首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a space-time adaptive framework for solving porous media flow problems, with specific application to reservoir simulation. A fully unstructured mesh discretization of space and time is used instead of a conventional time-marching approach. A space-time discontinuous Galerkin finite element method is employed to achieve a high-order discretization on the anisotropic, unstructured meshes. Anisotropic mesh adaptation is performed to reduce the error of a specified output of interest, by using a posteriori error estimates from the dual-weighted residual method to drive a metric-based mesh optimization algorithm. The space-time adaptive method is tested on a one-dimensional two-phase flow problem, and is found to be more efficient in terms of computational cost (degrees-of-freedom and total runtime) required to achieve a specified output error level, when compared to a conventional first-order time-marching finite volume method and the space-time discontinuous Galerkin method on structured meshes.  相似文献   

2.
Microscopic studies using advanced experimental techniques have provided better insight into the fracture mechanisms in cement‐based materials. A clear understanding of fracture mechanisms is critical for the development of rigorous computational models for analysing fracture. Fracture analysis is usually carried out by finite element method. Accuracy of FE analysis depends upon the choice of mesh and for the predictions to be reliable, discretization errors are to be minimized. In cohesive crack approach, the non‐linearity is limited to the boundary conditions along the geometric discontinuity while the bulk of the material retains its elastic nature. The paper presents a mesh‐adaptive strategy based on ZZ error estimator to model discrete crack propagation in cement‐based materials. Examples of simulations have demonstrated the potential of the mesh‐adaptive technique in modelling the evolution of the localized strain profiles as well as failure of concrete test specimen. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
4.
冯学敏  陈胜宏 《岩土力学》2003,24(4):653-656
研究了三维渗流的自适应有限元法,建立了集成网格自动剖分、渗流有限元分析、网格调整、后处理等四大模块的四面体单元h型自适应系统。给出的算例证实了系统的有效性和优越性。  相似文献   

5.
邵琪  唐小微 《岩土力学》2014,35(7):2079-2087
在有限元数值计算平台上,建立了一套基于后验误差评估和Delaunay三角剖分的网格自适应方案,针对饱和砂土静力受压和地震液化的特性进行模拟。验证了超收敛单元片回归(SPR)误差评估中原用于四边形单元的双线性回归函数在用于三角形单元网格时的适用性和可靠性;在饱和砂土动、静力算例中,网格自适应计算获得的变形、应变、超孔压比等的变化规律与常规有限元结果趋势一致。随着网格的再生成,参考点的位移和全域的平均相对误差逼近精确值。对于初始网格,讨论了合理的自适应程度并应用于地震液化的自适应数值模拟中,也对Delaunay三角剖分实施了一些改进。最终证明该自适应方案在提高计算效率的同时,亦可以保证计算所需的精准度。  相似文献   

6.
We consider adaptive discontinuous Galerkin (DG) methods for solving reactive transport problems in porous media. To guide anisotropic and dynamic mesh adaptation, a posteriori error estimators based on solving local problems are established. These error estimators are efficient to compute and effective to capture local phenomena, and they apply to all the four primal DG schemes, namely, symmetric interior penalty Galerkin, nonsymmetric interior penalty Galerkin, incomplete interior penalty Galerkin, and the Oden–Babuška-Baumann version of DG. Numerical results are provided to illustrate the effectiveness of the proposed error estimators.  相似文献   

7.
This paper presents an algorithm and a fully coupled hydromechanical‐fracture formulation for the simulation of three‐dimensional nonplanar hydraulic fracture propagation. The propagation algorithm automatically estimates the magnitude of time steps such that a regularized form of Irwin's criterion is satisfied along the predicted 3‐D fracture front at every fracture propagation step. A generalized finite element method is used for the discretization of elasticity equations governing the deformation of the rock, and a finite element method is adopted for the solution of the fluid flow equation on the basis of Poiseuille's cubic law. Adaptive mesh refinement is used for discretization error control, leading to significantly fewer degrees of freedom than available nonadaptive methods. An efficient computational scheme to handle nonlinear time‐dependent problems with adaptive mesh refinement is presented. Explicit fracture surface representations are used to avoid mapping of 3‐D solutions between generalized finite element method meshes. Examples demonstrating the accuracy, robustness, and computational efficiency of the proposed formulation, regularized Irwin's criterion, and propagation algorithm are presented.  相似文献   

8.
A finite element formulation is proposed and implemented for analysing the stability of excavated wells using the DiMaggio-Sandler constitutive elastoplastic model with a typical carbonate reservoir configuration. The quality of the finite element approximation is ensured by applying smooth curved elements adapted to the wellbore geometry, and hp adaptive finite element meshes in the plastic zone. General purpose procedures are defined to transfer the elastoplastic deformation history to newly created integration points. A breakout damage criterion is proposed based on the second invariant of the deviatoric plastic deformation tensor. This damage criterion is used to apply a mesh movement algorithm to represent material collapse. The automatic successive application of the breakout damage criterion results in elliptical realistically looking geometries obtained in experiments reported in the literature.  相似文献   

9.
Steam-assisted gravity drainage (SAGD) is an enhanced oil recovery process for heavy oils and bitumens. Numerical simulations of this thermal process allow us to estimate the retrievable volume of oil and to evaluate the benefits of the project. As there exists a thin flow interface (compared to the reservoir dimensions), SAGD simulations are sensitive to the grid size. Thus, to obtain precise forecasts of oil production, very small-sized cells have to be used, which leads to prohibitive CPU times. To reduce these computation times, one can use an adaptive mesh refinement technique, which will only refine the grid in the interface area and use coarser cells outside. To this end, in this work, we introduce new refinement criteria, which are based on the work achieved in Kröner and Ohlberger (Math Comput 69(229):25–39, 2000) on a posteriori error estimators for finite volume schemes for hyperbolic equations. Through numerical experiments, we show that they enable us to decrease in a significant way the number of cells (and then CPU times) while maintaining a good accuracy in the results.  相似文献   

10.
In this paper, residual-based a posteriori error bounds are derived for the mixed finite element method applied to a model second order elliptic problem. A global upper bound for the error in the scalar variable is established, as well as a local lower bound. In addition, due to the fact that the scalar and vector variables are approximated to equal order accuracy, the dual problem may be modified to give an upper bound for the vector variable. Some comments on estimating more general error quantities are also made. The estimate effectively guides adaptive refinement for a smooth problem with a boundary layer, as well as detects the need to refine near a singularity.  相似文献   

11.
Summary Sources of error are investigated for a two-dimensional finite difference computer program designed to model strata deformation. The program calculates the displacements of a mesh of mass points, by the iterative solution of equations of equilibrium for the stresses acting on each mass point. The effect of errors on both displacement estimates and stress estimates is considered.Round-off errors are discussed analytically, while the effect of choosing too coarse a mesh density is demonstrated by comparison of two runs of the program with identical material properties, but different mesh densities. The influence of boundary conditions and the result of incomplete relaxation of the finite difference equations is estimated by comparison with Kirsch's analytical solution for a thin plate of finite width with a circular hole under unidimensional load.As a result of the analysis, estimators for stresses and displacements are derived, which make allowance for some of the sources of error; suitable boundary conditions for first and subsequent runs of the program are proposed; and a convergence criterion for the iterative process is suggested. These results are then applied to simulations of mining situations, together with various refinements of the basic model, such as separation and slip between adjacent strata, and an allowance for failure of material.  相似文献   

12.
Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence of sources or sinks in the flow domain, or a combination of these. In this paper, we apply adaptive isogeometric finite element analysis using locally refined (LR) B‐splines to address these types of problems. The fundamentals behind isogeometric analysis and LR B‐splines are briefly presented. Galerkin's method is applied to the standard weak formulation of the governing equation to derive the linear system of equations. A posteriori error estimates are calculated to identify which B‐splines should be locally refined. The error estimates are calculated based on recovery of the L2‐projected solution. The adaptive analysis method is first illustrated by performing simulation of benchmark problems with analytical solutions. Numerical applications to two‐dimensional groundwater flow problems are then presented. The problems studied are flow around an impervious corner, flow around a cutoff wall, and flow in a heterogeneous medium. The convergence rates obtained with adaptive analysis using local refinement were, in general, observed to be of optimal order in contrast to simulations with uniform refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
We propose an extension of the shifted Grünwald-Letnikov method to solve fractional partial differential equations in the Caputo sense with arbitrary fractional order derivative α and with an advective term. The method uses the relation between Caputo and Riemann-Liouville definitions, the shifted Grünwald-Letnikov, and the traditional backward and forward finite difference method. The stability of the method is investigated for the implicit and explicit scheme with homogeneous boundary conditions, and a stability criterion is found for the advective-dispersive equation. An application of the method is used to solve contaminant diffusion and advective-dispersive problems. The numerical solution for the fractional diffusion and fractional advection-dispersion is compared with their respective analytical solutions for different time and space grid refinements. The diffusion simulation exhibited a good fit between the analytical and numerical solutions, with the explicit scheme going from stable to unstable as the time and space refinement changes. The fractional advection-dispersion application produced small deviations from the analytical solution. These deviations, however, are analogous to the numerical dispersions encountered in conventional finite difference solutions of the advection-dispersion equation. The new method is also compared with the traditional L2 method. Notably, an example that involves asymmetrical fractional conditions, a fractional diffusivity that depends on time, and a source term show how the methods compare. Overall, this study assesses the quality and easiness of use of the numerical method.  相似文献   

14.
Finite Element (FE) pseudo-static analysis can provide a good compromise between simplified methods of dynamic analysis and time domain analysis. The pseudo-static FE approach can accurately model the in situ, stresses prior to seismic loading (when it follows a static analysis simulating the construction sequence) is relatively simple and not as computationally expensive as the time domain approach. However this method should be used with caution as the results can be sensitive to the choice of the mesh dimensions. In this paper two simple examples of pseudo-static finite element analysis are examined parametrically, a homogeneous slope and a cantilever retaining wall, exploring the sensitivity of the pseudo-static analysis results on the adopted mesh size. The mesh dependence was found to be more pronounced for problems with high critical seismic coefficients values (e.g. gentle slopes or small walls), as in these cases a generalised layer failure mechanism is developed simultaneously with the slope or wall mechanism. In general the mesh width was found not to affect notably the predicted value of critical seismic coefficient but to have a major impact on the predicted movements.  相似文献   

15.
The present paper proposes a new family of multiscale finite volume methods. These methods usually deal with a dual mesh resolution, where the pressure field is solved on a coarse mesh, while the saturation fields, which may have discontinuities, are solved on a finer reservoir grid, on which petrophysical heterogeneities are defined. Unfortunately, the efficiency of dual mesh methods is strongly related to the definition of up-gridding and down-gridding steps, allowing defining accurately pressure and saturation fields on both fine and coarse meshes and the ability of the approach to be parallelized. In the new dual mesh formulation we developed, the pressure is solved on a coarse grid using a new hybrid formulation of the parabolic problem. This type of multiscale method for pressure equation called multiscale hybrid-mixed method (MHMM) has been recently proposed for finite elements and mixed-finite element approach (Harder et al. 2013). We extend here the MH-mixed method to a finite volume discretization, in order to deal with large multiphase reservoir models. The pressure solution is obtained by solving a hybrid form of the pressure problem on the coarse mesh, for which unknowns are fluxes defined on the coarse mesh faces. Basis flux functions are defined through the resolution of a local finite volume problem, which accounts for local heterogeneity, whereas pressure continuity between cells is weakly imposed through flux basis functions, regarded as Lagrange multipliers. Such an approach is conservative both on the coarse and local scales and can be easily parallelized, which is an advantage compared to other existing finite volume multiscale approaches. It has also a high flexibility to refine the coarse discretization just by refinement of the lagrange multiplier space defined on the coarse faces without changing nor the coarse nor the fine meshes. This refinement can also be done adaptively w.r.t. a posteriori error estimators. The method is applied to single phase (well-testing) and multiphase flow in heterogeneous porous media.  相似文献   

16.
为了改进计算区域离散化问题,本文利用自适应非结构化网格有限单元法求解二维地电结构下大地电磁场满足的加权余量表达式。在有限元求解电磁场的过程中,网格剖分越精细、计算精度越高,计算量也会越大。此外,结构化网格难以适应任意地形以及复杂地质构造。而自适应非结构化网格在电性变化剧烈的区域会自动加密,在电性缓变的区域则生成粗疏的网格,从而优化网格质量与数量。因此,文中引入COMSOL Multiphysics软件,以实现若干地电模型的构建及非结构化自由四边形单元网格化。将网格数据信息导入本文算法,计算大地电磁场响应,并与解析解及数值解对比。结果表明,基于非结构化网格的正演模拟精度高、适应性强,为计算区域网格化提供了新的方法。  相似文献   

17.
An adaptive mesh refinement algorithm has been developed for non‐linear computations in geomechanics, based on a smoothed stress–strain finite element formulation. This uses estimates of error in the incremental shear strain invariant to guide the regeneration of unstructured meshes at regular intervals during loading. Following each mesh‐update, no re‐analysis of previous increments with the new mesh is necessary. Algorithm performance has been investigated by analysing a passive earth pressure problem using a linear elastic‐perfectly plastic Mohr–Coulomb soil model. Perfectly drained behaviour has been considered, as have partially drained situations using hydromechanical coupling, while undrained behaviour has been approximated using time steps close to zero. In all cases, mesh adaptivity has been successful in capturing regions of high strain gradient. The results have been compared with analytical solutions. Accurate computations of limit load and shear band orientation have been obtained for a wide range of material dilation angles. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
This work presents a numerical algorithm for solving crack scattering in a transversely isotropic medium whose symmetry axis is perpendicular to the crack surface. The crack is modelled as boundary discontinuities in the displacement u and the particle velocity v, of the stresses [κuv], where the brackets denote discontinuities across the interface. The specific stiffness κ introduces frequency-dependence and phase changes in the interface response and the specific viscosity ζ is related to the energy loss. The numerical method is based on a domain decomposition technique that assignes a different mesh to each side of the interface, that includes the crack plane. As stated above, the effects of the crack on wave propagation are modelled through the boundary conditions, that require a special boundary treatment based on characteristic variables. The algorithm solves the particle velocity–stress wave equations and two additional first-order differential equations (two-dimensional case) in the displacement discontinuity. For each mesh, the spatial derivatives normal to the interface are solved by the Chebyshev method, and the spatial derivatives parallel to the interface are computed with the Fourier method. They allow a highly accurate implementation of the boundary conditions and computation of the spatial derivatives, and an optimal discretization of the model space. Moreover, the algorithm allows general material variability. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
This work addresses an enrichment technique for the three-dimensional (3D) finite element (FE) analysis of a vertical drain foundation because (1) 1D and 2D simulations are insufficient to integrally describe the consolidation behaviour and (2) drains are small both in spacing and size, resulting in enormous computational costs for a traditional 3D FE analysis. Based on the idea of the semi-analytical finite element method (FEM), which combines general FEM with the high accuracy of a closed-form solution, a new spatial element that contains a drain well and its neighbouring smear zone is presented. This new combined element is depicted by eight global independent nodes and two local dependent nodes, and a classical analytical theory is introduced to set up the relationship between the two kinds of nodes. Because permeability diversity between the drain and the smear zone is considered, both the effects of smearing and well resistance are taken into account with the composite element method (CEM). A detailed derivation of the CEM is performed using the weighted residual method. The accuracy of the proposed method is validated with a totally penetrating, single-drain ground analysis for seven calculation conditions. Additionally, the proposed CEM saves 1/4–1/2 mesh elements and helps to avoid slender elements for the FEM analysis of the drained foundation.  相似文献   

20.
阳军生  张箭  杨峰 《岩土力学》2015,36(1):257-264
为研究浅埋隧道掌子面稳定性及获取精细化的破坏模式,提出了一种上限有限元非结构化网格自适应加密策略。以单元耗散能权重指标作为网格自适应加密评判准则,该策略同时兼顾了单元尺度与塑性应变。应用高阶的6节点三角形单元并建立上限有限元线性规划模型,以多次反复计算和网格加密的方式实现了二维自适应上限有限元分析并编制了计算程序。利用条形基础地基极限承载力课题,从上限解精度和网格加密形态方面验证了该程序的有效性。针对浅埋隧道掌子面稳定性问题,展开多参数条件下的自适应上限有限元计算,分析了网格加密过程中单元总数与上限解精度的关系,列出不同隧道埋深和内摩擦角对应的隧道掌子面稳定性临界值的上限解,揭示出掌子面稳定性变化规律及精细化的破坏模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号