首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The collapse of wood buildings was one of the main contributors to the heavy death toll and economic losses during the 1995 Hyogo‐ken Nanbu (Kobe) earthquake in Japan. In California, half of the property loss from the 1994 Northridge earthquake was attributed to wood construction. Based on damage observed in recent earthquakes, the seismic vulnerability of existing wood buildings under maximum credible seismic events is uncertain. The main objective of this study is to quantify the seismic collapse fragilities and collapse mechanisms of a two‐story townhouse and three‐story woodframe apartment building through numerical analyses. Three construction quality variants (poor, typical and superior) were considered for each building in order to assess the effects of construction qualities on seismic collapse fragilities. The buildings were also re‐designed according to the 2006 edition of the International Building Code to quantify the seismic fragilities of modern woodframe construction. The results obtained suggest that the construction quality, excitation direction and wall finish materials can influence significantly the collapse fragilities of woodframe buildings. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The American Society of Civil Engineers (ASCE) 43‐05 presents two performance objectives for the design of nuclear structures, systems and components in nuclear facilities: (1) 1% probability of unacceptable performance for 100% design basis earthquake (DBE) shaking and (2) 10% probability of unacceptable performance for 150% DBE shaking. To aid in the revision of the ASCE 4‐98 procedures for the analysis and design of base‐isolated nuclear power plants and meet the intent of ASCE 43‐05, a series of nonlinear response‐history analyses was performed to study the impact of the variability in both earthquake ground motion and mechanical properties of isolation systems on the seismic responses of base‐isolated nuclear power plants. Computations were performed for three representative sites (rock and soil sites in the Central and Eastern United States and a rock site in the Western United States) and three types of isolators (lead rubber, Friction Pendulum and low‐damping rubber bearings) using realistic mechanical properties for the isolators. Estimates were made of (1) the ratio of the 99th percentile (90th percentile) response of isolation systems computed using a distribution of spectral demands and distributions of isolator mechanical properties to the median response of isolation systems computed using best‐estimate properties and 100% (150%) spectrum‐compatible DBE ground motions; (2) the number of sets of three‐component ground motions to be used for response‐history analysis to develop a reliable estimate of the median response of isolation systems. The results of this study provide the technical basis for the revision of ASCE Standard 4‐98. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents shake‐table tests conducted on a two‐fifths‐scale reinforced concrete frame representing a conventional construction design under current building code provisions in the Mediterranean area. The structure was subjected to a sequence of dynamic tests including free vibrations and four seismic simulations in which a historical ground motion record was scaled to levels of increasing intensity until collapse. Each seismic simulation was associated with a different level of seismic hazard, representing very frequent, frequent, rare and very rare earthquakes. The structure remained basically undamaged and within the inter‐story drift limits of the ‘immediate occupancy’ performance level for the very frequent and frequent earthquakes. For the rare earthquake, the specimen sustained significant damage with chord rotations of up to 28% of its ultimate capacity and approached the upper bound limit of inter‐story drift associated with ‘life safety’. The specimen collapsed at the beginning of the ‘very rare’ seismic simulation. Besides summarizing the experimental program, this paper evaluates the damage quantitatively at the global and local levels in terms of chord rotation and other damage indexes, together with the energy dissipation demands for each level of seismic hazard. Further, the ratios of column‐to‐beam moment capacity recommended by Eurocode 8 and ACI‐318 to guarantee the formation of a strong column‐weak beam mechanism are examined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This study presents results from shake table experiments of a wood‐frame building conducted at the University of California, Berkeley. A 13.5‐ft × 19.5‐ft two‐story wood‐frame building representing San Francisco 1940s design of a residential building with a garage space on the first story (house‐over‐garage) was tested. The test building was subjected to scaled ground motion based on Los Gatos record from Loma Prieta 1989 earthquake. The strong motion time history was scaled to match design spectra of a site in Richmond district of San Francisco. The test results demonstrated the seismic vulnerability of the test building due to soft story mechanism and significant twisting when shaken in two horizontal directions. In addition to conventional instrumentation for measuring acceleration and position of selected points of the test building, high‐definition laser scanning technology was employed to assess global and local anomalies of the building after the shake table tests. The analysis conducted in this study showed very good correlation between conventional data recorded from position transducers and the laser scans. These laser scans expanded limits of conventional data at discrete points and allowed analyzing the whole building after shaking. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Collapse resistance of high‐rise buildings has become a research focus because of the frequent occurrence of strong earthquakes and terrorist attacks in recent years. Research development has demonstrated that numerical simulation is becoming one of the most powerful tools for collapse analysis in addition to the conventional laboratory model tests and post‐earthquake investigations. In this paper, a finite element method based numerical model encompassing fiber‐beam element model, multilayer shell model, and elemental deactivation technique is proposed to predict the collapse process of high‐rise buildings subjected to extreme earthquake. The potential collapse processes are simulated for a simple 10‐story RC frame and two existing RC high‐rise buildings of 18‐story and 20‐story frame–core tube systems. The influences of different failure criteria used are discussed in some detail. The analysis results indicate that the proposed numerical model is capable of simulating the collapse process of existing high‐rise buildings by identifying potentially weak components of the structure that may induce collapse. The study outcome will be beneficial to aid further development of optimal design philosophy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents the main results of the evaluation of residual inter‐story drift demands in typical moment‐resisting steel buildings designed accordingly to the Mexican design practice when subjected to narrow‐band earthquake ground motions. Analytical 2D‐framed models representative of the study‐case buildings were subjected to a set of 30 narrow‐band earthquake ground motions recorded on stations placed in soft‐soil sites of Mexico City, where most significant structural damage was found in buildings as a consequence of the 1985 Michoacan earthquake, and scaled to reach several levels of intensity to perform incremental dynamic analyses. Thus, results were statistically processed to obtain hazard curves of peak (maximum) and residual drift demands for each frame model. It is shown that the study‐case frames might exhibit maximum residual inter‐story drift demands in excess of 0.5%, which is perceptible for building's occupants and could cause human discomfort, for a mean annual rate of exceedance associated to peak inter‐story drift demands of about 3%, which is the limiting drift to avoid collapse prescribed in the 2004 Mexico City Seismic Design Provisions. The influence of a member's post‐yield stiffness ratio and material overstrength in the evaluation of maximum residual inter‐story drift demands is also discussed. Finally, this study introduces response transformation factors, Tp, that allow establishing residual drift limits compatible with the same mean annual rate of exceedance of peak inter‐story drift limits for future seismic design/evaluation criteria that take into account both drift demands for assessing a building's seismic performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The linked column frame (LCF) system is proposed as a seismic load resisting system that uses conventional components to limit seismic damage to relatively easily replaced elements. The LCF features a primary lateral system, denoted the linked column, which is made up of dual columns connected with replaceable links, and a secondary flexible moment frame system with beams having fully restrained connections at one end and simple connections at the other. The linked columns are designed to limit seismic forces and provide energy dissipation via link yielding, while preventing damage to the moment frame under certain earthquake hazard levels. A design procedure is proposed that ensures plastic hinges develop in the links of the linked columns at a significantly lower story drift than when plastic hinges develop in the moment frame beams. The large drift difference helps enable design of this system for two distinct performance states: rapid return to occupancy, where only link damage occurs and relatively simple link replacement is possible, and collapse prevention, where both the links and the beams of the moment frame may be damaged. A series of 3‐story, 6‐story, and 9‐story prototype LCF buildings were designed using the proposed design approach. Nonlinear models were developed for the designs with the link models validated using recent experimental results. The seismic response of these systems was investigated for ground motions representing various seismic hazard levels. Results show that the LCF system not only provides collapse prevention, but also has the capability of limiting economic loss by reducing structural damage and allowing for rapid return to occupancy following earthquakes with shorter return periods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The seismic performance of three‐ and six‐story buildings with fluidic self‐centering system is probabilistically assessed. The fluidic self‐centering systems consist of devices that are based on the technology of fluid viscous dampers but built in a way that pressurization of the devices results in preload that is explored to reduce or eliminate residual drift. The design of these buildings followed a procedure that parallels the design for structures with damping systems in ASCE 7 but modified to include the preload effect. Reference conventional buildings were also designed per ASCE 7 for comparison. These buildings were then analyzed to examine and compare their seismic collapse resistance and residual drift, where the residual drift limits of 0.2, 0.5, 1.0 and 2.0% of story height were selected as important thresholds. The study further calculated the mean annual frequency of collapse and corresponding exceedance probability over 50 years, and the mean annual frequency of exceeding the threshold residual story drift limits and the corresponding exceedance probability over 50 years. Variations in the design procedures by considering increased displacement capacity or damping or preload of the devices, different types of damping, increased ultimate strength of the self‐centering device–brace systems and increased frame strength were considered. It was found that increasing either the ultimate force capacity of the self‐centering device–brace system or the frame strength results in important improvements in the collapse resistance and in minimizing residual drift, whereas the variation of other design parameters has minor effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a design approach for seismic rehabilitation of frames having a beam‐collapse mechanism using a technique termed minimal‐disturbance seismic rehabilitation. This technique pursues enhancing the seismic performance of buildings with the intention of improving the continuity of business. It minimizes obstruction of the visual and physical space of building users and the use of heavy construction equipment and work requiring fire permit (welding/cutting). The developed design approach is simple to use. Yet it leads to designs that limit the beams' plastic rotations to allowable values, while minimizing the number of locations where devices are installed and the devise dimensions. Furthermore, the effectiveness of the design approach and the rehabilitation technique is numerically studied through retrofitting a four‐story steel moment‐resisting frame. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The seismic performance of conventional wood‐frame structures in south‐western British Columbia is analytically investigated through incremental dynamic analysis by utilizing available UBC‐SAWS models, which were calibrated based on experimental test results. To define an adequate target response spectrum that is consistent with information from national seismic hazard maps, record selection/scaling based on the conditional mean spectrum (CMS) is implemented. Furthermore, to reflect complex seismic hazard contributions from different earthquake sources (i.e. crustal events, interface events, and inslab events), we construct CMS for three earthquake types, and use them to select and scale an adequate set of ground motion records for the seismic performance evaluation. We focus on the impacts of adopting different record selection criteria and of using different shear‐wall types (Houses 1–4; in terms of seismic resistance, House 1>House 2>House 3>House 4) on the nonlinear structural response. The results indicate that the record selection procedures have significant influence on the probabilistic relationship between spectral acceleration at the fundamental vibration period and maximum inter‐story drift ratio, highlighting the importance of taking into account response spectral shapes in selecting and scaling ground motion records. Subjected to ground motions corresponding to the return period of 2500 years, House 1 is expected to experience very limited extent of damage; Houses 2 and 3 may be disturbed by minor damage; whereas House 4 may suffer from major damage occasionally. Finally, we develop statistical models of the maximum inter‐story drift ratio conditioned on a seismic intensity level for wood‐frame houses, which is useful for seismic vulnerability assessment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The objectives of seismic engineering are to design and build better and more economic earthquake‐resistant structures. Performance, which is measured as the amount of damage of a facility and the impact of damage to the society after an earthquake, is the main concern. Performance‐based earthquake engineering (PBEE) implies design, evaluation, and construction of engineered facilities whose performance under common and extreme earthquake ground motions responds to the diverse needs and objectives of the owners, users and society. Observations on the performance or damage of structures after strong earthquake ground motions have always served as an effective means to evaluate the current seismic regulations and guidelines and make further improvements afterwards. This paper presents some of the typical damage evidence after the Chichi earthquake occurred recently in Taiwan. Important issues in performance‐based earthquake engineering that need to be considered in future seismic regulations of Taiwan are addressed accordingly. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Self‐centering reinforced concrete frames are developed as an alternative of traditional seismic force‐resisting systems with better seismic performance and re‐centering capability. This paper presents an experimental and computational study on the seismic performance of self‐centering reinforced concrete frames. A 1/2‐scale model of a two‐story self‐centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self‐centering capacity subjected to earthquakes; the self‐centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self‐centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self‐centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The reinforced concrete frame‐core tube structure is a common form of high‐rise building; however, certain vertical components of these structures are prone to be damaged by earthquakes, debris flow, or other accidents, leaving no time for repair or retrofit. This study is motivated by a practical problem—that is, the seismic vulnerability and collapse resistant capability under future earthquakes when a vertical member has failed. A reduced scale model (1:15 scale) of a typical reinforced concrete frame‐core tube with a corner column removed from the first floor is designed, fabricated, and tested. The corner column is replaced by a jack, and the failure behavior is simulated by manually unloading the jack. The model is then excited by a variety of seismic ground motions on the shaking table. Experimental results concerning the seismic responses and actual process of collapse are presented herein. Finally, the earthquake‐induced collapse process is simulated numerically using the software program ANSYS/LS‐DYNA. Validation and calibration of the model are carried out by comparison with the experimental results. Furthermore, based on both experimental investigations and numerical simulations, the collapse mechanism is discussed, and some suggestions on collapse design are put forward. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents the findings of shaking‐table experiments conducted to examine the seismic performance of a full‐scale, one‐story, wood‐framed structure with masonry veneer. The structure was designed and constructed in accordance with current U.S. code provisions. The veneer was attached to the wood backing with two kinds of metal anchors, corrugated ties fastened with 8d nails and rigid ties fastened with #8 screws. The tests have shown that the use of nails to fasten veneer anchors to the wood studs is highly unreliable due to the high variation of the nail extraction capacity, which can be influenced by the moisture content of the wood. Other than this, both the wood frame and the masonry veneer performed well under severe ground motions far exceeding a design level earthquake for Seismic Design Category D. Good performance was observed for the rigid veneer ties, which were attached to the wood studs with screws. The results have shown that the veneer walls parallel to the direction of shaking helped to restrain the motion of the wood structure and therefore should not be simply treated as added mass. The detailing of wood roof diaphragms requires special attention in consideration of the out‐of‐plane inertia force of the veneer that can be transmitted through the top plate of the wood‐stud wall to the rim joist. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

17.
Special concentrically braced frames (SCBFs) are commonly used for seismic design of buildings. Their large elastic stiffness and strength efficiently sustains the seismic demands during smaller, more frequent earthquakes. During large, infrequent earthquakes, SCBFs exhibit highly nonlinear behavior due to brace buckling and yielding and the inelastic behavior induced by secondary deformation of the framing system. These response modes reduce the system demands relative to an elastic system without supplemental damping using a response modification coefficient, commonly termed the R factor. More recently, procedures put forth in FEMAP695 have been made to quantify the R factor through a formalized procedure that accounts for collapse potential. The primary objective of the research in this paper was to evaluate the approach for SCBFs. An improved model for SCBFs that permits simulation of brace fracture was used to conduct response history analyses. A series of three‐story, nine‐story and 20‐story SCBFs were designed and evaluated. Initially, the FEMAP695 method was conducted to estimate collapse and the corresponding R factor. An alternate procedure for scaling the multiple acceleration records to the seismic design hazard was also evaluated. The results show significant variation between the two methods. Of the three variations of buildings studied, the largest vulnerability was identified for the three‐story building. To achieve a consistent margin of safety against collapse, a significantly lower R factor is required for the low‐rise SCBFs (three‐story), whereas the mid‐rise and high‐rise SCBFs (nine‐story and 20‐story) may continue to use the current value of 6, as provided in ASCE‐07. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The performance‐based seismic design of steel special moment‐resisting frame (SMRF) structures is formulated as a multiobjective optimization problem, in which conflicting design criteria that respectively reflect the present capital investment and the future seismic risk are treated simultaneously as separate objectives other than stringent constraints. Specifically, the initial construction expenses are accounted for by the steel material weight as well as by the number of different standard steel section types, the latter roughly quantifying the degree of design complexity related additional construction cost; the seismic risk is considered in terms of maximum interstory drift demands at two hazard levels with exceedance probabilities being 50% and 2% in 50 years, respectively. The present formulation allows structural engineers to find an optimized design solution by explicitly striving for a desirable compromise between the initial investment and seismic performance. Member sizing for code‐compliant design of a planar five‐story four‐bay SMRF is presented as an application example using the proposed procedure that is automated by a multiobjective genetic algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This study focuses on the seismic performance of Ordinary Moment‐Resisting Concrete Frames (OMRCF) designed only for gravity loads. For this purpose, a 3‐story OMRCF was designed in compliance with the minimum design requirements in the American Concrete Institute Building Code ACI 318 (1999). This model frame was a regular structure with flexure‐dominated response. A 1/3‐scale 3‐story model was constructed and tested under quasi‐static reversed cyclic lateral loading. The overall behavior of the OMRCF was quite stable without abrupt strength degradation. The measured base shear strength was larger than the design base shear force for seismic zones 1, 2A and 2B calculated using UBC 1997. Moreover, this study used the capacity spectrum method to evaluate the seismic performance of the frame. The capacity curve was obtained from the experimental results for the specimen and the demand curve was established using the earthquake ground motions recorded at various stations with different soil conditions. Evaluation of the test results shows that the 3‐story OMRCF can resist design seismic loads of zones 1, 2A, 2B, 3 and 4 with soil types SA and SB . For soil type SC , the specimen was satisfactory in seismic zones 1, 2A, 2B and 3. For soil type SD , the OMRCF was only satisfactory for seismic zones 1 and 2A. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Results from an investigation aimed at assessing seismic behavior of transfer story connections for high‐rise building consisting of steel‐reinforced concrete (SRC) frame and reinforced concrete (RC) core tube are presented. Two types of transfer story connections were experimentally evaluated for adequate strength, ductility and energy dissipation. For each type of connection, two large‐scale subassembly tests were carried out under monotonic and cyclic lateral displacement, respectively. Detailed observations and behavior responses were obtained to contrast the differences between monotonic and cyclic performance of the connections. Test results showed that the SRC column failed before connection collapse and that loading types have little effect on the strength but greatly affect the failure modes and the ductility of the connections. All specimens exhibited good properties for earthquake resistance since they all kept a stable inelastic behavior up to the interstory drift demand suggested by the AISC Seismic Provisions. Based on test observations, support stiffeners with appropriate width‐to‐thickness ratio and mechanical connectors connecting bars with the steel plate are recommended for design purposes in order to achieve more ductile and reliable seismic behavior of transfer story connections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号