performs as well as or better than the conventionally designed chevron and X SCBFs.  相似文献   

2.
本文系统地研究分析了橡胶隔震支座(以下简称为橡胶座)的界限特性和屈曲特性,界限特性的研究包括橡胶座的界限压缩、界限拉伸、界限剪切等特性,屈曲特性研究包括橡胶座的屈曲应力与界限剪切应变的相关特性。基于橡胶座的压缩刚度因子和拉伸刚度因子,给出了计算橡胶座界限压缩和界限拉伸应力的实用计算理论,同时提出了屈曲应力和界限剪切应变的评价方法。针对橡胶座的界限特性和屈曲特性理论,采用天然橡胶和铅芯橡胶座原型试件进行了试验研究,结果表明本文提出的界限压缩、界限拉伸、屈曲应力等计算理论和评价方法是偏于安全的。文末汇总了本研究涵盖的橡胶座压缩、拉伸、回转、剪切和界限等相关特性的研究成果,初步形成了建筑用橡胶座的基础理论体系。  相似文献   

3.
Confinement of concrete in circular spiral steel binders imparts to it considerable ductility and also some increase in strength. This property can be utilized in designing concrete structures to withstand seismic forces where the members are required to possess not only strength but also energy absorbing capacity. Assuming the stress-strain behaviour of confined concrete as elastic-plastic, the ductility factor for strain and the strength factor (denoting increase in strength) have been determined for concrete confined to different degrees. Similarly, assuming the moment-curvature behaviour of reinforced concrete sections with confined compression concrete to be elastic-plastic, the ductility factor for curvature has been determined for such beams. The computed moment-curvature plots have been found to compare satisfactorily with tests on 18 beams. Ductility factors for curvature of singly and doubly reinforced concrete sections with compression concrete confined to different degrees have been determined and presented for certain typical cases. Such plots would be of use in designing reinforced concrete beam sections for required ductility.  相似文献   

4.
Simplified design methods for obtaining the maximum strain in pipelines crossing active faults proposed by Newmark, Kennedy and Wang have not considered the section deformation of the pipe. In this study, a new simplified method is developed for obtaining the maximum strain in steel pipes crossing faults considering non‐linearity of material and geometry of pipe section. It is assumed that the pipe will bend near the fault and the geometry of pipe in the longitudinal direction will change according to a bent deformation. On the other hand, the relation between maximum strain and bent angle has been obtained using a beam–shell hybrid FEM for different pipe‐fault conditions. The developed method can be used for calculating the maximum strains for fault‐crossing steel pipes with different angles of crossing both in tension and compression, by considering the deformation of the pipe cross‐section. Copyright © 2001 John Wiley Sons, Ltd.  相似文献   

5.
通过改进节点性能确保火灾下钢框架结构的鲁棒性   总被引:1,自引:0,他引:1  
介绍了钢框架结构火灾下鲁棒性的背景知识,建议对于非常重要的建筑结构,抗火安全设计必须包括通常设计中尚未考虑到的意外破坏模式。文章辨识了结构意外破坏的不同模式,并提出了保证结构安全性的可行方法。本文主要介绍了如何利用梁的悬链线效应,使荷栽从受损结构重新分配到相邻结构,该效应是梁受弯承载力状态的一种转变。为确保钢梁中悬链线效应的充分发展,最重要的是要保证节点具有足够的抗拉承栽力与转动能力。本文提出了一种节点转动能力需求的量纲分析方法,并根据一些试验结果,介绍了英国常用的梁柱节点可到达的转动能力。虽然一些延性较好的节点在升温时能够达到10°的转动能力,但当钢的温度非常高时,其仍不能满足使悬链线效应充分形成时所需要的转动能力(〉15°)。随后,讨论了如何提高节点的转动能力,包括:采用具有较好延性的节点(例如开反向槽口的节点),改进节点的细部构造(如将节点的受拉区移近至受压区,并为螺栓开槽型孔)和采用更强的、延性更好的由耐火钢制成的螺栓。这些提出的节点技术需要与节点在其他设计要求下的性能要求相协调(如刚度),为满足不同的结构性能要求,找到最优的节点设计方法,仍需要更深入的研究。  相似文献   

6.
Steel fiber reinforced cementitous composites(SFRCC)is a promising material with high strength in both compression and tension compared with normal concrete.The ductility is also greatly improved because of 6%volume portion of straight steel fibers.A steel beam-column connection with Steel fiber reinforced cementitous composites(SFRCC) slab diaphragms is proposed to overcome the damage caused by the weld.The push-out test results suggested that the application of SFRCC promises larger shear forces transferred through headed studs allocated in a small area in the slab. Finite element models were developed to simulate the behavior of headed studs.The failure mechanism of the grouped arrangement is further discussed based on a series of parametric analysis.In the proposed connection,the SFRCC slab is designed as an exterior diaphragm to transfer the beam flange load to the column face.The headed studs are densely arranged on the beam flange to connect the SFRCC slab diaphragms and steel beams.The seismic performance and failure mechanism of the SFRCC slab diaphragm beam-column connection were investigated based on the cyclic loading test.Beam hinge mechanism was achieved at the end of the SFRCC slab diaphragm by using sufficient studs and appropriate rebars in the SFRCC slab.  相似文献   

7.
As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; “central fractures” occur at bedding inclinations of 0°–75°, “layer activation” occurs at high bedding inclinations of 75°–90°, and a combination of the two occurs at 75°.  相似文献   

8.
In this paper a general methodology for the analysis of large concrete dams subjected to seismic excitation is outlined. It is valid both for gravity dams (2D representation) and arch dams (3D representation). The method allows for non-linear material behaviour of the dam, ‘transparent fictitious boundaries’ for dealing properly with in-coming and out-going seismic waves, and an efficient procedure to deal with dam-soil-fluid interaction. The mechanical behaviour of concrete is modelled using an isotropic damage model which allows for tension and compression damage, and exhibits stiffness recovery upon load reversals. Emphasis is placed in the treatment of fluid-structure interaction, regarding both formulation and efficiency aspects. A gravity dam and an arch dam are analysed subjected to artificially generated earthquakes of different intensities, and the results are used to study the degree of (un)safety of the dams.  相似文献   

9.
An overview of two types of beam solutions is presented, Gaussian beams and Bessel beams. Gaussian beams are examples of non-localized or diffracting beam solutions, and Bessel beams are example of localized, non-diffracting beam solutions. Gaussian beams stay bounded over a certain propagation range after which they diverge. Bessel beams are among a class of solutions to the wave equation that are ideally diffraction-free and do not diverge when they propagate. They can be described by plane waves with normal vectors along a cone with a fixed angle from the beam propagation direction. X-waves are an example of pulsed beams that propagate in an undistorted fashion. For realizable localized beam solutions, Bessel beams must ultimately be windowed by an aperture, and for a Gaussian tapered window function this results in Bessel-Gauss beams. Bessel-Gauss beams can also be realized by a combination of Gaussian beams propagating along a cone with a fixed opening angle. Depending on the beam parameters, Bessel-Gauss beams can be used to describe a range of beams solutions with Gaussian beams and Bessel beams as end-members. Both Gaussian beams, as well as limited diffraction beams, can be used as building blocks for the modeling and synthesis of other types of wave fields. In seismology and geophysics, limited diffraction beams have the potential of providing improved controllability of the beam solutions and a large depth of focus in the subsurface for seismic imaging.  相似文献   

10.
A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake table motions to study the seismic behavior of this retrofitted structural system. The results show that wing walls can effectively protect columns from damage by moving areas that bear reciprocating tension and compression to the sections of the wing walls, thus achieving an extra measure of seismic fortification. A ‘strong column-weak beam' mechanism was realized, the flexural rigidity of the vertical member was strengthened, and a more uniform distribution of deformation among all the stories was measured. In addition, the joint between the wing walls and the beams suffered severe damage during the tests, due to an area of local stress concentration. A longer area of intensive stirrup is suggested in the end of the beams.  相似文献   

11.
Previous research has shown that self‐centering steel plate shear walls (SC‐SPSWs) are capable of achieving enhanced seismic performance at multiple hazard levels, including recentering following design‐level earthquakes. When modeling SC‐SPSWs numerically, these studies considered an idealized tension‐only steel plate shear wall (SPSW) web plate behavior. Research has shown that web plate behavior is more complex than predicted by the idealized model, and web plates can provide more strength, stiffness, and energy dissipation than predicted by the idealized model. The idealized model of web plate behavior is used widely in SPSW numerical models where the moment‐resisting boundary frame provides supplemental hysteretic damping and stiffness; however, in SC‐SPSWs, where the post‐tensioned boundary frame is designed to remain elastic during an earthquake, accounting for the more complex web plate behavior can have a significant impact on seismic performance estimates from numerical simulation. This paper presents different methods for modeling SC‐SPSWs. Responses from these models are compared with experimental results. A simple modification of the tension‐only model, referred to as the tension‐compression strip model, is shown to provide a reasonable approximation of SC‐SPSW behavior. Results from nonlinear response history analyses of SC‐SPSWs with the tension‐only and tension‐compression web plate models are compared to assess how the approximation of web plate behavior affects SC‐SPSW seismic performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
针对扬子东南缘浙赣地区地质构造特征,通过研究中生代的构造分层、盆地演化、火山活动构造环境等,分析了研究区中生代构造环境,认为研究区中生代盆地演化经历了由近东西向、北东东向向北东、北北东向构造方向的转变和由挤压-拉张-挤压-拉张的构造环境变化;构造体制环境从晚侏罗世开始,到早白垩世早期基本完成转换过程。伴随构造环境的转变,研究区内形成了中生代不同类型的盆地。  相似文献   

13.
Buckling-restrained braces(BRBs)have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems.A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression.Although design guidelines for BRB applications have been developed,systematic procedures for assessing performance and quantifying reliability are still needed.This paper presents an analytical framework for assessing buckling-restrained braced f...  相似文献   

14.
为研究方钢管混凝土柱-H型不等高钢梁框架节点的抗剪承载力,分析其破坏机理,建立适用于不等高钢梁节点的抗剪计算模型,提出了节点的抗剪承载力计算公式,比较了基于不同抗剪模型建立的抗剪承载力计算值与试验值的差异性。结果表明:节点域的破坏模式主要为上核心区的剪切斜压破坏;节点域抗剪承载力主要由钢管腹板、核心区混凝土主斜压杆及约束斜压杆共同承担。对比分析表明:提出的节点屈服抗剪承载力和极限抗剪承载力理论公式计算值更为接近试验值,验证了方钢管混凝土柱-不等高钢梁框架节点传力机理和承载力计算公式的正确性。  相似文献   

15.
Gaps between beam‐to‐column interfaces in a post‐tensioned (PT) self‐centering frame with more than one column are constrained by columns, which causes beam compression force different from the applied PT force. This study proposes an analytical method for evaluating column bending stiffness and beam compression force by modeling column deformation according to gap‐openings at all stories. The predicted compression forces in the beams are validated by a cyclic analysis of a three‐story PT frame and by cyclic tests of a full‐scale, two‐bay by first‐story PT frame, which represents a substructure of the three‐story PT frame. The proposed method shows that compared with the strand tensile force, the beam compression force is increased at the 1st story but is decreased at the 2nd and 3rd stories due to column deformation compatibility. The PT frame tests show that the proposed method reasonably predicts beam compression force and strand force and that the beam compression force is 2 and 60% larger than the strand force with respect to a minor restraint and a pin‐supported boundary condition, respectively, at the tops of the columns. Therefore, the earlier method using a pin‐supported boundary condition at upper story columns represents an upper bound of the effect and is shown to be overly conservative for cases where a structure responds primarily in its first mode. The proposed method allows for more accurate prediction of the column restraint effects for structures that respond in a pre‐determined mode shape which is more typical of low and mid‐rise structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
本研究系统地对低硬度橡胶隔震支座的材料及力学性能进行了试验研究。研究用低硬度橡胶天然及铅芯橡胶隔震支座18种规格总计近30个大直径隔震支座。研究内容涉及低硬度橡胶隔震支座的基本力学性能,温度、压力、剪切变形、老化及徐变等相关性能,压缩界限、拉伸界限、极限剪切变形等界限性能和屈曲特性,以及橡胶材料性能和隔震工程应用等方面。本文主要介绍低硬度橡胶天然及铅芯隔震支座的压缩、拉伸、剪切等界限性能和屈曲应力与剪切应变的相关特性,文中提出了基于刚度因子建立的橡胶支座的界限压缩和界限拉伸应力评价方程,同时还给出了剪切变形状态下的屈曲应力评价方法。  相似文献   

17.
通过高应力反复拉压试验,研究了18个钢筋套筒注浆连接试件的破坏形态和套筒的应变,并对钢筋套筒注浆连接试件的屈服强度、极限强度和钢筋接头的等级进行了分析。结果表明:连接试件发生钢筋拉断和粘结破坏2种破坏形态,其屈服强度和极限强度均与钢筋母材强度相接近,另外钢筋连接采用套筒注浆的方式施工便捷和合理可靠,并通过对试验数据分析,给出了直径为12mm和14mm的HRB400钢筋采用此套筒注浆方式连接时套筒参数的建议值,为钢筋套筒注浆连接在装配式剪力墙中的设计和应用研究提供了一定的参考借鉴。  相似文献   

18.
超高层建筑巨型框架结构的巨型柱在大震作用下有时会出现往复拉压受力情形,为提高巨型柱的抗震能力,目前有的超高层建筑巨型框架结构采用了多腔体钢管混凝土巨型柱。为深入研究这种巨型柱的腔体在往复拉压荷载下的性能退化问题,取这种巨型柱中有代表性的矩形腔体,进行了3个配钢率为7.53%和1个配钢率为3.77%的相同截面矩形柱在往复拉压荷载下的工作性能试验研究。4个试件均沿杆长对中分成左右不同构造的两段,左杆段为有栓钉区段,右杆段为无栓钉区段。通过试验,比较分析了各试件的承载力、刚度及其退化过程、栓钉的作用和破坏特征。给出了抗拉、抗压承载力计算公式,计算结果与试验符合较好。研究表明:在矩形钢管腔体内设置栓钉可明显提高构件的抗拉、抗压工作性能;增加矩形钢管的钢板厚度可明显提高钢板对栓钉的约束能力,从而提高栓钉与混凝土共同工作的性能。  相似文献   

19.
为探讨主塔横梁对无背索斜拉桥结构的静动力特性影响,以某无背索斜拉桥为原型,采用三维静\,动力有限元计算方法,分析了实心横梁、大空心横梁、小空心横梁与无横梁四种主塔横梁方案的静、动力结构特性。静力计算结果表明:在最不利荷载作用下,四种对比方案中,实心横梁的拉索应力接近安全系数临界值;横梁重量越大,主梁挠度及主塔顺桥向变形值越小,且未设置横梁的方案在长期荷载作用下产生主跨侧的收缩徐变变形值。动力计算结果表明:大空心横梁方案结构横桥向刚度最大塔底轴力最大、横桥向弯矩值最大;无横梁时横桥向剪力最大,且无横梁方案使得主塔刚度较小,阵型易出现主塔横向失稳。综合考虑结构静、动力特性与施工便利性和后期维护,建议该结构采用实心主塔横梁。  相似文献   

20.
Summary The object of the present paper is to investigate magneto-elastic waves and disturbances in initially stressed conducting media. Firstly, the theory of magneto-elastic surface waves in a conducting medium under an initial uniaxial tension has been deduced and then it has been employed to investigate the particular cases of surface waves such as Rayleigh, Love and Stoneley waves. Secondly, propagation of waves in an elastic layer has been considered using the fundamental equations of motion for magneto-elastic waves in conductors under an initial uniaxial tension or compression. This is followed by the case of plane Lamb's problem in a magneto-elastic semi-space under the same initial tension. The final results obtained in the above cases are in agreement with the corresponding classical problems when the initial tension is zero and the magnetic field is absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号