首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Puyehue Volcano (40?5?S) in the southern volcanic zone (33?–46?)of the Andes is a largely basaltic stratovolcano constructedon a highly eroded, dominantly andesitic volcanic center. Duringgrowth of Puyehue Volcano there was a trend from basaltic tomore siliceous lavas, and the most recent eruptions (1921–22,1960) are Cordon Caulle rhyodacites and rhyolites erupted fromfissures northwest of the volcano. These basaltic through rhyoliticlavas define a medium-K2O suite of tholeiitic affinity withtrace element and Pb-isotopic signatures typical of volcanicrocks associated with subduction zones. Most of the evolved lavas, ranging from andesite to rhyolite,formed by low to moderate pressure ( 5 kb) fractional crystallizationof a plagioclase-dominated anhydrous assemblage. Magma mixingproduced aphyric basaltic andesites with anomalously high incompatibleelement contents and latestage andesites with disequilibriumphenocryst assemblages. The age progression from abundant basaltto younger, less voluminous, more silicic lavas reflects increasinglygreater degrees of fractional crystallization which caused theapparent compositional gap between mixing end members to widen. There is no evidence in the silicic lavas for assimilation ofgeochemically distinctive continental crust. Puyehue basaltsare surprisingly more heterogeneous in 87Sr/86Sr (0?70378–0?70416)and incompatible element abundance ratios (e.g., La/Sm, Ba/Nb)than the more evolved lavas. This geochemical variability mayreflect subcrustal source heterogeneities or contamination bylower crust. The older basaltic andesites and andesites underlyingthe Puyehue edifice have Sr and Nd isotopic ratios and incompatibleelement abundance ratios within the range of Puyehue basalts.Apparently, similar sources and processes were involved in theirgenesis.  相似文献   

2.
Andesites from northeastern Kanaga Island,Aleutians   总被引:1,自引:0,他引:1  
Kanaga island is located in the central Aleutian island arc. Northeastern Kanaga is a currently active late Tertiary to Recent calc-alkaline volcanic complex. Basaltic andesite to andesite lavas record three episodes (series) of volcanic activity. Series I and Series II lavas are all andesite while Series III lavas are basaltic andesite to andesite. Four Series II andesites contain abundant quenched magmatic inclusions ranging in composition from high-MgO low-alumina basalt to low-MgO highalumina basalt. The spectrum of lava compositions is due primarily to fractional crystallization of a parental low-MgO high-alumina basalt but with variable degrees of crustal contamination and magma mixing. The earliest Series I lavas represent mixing between high-alumina basalt and silicic andesite with maximum SiO2 contents of 65–67 wt %. Later Series I and all Series II lavas are due to mixing of andesite magmas of similar composition. The maximum SiO2 content of the pre-mixed andesites magmas is estimated at 60–63 wt %. The youngest lavas (Series III) are all non-mixed and have maximum estimated SiO2 contents of 59 wt %. The earliest Series I lavas contain a significant crustal component while all later lavas do not. It is concluded that the maximum SiO2 contents of silicic magmas, the contribution of crustal material to silicic magma generation, and the role of magma mixing all decrease with time. Furthermore, silicic magmas generated by fractional crystallization at this volcanic center have a maximum SiO2 content of 63 wt %. All of these features have also been documented at the central Aleutian Cold Bay Volcanic Center (Brophy 1987). Based on data from these two centers a model of Aleutian calc-alkaline magma chamber development is proposed. The main features are: (1) a single low pressure magma chamber is continuously supplied by primitive low-alumina basalt; (2) non-primary high-alumina basalt is formed along the chamber margins by selective gravitational settling of olivine and clinopyroxene and retention of plagioclase; (3) sidewall crystallization accompanied by crustal melting produces buoyant silicic (>63 wt % SiO2) liquids that pond at the top of the chamber, and; (4) continued sidewall crystallization, now isolated from the chamber wall, produces silicic liquids with 63 wt % SiO2 that increase the thickness and lowers the overall SiO2 content of the upper silicic zone. It is suggested that the maximum SiO2 content of 63% imposed on fractionation-generated magmas is due to a rheological barrier that prohibits the extraction of more silicic liquids from a crystal-liquid mush along the chamber wall.  相似文献   

3.
Magmatic evolution on the active volcano of Agrigan in the northern Mariana Island Arc is interpreted as resulting in the production of calc-alkaline andesites by the fractional crystallization of high-alumina basalt. Basaltic products predominate, but the ratio of andesites to basalts increases with time up to an event of voluminous andesitic pyroclastic ejection accompanied by caldera-collapse; post-collapse lavas are entirely basaltic. Moderate iron-enrichment is demonstrated for the volcanic suite, with indications of a progressive, pre-caldera decrease in iron-enrichment; post-caldera lavas display a return to moderate Fe-enrichment. Overall, the lavas are enriched in the LIL elements (K, Rb, Ba, Sr) and depleted in Ti, Mg, Cr, and Ni. From the oldest to the youngest pre-caldera volcanic sequence, the LIL elements increase 3-6X while Ca and Mg decrease by 50% or more. Approximately constant K/ Rb (430±60) and 87Sr/86Sr (0.7032–0.7034) indicate consanguinity of the basalts and the andesites. Cumulate plutonic xenoliths, common in the lavas, are composed of mineral phases also encountered as phenocrysts. The following order of crystallization is indicated: olivine; anorthite-bytownite; clinopyroxene; orthopyroxene and titanomagnetite. Co-existing xenolithic olivines (Fo74–83) and plagioclase (An88–96) are typical of calc-alkaline island-arc assemblages and contrast with assemblages in the tholeiites from the Mariana Trough to the west. The relatively fayalitic composition and low abundances of Ni in olivines and Cr in clinopyroxenes indicate equilibrium with an already-fractionated liquid. These data, along with structural evidence, high Ca in the olivines, and comparison of the observed assemblages with experimental studies, suggests that these xenoliths formed as crystal cumulates at the floor of a shallow ( 7 km) crustal magma chamber.Major element modeling studies using the separation of observed xenocrystic and phenocrystic phases from assumed parental liquids reproduce the observed temporal and geochemical variations in the lavas. Trace element modeling parallels this evolution with the exception of Cr and Ni in the andesites. An extensive (16.3 km3) gabbroic body is required by this modeling to be present beneath Agrigan to produce the inferred volumes of the various lithologies preserved in the volcano's evolution. The sum of stratigraphic, geochemical, and isotopic evidence on Agrigan supports the derivation of calc-alkaline andesite by the removal of about 75% solids from a high-alumina basalt accompanied by a process of K and Rb enrichment, such as volatile-transfer. Considerations of 87Sr/86Sr, 143Nd/144Nd, and 3He/4He isotopic data indicate that the source region of these parental liquids lies in the mantle, not subducted crust. In the northern Marianas, the model of a shallow-crustal origin for andesite is preferred over one requiring andesite generation in the deeper mantle and/or subducted slab.  相似文献   

4.
Camiguin is a small volcanic island located 12 km north of Mindanao Island in southern Philippines. The island consists of four volcanic centers which have erupted basaltic to rhyolitic calcalkaline lavas during the last ∼400 ka. Major element, trace element and Sr, Nd and Pb isotopic data indicate that the volcanic centers have produced a single lava series from a common mantle source. Modeling results indicate that Camiguin lavas were produced by periodic injection of a parental magma into shallow magma chambers allowing assimilation and fractional crystallization (AFC) processes to take place. The chemical and isotopic composition of Camiguin lavas bears strong resemblance to the majority of lavas from the central Mindanao volcanic field confirming that Camiguin is an extension of the tectonically complex Central Mindanao Arc (CMA). The most likely source of Camiguin and most CMA magmas is the mantle wedge metasomatized by fluids dehydrated from a subducted slab. Some Camiguin high-silica lavas are similar to high-silica lavas from Mindanao, which have been identified as “adakites” derived from direct melting of a subducted basaltic crust. More detailed comparison of Camiguin and Mindanao adakites with silicic slab-derived melts and magnesian andesites from the western Aleutians, southernmost Chile and Batan Island in northern Philippines indicates that the Mindanao adakites are not pure slab melts. Rather, the CMA adakites are similar to Camiguin high-silica lavas which are products of an AFC process and have negligible connection to melting of subducted basaltic crust. Received: 27 February 1998 / Accepted: 27 August 1998  相似文献   

5.
Sugarloaf Mountain is a 200-m high volcanic landform in central Arizona, USA, within the transition from the southern Basin and Range to the Colorado Plateau. It is composed of Miocene alkalic basalt (47.2–49.1?wt.% SiO2; 6.7–7.7?wt.% MgO) and overlying andesite and dacite lavas (61.4–63.9?wt.% SiO2; 3.5–4.7?wt.% MgO). Sugarloaf Mountain therefore offers an opportunity to evaluate the origin of andesite magmas with respect to coexisting basalt. Important for evaluating Sugarloaf basalt and andesite (plus dacite) is that the andesites contain basaltic minerals olivine (cores Fo76-86) and clinopyroxene (~Fs9-18Wo35-44) coexisting with Na-plagioclase (An48-28Or1.4–7), quartz, amphibole, and minor orthopyroxene, biotite, and sanidine. Noteworthy is that andesite mineral textures include reaction and spongy zones and embayments in and on Na-plagioclase and quartz phenocrysts, where some reacted Na-plagioclases have higher-An mantles, plus some similarly reacted and embayed olivine, clinopyroxene, and amphibole phenocrysts.Fractional crystallization of Sugarloaf basaltic magmas cannot alone yield the andesites because their ~61 to 64?wt.% SiO2 is attended by incompatible REE and HFSE abundances lower than in the basalts (e.g., Ce 77–105 in andesites vs 114–166?ppm in basalts; Zr 149–173 vs 183–237; Nb 21–25 vs 34–42). On the other hand, andesite mineral assemblages, textures, and compositions are consistent with basaltic magmas having mixed with rhyolitic magmas, provided the rhyolite(s) had relatively low REE and HFSE abundances. Linear binary mixing calculations yield good first approximation results for producing andesitic compositions from Sugarloaf basalt compositions and a central Arizona low-REE, low-HFSE rhyolite. For example, mixing proportions 52:48 of Sugarloaf basalt and low incompatible-element rhyolite yields a hybrid composition that matches Sugarloaf andesite well ? although we do not claim to have exact endmembers, but rather, viable proxies. Additionally, the observed mineral textures are all consistent with hot basalt magma mixing into rhyolite magma. Compositional differences among the phenocrysts of Na-plagioclase, clinopyroxene, and amphibole in the andesites suggest several mixing events, and amphibole thermobarometry calculates depths corresponding to 8–16?km and 850° to 980?°C. The amphibole P-T observed for a rather tight compositional range of andesite compositions is consistent with the gathering of several different basalt-rhyolite hybrids into a homogenizing ‘collection' zone prior to eruptions. We interpret Sugarloaf Mountain to represent basalt-rhyolite mixings on a relatively small scale as part of the large scale Miocene (~20 to 15 Ma) magmatism of central Arizona. A particular qualification for this example of hybridization, however, is that the rhyolite endmember have relatively low REE and HFSE abundances.  相似文献   

6.
The Pliocene–Pleistocene northern Taiwan volcanic zone (NTVZ) is located within a trench-arc–back-arc basin and oblique arc–continent collision zone. Consequently the origin and tectonic setting of the andesitic rocks within the NTVZ and their relation to other circum-Pacific volcanic island-arc systems is uncertain. Rocks collected from the Tatun volcanic group (TTVG) include basaltic to andesitic rocks. The basalt is compositionally similar to within-plate continental tholeiites whereas the basaltic andesite and andesite are calc-alkaline; however, all rocks show a distinct depletion of Nb-Ta in their normalized incompatible element diagrams. The Sr-Nd isotope compositions of the TTVG rocks are very similar and have a relatively restricted range (i.e. ISr = 0.70417–0.70488; εNd(T) = +2.2 to +3.1), suggesting that they are derived directly or indirectly from the same mantle source. The basalts are likely derived by mixing between melts from the asthenosphere and a subduction-modified subcontinental lithospheric mantle (SCLM) source, whereas the basaltic andesites may be derived by partial melting of pyroxenitic lenses within the SCLM and mixing with asthenospheric melts. MELTS modelling using a starting composition equal to the most primitive basaltic andesite, shallow-pressure (i.e. ≤1 kbar), oxidizing conditions (i.e. FMQ +1), and near water saturation will produce compositions similar to the andesites observed in this study. Petrological modelling and the Sr-Nd isotope results indicate that the volcanic rocks from TTVG, including the spatially and temporally associated Kuanyinshan volcanic rocks, are derived from the same mantle source and that the andesites are the product of fractional crystallization of a parental magma similar in composition to the basaltic andesites. Furthermore, our results indicate that, in some cases, calc-alkaline andesites may be generated by crystal fractionation of mafic magmas derived in an extensional back-arc setting rather than a subduction zone setting.  相似文献   

7.
Calbuco volcano is a Late Pleistocene-Holocene composite stratovolcano located at 41°20 S, in the southern region of the Southern Volcanic Zone of the Andes (SSVZ; 37°–46° S). In contrast to basalt and basaltic andesite, which are the dominant lava types on the volcanic front from 37° to 42° S, Calbuco lavas are porphyritic andesites which contain a wide variety of crustal xenoliths. They have SiO2 contents in the 55–60% range, and have comparatively low K2O, Rb, Ba, Th and LREF abundances relative to other SSVZ centers. Incompatible element abundance ratios are similar to those of most SSVZ volcanics, but 87Sr/86Sr and 143Nd/144Nd are respectively higher and lower than those of adjacent volcanic centers. Basalts from nearby Osorno stratovolcano, 25 km to the northeast, are similar to other basaltic SSVZ volcanoes. However, basalts from several minor eruptive centers (MEC), located east of Calbuco and Osorno volcano along the Liquiñe-Ofqui fault zone (LOFZ), are enriched in Ba, Nb, Th and LREE, and have higher La/Yb and lower Ba/La, K/La and Rb/La. 87Sr/86Sr and 143Nd/144Nd in MEC basalts are respectively lower and higher than those of Osorno and Calbuco lavas. We suggest that MEC basalts were produced by lower extents of mantle melting than basalts from Osorno and other SSVZ stratovolcanoes, probably as a result of lower water content in the source of MEC basalts. Calbuco andesites formed from basaltic parents similar to Osorno basalts, by moderate pressure crystallization of a hornblende-bearing assemblage accompanied by crustal assimilation. Hornblende stability in the Calbuco andesites was promoted by the assimilation of hydrous metasedimentary crustal rocks, which are also an appropriate endmember for isotopic trends, together with magma storage at mid-crustal depths. The unique characteristics of Calbuco volcano, i.e. the stability of hornblende at andesitic SiO2 contents, low 143Nd/144Nd and high 87Sr/86Sr, and abundant crustal xenoliths, provide evidence for crustal assimilation that is not apparent at more northerly volcanoes in the SSVZ.  相似文献   

8.
At 39.5° S in the southern volcanic zone of the Andes three Pleistocene-recent stratovolcanoes, Villarrica, Quetrupillan and Lanin, form a trend perpendicular to the strike of the Andes, 275 to 325 km from the Peru-Chile trench. Basalts from Villarrica and Lanin are geochemically distinct; the latter have higher incompatible element abundances and La/Sm but lower Ba/La and alkali metal/La ratios. These differences are consistent with our previously proposed models involving: a) a west to east decrease in an alkali metal-rich, high Ba/La slab-derived component which causes an across strike decrease in degree of melting; or b) a west to east increase in the contamination of subduction-related magma by enriched subcontinental lithospheric mantle. Silicic and mafic lavas from the stratovolcanoes have overlapping Sr, Nd and O isotopic ratios. Silicic lavas also have geochemical differences that parallel those of their associated basalts, e.g., rhyolite from Villarrica has lower La/Sm and incompatible element contents than high-SiO2 andesite from Lanin. At each volcano the most silicic lavas can be modelled by closed system fractional crystallization while andesites are best explained by magma mixing. Apparently crustal contamination was not an important process in deriving the evolved lavas. Basaltic flows from small scoria cones, 20–35 km from Villarrica volcano have high incompatible element contents and low Ba/La, like Lanin basalts, but trend to higher K/Rb (356–855) and lower 87Sr/ 86Sr (0.70361–0.70400) than basalts from either stratovolcano. However all basalts have similar Nd, Pb and O isotope ratios. The best explanation for the unique features of the cones is that the sources of SVZ magmas, e.g., slab-derived fluids or melts of the subcontinental lithospheric mantle, have varying alkali metal and radiogenic Sr contents. These heterogeneities are not manifested in stratovolcano basalts because of extensive subcrustal pooling and mixing. This model is preferable to one involving crustal contamination because it can account for variable Sr isotope ratios and uniform Nd and Pb isotope ratios among the basalts, and the divergence of the cones from across-strike geochemical trends defined by the stratovolcanoes.  相似文献   

9.
238U–230Th disequilibria and Sr and O isotope ratios have been measured in a suite of samples from most of the known prehistoric and historic eruptions of Hekla volcano, Iceland. They cover the compositional range from basaltic andesite to rhyolite. Recent basalts erupted in the vicinity of the volcano and a few Pleistocene basalts have also been studied. Geochemical data indicate that the best tracers of magmatic processes in Hekla are the (230Th/232Th) and Th/U ratios. Whereas most geochemical parameters, including Sr, Nd and O isotopes, could be compatible with crystal fractionation, (230Th/232Th) and Th/U ratios differ in the basalts and basaltic andesites (1.05 and 3.2, respectively) and in the silicic rocks, dacites and rhyolites (0.98 and 3.4–3.7, respectively). This observation precludes fractional crystallization as the main differentiation process in Hekla. On the basis of these results, the following model is proposed: basaltic magmas rise in the Icelandic crust and cause partial melting of metabasic rocks, leading to the formation of a dacitic melt. The basaltic magma itself evolves by crystal fractionation and produces a basaltic andesite magma. The latter can mix with the dacitic liquid to form andesites. At higher levels in the magma chamber, the dacitic melt sometimes undergoes further differentiation by crystal fractionation and produces subordinate volumes of rhyolites. Together all these processes lead to a zoned magma chamber. However, complete zoning is achieved only when the repose time between eruptions is long enough to allow the production of significant volumes of dacitic magma by crustal melting. This situation corresponds to the large plinian eruptions. Between these eruptions, the so-called intra-cyclic activity is characterized by the eruption of andesites and basaltic andesites, with little crustal melting. The magmatic system beneath Hekla most probably was established during the Holocene. The shape and the size of the magma chamber may be inferred from the relationships between the composition of the lavas and the location of the eruption sites. In a cross-section perpendicular to Hekla's ridge, a bell-shaped reservoir 5 km wide and 7 km deep appears the most likely; its top could be at depth of 8 km according to geophysical data.  相似文献   

10.
The Tatara shield volcano and subsequent San Pedro cone arethe youngest edifices of the San Pedro-Pellado volcanic complexat 36S in the Chilean Andes. There are multiple basaltic andesitecompositional types present in the Tatara volcano, which couldresult from either contrasting source regions or interactionof primitive liquids with heterogeneous crust. The eruptivestratigraphy of the magma types implies concurrent, isolatedmagma chambers beneath Tatara-San Pedro. Open-system processesand multiple crustal endmembers were involved in calcalkalinedifferentiation series, whereas a tholeitiic series evolvedmainly by fractional crystallization. The glaciated Tatara shield comprises two cycles of compositionallydiverse basaltic andesite lavas, each of which is capped byvolumetrically minor andesite to dacite lavas. Four types (I-IV)of basaltic andesite are defined on the basis of chemical criteria,two in each cycle. The early cycle consists of calcalkalinetype I basaltic andesites, and tholeiitic type II basaltic andesitesand andesites; it culminated in the eruption of a dacite dome.The later cycle comprises intercalated calcalkaline type IIIand IV basaltic andesites, and they are overlain by San Pedroandesites and dacites which appear to be the differentiationproducts of type IV magmas. Tatara lavas were erupted from acommon vent situated beneath the modern San Pedro cone. Althoughthey overlap temporally and spatially, there is little evidenceof chemical interaction among the different lava types, indicatingthat there were two or more magma reservoirs beneath Tatara-SanPedro. Chemical differences among the basaltic andesite types precludederivation of any one from any of the others by fractional crystallization,assimilation-fractional crystallization (AFC), or magma mixing.The differences seem to reflect chemically different parentmagmas. The type I and IV parent liquids were relatively highin MgO, low in CaO and AI2O3, and had high incompatible andcompatible element abundances. The type II and III parents werelower in MgO, higher in A12O3 and CaO, and had lower compatibleand incompatible element abundances. Tholeiitic type II lavasappear to have evolved mainly by fractional crystallization,whereas there is evidence of open-system processes such as AFCand magma mixing in the evolution of the calcalkaline I, III,and IV suites. The chemical evolution of the type III and type IV-San Pedromagma suites has been simulated by assimilation and mixing modelsusing local granites and xenoliths as assimilants. The xenolithsprobably represent portions of a sub-caldera pluton associatedwith the Quebrada Turbia Tuff, which erupted from the Rio Coloradocaldera within the San Pedro-Pellado complex at 0–487Ma. Chemical and textural variations in type III lavas correlatewith stratigraphic position and appear to represent mixing betweena parental type III magma and remnant, evolved type I magmathat was progressively flushed from its chamber concurrent withmixing. The youngest San Pedro flow is chemically zoned fromdacite to basaltic andesite and may have formed by mixing withina conduit during eruption.  相似文献   

11.
The Miocene Karamağara volcanics (KMV) crop out in the Saraykent region (Yozgat) of Central Anatolia. The KMV include four principal magmatic components based on their petrography and compositional features: basaltic andesites (KMB); enclaves (KME); andesites (KMA); and dacites (KMD). Rounded and ellipsoidal enclaves occur in the andesites, ranging in diameter from a few millimetres to ten centimetres. A non‐cognate origin for the enclaves is suggested due to their mineralogical dissimilarity to the enclosing andesites. The enclaves range in composition from basaltic andesite to andesite. Major and trace element data and primitive mantle‐normalized rare‐earth element (REE) patterns of the KMV exhibit the effects of fractional crystallization on the evolution of the KME which are the product of mantle‐derived magma. The KMA contain a wide variety of phenocrysts, including plagioclase, clinopyroxene, orthopyroxene, hornblende and opaque minerals. Comparison of textures indicates that many of the hornblende phenocrysts within the KMA were derived from basaltic andesites (KMB) and are not primary crystallization products of the KMA. Evidence of disequilibrium in the hybrid andesite includes the presence of reacted hornblendes, clinopyroxene mantled by orthopyroxene and vice versa, and sieve‐texture and inclusion zones within plagioclase. The KMV exhibit a complex history, including fractional crystallization, magma mixing and mingling processes between mantle and crust‐derived melts. Textural and geochemical characteristics of the enclaves and their hosts require that mantle‐derived basic magma intruded the deep continental crust followed by fractional crystallization and generation of silicic melts from the continental material. Hybridization between basic and silicic melts subsequently occurred in a shallow magma chamber. Modelling of major element geochemistry suggests that the hybrid andesite represents a 62:38 mix of dacite and basaltic andesite. The implication of this process is that calc‐alkaline intermediate volcanic rocks in the Saraykent region represent hybrids resulting from mixing between basic magma derived from the mantle and silicic magma derived from the continental crust. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Trace element systematics throughout the cal-calkaline high alumina basalt — basaltic andesite — andesite — dacite — rhyodacite lavas and dyke rocks of the Main Volcanic Series of Santorini volcano, Greece are consistent with the crystal fractionation of observed phenocryst phases from a parental basaltic magma as the dominant mechanism involved in generating the range of magmatic compositions. Marked inflection points in several variation trends correspond to changes in phenocryst mineralogy and divide the Main Series into two distinct crystallisation intervals — an early basalt to andesite stage characterised by calcic plagioclase+augite+olivine separation and a later andesite to rhyodacite stage generated by plagioclase augite+hypersthene+magnetite+apatite crystallisation. Percent solidification values derived from ratios of highly incompatible trace elements agree with previous values derived from major element data using addition-subtraction diagrams and indicate that basaltic andesites represent 47–69%; andesites 70–76%; dacites ca. 80% and rhyodacite ca. 84% crystallisation of the initial basalt magma. Least squares major element mixing calculations also confirm that crystal fractionation of the least fractionated basalts could generate derivative Main Series lavas, though the details of the least squares solutions differ significantly from those derived from highly incompatible element and addition-subtraction techniques. Main Series basalts may result from partial melting of the mantle asthenosphere wedge followed by limited olivine+pyroxene+Cr-spinel crystallisation on ascent through the sub-Aegean mantle and may fractionate to more evolved compositions at pressures close to the base of the Aegean crust. Residual andesitic to rhyodacite magmas may stagnate within the upper regions of the sialic Aegean crust and form relatively high level magma chambers beneath the southern volcanic centres of Santorini. The eruption of large volumes of basic lavas and silicic pyroclastics from Santorini may have a volcanological rather than petrological explanation.  相似文献   

13.
Petrological, geochemical, and isotope geochronological aspects of the evolution of calc-alkaline magmatism were investigated in the Western Okhotsk flank zone, the Okhotsk segment, and the Eastern Chukchi flank zone of the Okhotsk-Chukotka volcanic belt (OCVB). The OCVB is a tectonotype of continental margin volcanic belts comprising much greater volumes of felsic ignimbritic volcanics compared with mature island arcs (MIA, Kuril-Kamchatka and Aleutian) and the Andean continental margin. The volcanic rocks of continental margin volcanic belts (OCVB and Andean belt) are enriched in K, Ti, and P compared with the rocks of MIA and show a trend toward the field of high-potassium calc-alkaline series. Primitive andesite varieties (Mg# > 0.6) were not yet found in the OCVB, but there are relatively calcic varieties unknown in Andean-type structures and a significant fraction of moderately alkaline rocks, which are not typical of MIA. Variations in trace and major element characteristics in the basalts and andesites of the OCVB were interpreted as reflecting the competing processes of assimilation/mixing and fractional crystallization during the evolution of the parental basaltic magma. Significant lateral variations were established in the composition of the mantle sources of calc-alkaline magmas along the OCVB over more than 2500 km. The initial isotopic ratios of Sr, Nd, and Pb in the volcanics of the Okhotsk segment are relatively depleted and fall near the mixing line between PREMA and BSE. The magma source of the Western Okhotsk flank zone is most enriched and approaches EMI, whereas that of the central and eastern Chukchi zones contains an admixture of the EMII component. The geochronological characteristics of all the main stages of OCVB magmatism were comprehensively studied by U-Pb SHRIMP and ID-TIMS zircon dating (86 samples) and 40Ar/39Ar analysis (73 samples). In general, a discontinuous character was established for the OCVB magmatism from the middle Albian to the early Campanian (106–77 Ma). The volcanism is laterally asynchronous. There are several peaks of volcanism with modes at approximately 105, 100, 96, 92.5, 87, 82, and 77 Ma. The Coniacian-Santonian peaks correspond to the most extensive stages of the middle and late cycles of felsic volcanism. A decreases and a hiatus in magmatic activity were reconstructed for the end of the Cenomanian and the beginning of the Turonian. The volcanism was terminated by plateau basalts with ages of 76–78 Ma, which mark a change in the geodynamic setting from frontal subduction to the regime of a transform margin with local extension in zones normal to the slip direction. A catastrophic character of eruptions with rather narrow ranges of volcanism (<2 Myr) were established taking into account new reliable age estimates for some individual large calderas. The accumulation rate of volcanic materials in such structures was up to 0.15–0.36 km3/yr and even higher.  相似文献   

14.
The extrusive rocks of Hekla are predominantly flows of basaltic andesite and andesite (icelandite) but each eruptive cycle is initiated by production of tephra of andesitic, dacitic, and even rhyolitic composition. The evolution of basaltic andesites to dacites and rhyolites can be explained by crystallization and (presumably gravitative) separation of olivine, titaniferous magnetite, plagioclase, and probably augite. No contamination by sialic crustal material is required.Although basalts are never erupted from Hekla the origin of the basaltic andesites is probably best explained by separation of magnesian olivine, augite, and calcic plagioclase from an olivine tholeiite parent, producing an initial differentiation trend toward a high Fe/Mg ratio. The increase in Fe/Mg ratio is limited by the appearance of magnetite as a liquidus phase.From the Fe/Mg ratios of the lavas and from compositions of the plagioclase phenocrysts the water pressure of the basaltic andesites is estimated to have been between 0.6 and 2.4 kb. Total pressure may have been significantly higher. A best estimate for the water content is approximately 2 1/2 to 6 weight percent. This high water content accounts for the explosive initiation of each eruptive cycle and is consistent with fractional crystallization in a shallow magma chamber.Division of Geological and Planetary Sciences, California Institute of Technology, Contribution No. 2355.  相似文献   

15.
The capability of determining the flow-by-flow stratigraphy and the long-distance correlation of lava flows in large continental volcanic provinces leads to a considerable advance in the understanding of processes related to generation and evolution of the lavas. The Paraná volcanic province is exposed along the Serra Geral cuesta of southern Brazil in a steeply inclined, 1,000-m-high section starting 40-m above sea level. Each of the 10–20 pahoehoe flows and rhyodacite flow units has a unique chemical composition. Integrated with field stratigraphy and gamma-spectrometric measurements, this leads to the establishment of the correct stratigraphic sequence in each of three different vertical sections. The number of flows integrating the three serras is 26 (“serra” is a mountain range in Portuguese). Each serra has basaltic andesites at the base, whereas rhyodacites are intercalated with basaltic andesites at the top. Three basaltic andesite flows and one rhyodacite flow unit are correlated between Serra Umbu and Serra Boa Vista (10 km). In the Serra Faxinal, a thick (170 m) sill at the base correlates with flow 13F, whereas a dike-sill in the Graxaim quarry (24 km distance) correlates with flow 3F. One basaltic andesite and two rhyodacite flow units correlate between Serra Faxinal and Serra Umbu (50 km). The results are most significant for the understanding of large tracts of continental volcanic provinces with use of common geochemical and gamma-spectrometric techniques.  相似文献   

16.
The Rhodiani ophiolites are represented by two tectonically superimposed ophiolitic units: the “lower” Ultramafic unit and the “upper” Volcanic unit, both bearing calcareous sedimentary covers. The Ultramafic unit consists of mantle harzburgites with dunite pods and chromitite ores, and represents the typical mantle section of supra-subduction zone (SSZ) settings. The Volcanic unit is represented by a sheeted dyke complex overlain by a pillow and massive lava sequence, both including basalts, basaltic andesites, andesites, and dacites. Chemically, the Volcanic unit displays low-Ti affinity typical of island arc tholeiite (IAT) ophiolitic series from SSZ settings, having, as most distinctive chemical features, low Ti/V ratios (< 20) and depletion in high field strength elements and light rare earth elements.The rare earth element and incompatible element composition of the more primitive basaltic andesites from the Rhodiani ophiolites can be successfully reproduced with about 15% non-modal fractional melting of depleted lherzolites, which are very common in the Hellenide ophiolites. The calculated residua correspond to the depleted harzburgites found in the Rhodiani and Othrys ophiolites. Both field and chemical evidence suggest that the whole sequence of the Rhodiani Volcanic unit (from basalt to dacite) originated by low-pressure fractional crystallization under partially open-system conditions. The modelling of mantle source, melt generation, and mantle residua carried out in this paper provides new constraints for the tectono-magmatic evolution of the Mirdita–Pindos oceanic basin.  相似文献   

17.
The Miocene Kitami rhyolite, consisting of orthopyroxene and plagioclase-phyric lavas and dikes, occurs on the back-arc side of the Kuril arc with coeval basalts and Fe-rich andesites. Temperatures estimated from orthopyroxene–ilmenite pairs exceed 900°C. Although the whole rock compositions of the Kitami rhyolite correspond to S-type granites (i.e., high K, Al, large ion lithophile elements, and low Ca and Sr), Sr–Nd isotope compositions are remarkably primitive, and similar to those of the coeval basalts and andesites. They are distinct from those of lower crustal metamorphic rocks exposed in the area. Comparison of chondrite-normalized rare earth element (REE) patterns between the rhyolite and the basalts and andesites show that the rhyolite is more light REE enriched, but has similar heavy REE contents than the basalts. All rhyolites show negative Eu anomalies. The geochemical data suggest that did not formed by simple dehydration melting of basaltic rocks or fractional crystallization of basaltic magmas. The features of slab-derived fluids expected from recent high pressure experimental studies indicates that mantle wedge is partly metasomatized with “rhyolitic” materials from subducted slabs; it is more likely that very low degree partial melting of the metasomatized mantle wedge formed the rhyolite magma.  相似文献   

18.
Abstract. This study presents the petrographical, mineralogical, and geochemical characteristics of Late Pliocene‐Pleistocene volcanic rocks distributed in the Hishikari gold mining area of southern Kyushu, Japan, and discusses their origin and evolution. The Hishikari volcanic rocks (HVR), on the basis of age and chemical compositions, are divided into the Kurosonsan (2.4–1.0 Ma) and Shishimano (1.7–0.5 Ma) Groups, which occur in the northern and southern part of the area, respectively. Each group is composed of three andesites and one rhyodacite. HVR are characterized by high concentrations of incompatible elements compared with other volcanic rocks in southern Kyushu, and have low Sr/Nd and high Th/U, Th/Pb, and U/Pb ratios compared with typical subduction‐related arc volcanic rocks. Modal and whole‐rock compositions of the HVR change systematically with the age of the rocks. Mafic mineral and augite/hypersthene ratios of the andesites decrease with decreasing age in the Kurosonsan Group, whereas in the Shishimano Group, these ratios are higher in the youngest andesite. Similarly, major and trace element compositions of the younger andesites in the former group are enriched in felsic components, whereas in the latter group the youngest andesite is more mafic than older andesites. Moreover, the crystallization temperature of phenocryst minerals decreases with younger age in the former group, whereas the opposite trend is seen in the latter group. Another significant feature is that rhyodacite in the Shishimano Group is enriched in felsic minerals and incompatible elements, and exhibits higher crystallization temperatures of phenocryst minerals than the rhyodacite of the Kurosonsan Group. Geochemical attributes of the HVR and other volcanic rocks in southern Kyushu indicate that a lower subcontinental crust, characterized by so‐called EMI‐type Sr‐Nd and DUPAL anomaly‐like Pb isotopic compositions, is distributed beneath the upper to middle crust of the Shimanto Supergroup. The HVR would be more enriched in felsic materials derived from the lower crust by high‐alumina basaltic magma from the mantle than volcanic rocks in other areas of southern Kyushu. The Kurosonsan Group advanced the degree of the lower crust contribution with decreasing age from 51 %, through 61 and 66 % to 77 %. In the Shishimano Group, the younger rhyodacite and andesite are derived from hotter magmas with smaller amounts of lower crust component (58 and 57 %) than the older two andesites (65 % and 68 %). We suggest that the Shishimano rhyodacite, which is considered to be responsible for gold mineralization, was formed by large degree of fractional crystallization of hot basaltic andesite magma with less lower crustal component.  相似文献   

19.
In the western USA calcalkaline magmas were generated hundreds of kilometres from the nearest destructive plate margin, and in some areas during regional extension several Ma after the cessation of subduction. The Mogollon-Datil Volcanic Field (MDVF) in southern New Mexico was a centre of active magmatism in the mid- to late-Tertiary, and a detailed field, petrographic and geochemical study has been undertaken to evaluate the relations between extensional tectonics and calcalkaline magmatism in the period 30–20 Ma. The rocks comprise alkalic to high-K calcalkaline lavas, ranging from basalt to high silica andesitc. Most of the basaltic rocks have relatively low HFSE abundances, elevated 87Sr/86Sr and low 143Nd/144Nd, similar to many Tertiary basalts across the western USA, and they are inferred to have been derived from the continental mantle lithosphere. Two differentiation trends are recognised, with the older magmas having evolved to more calcalkaline compositions by magma mixing between alkalic basaltic andesites and silicic crustal melts, and the younger rocks having undergone 30–40% fractional crystallisation to more alkalic derivatives. The younger basalts also exhibit a shift to relatively higher HSFE abundances, with lower 87Sr/86Sr and higher 143Nd/144Nd, and these have been modelled as mixtures between an average post-5 Ma Basin and Range basalt and the older MDVF lithosphere-derived basalts. It is argued that the presence of subduction-related geochemical signatures and the development of calcalkaline andesites in the 30–20 Ma lavas from the MDVF are not related to the magmatic effects of Tertiary subduction. Rather, basic magmas were generated by partial melting of the lithospheric mantle which had been modified during a previous subduction event. Since these basalts were generated at the time of maximum extension in the upper crust it is inferred that magma generation was in response to lithospheric extension. The association of the 30–20 Ma calcalkaline andesites with the apparently anorogenic tectonism of late mid-Tertiary extension, is the result of crustal contamination, in that fractionated, mildly alkaline, basaltic andesite magmas were mixed with silicic crustal melts, generating hybrid andesite lavas with calcalkaline affinities.  相似文献   

20.
Island arc basaltic rocks (basalts and basic andesites with SiO2 < 56.5%) from the Soufrière volcano. St. Vincent, West Indies (prehistoric lavas and 1902 and 1979 eruptions) underwent extensive fractional crystallization at various levels during the ascent of the magma. Although the precipitation of minerals occurring in coarse-grained cumulate inclusions dominated the derivation of basic andesites from basaltic magma, the distribution of the trace elements is not consistent with a simple fractional crystallization process. The lavas have a partially cumulate character and were probably generated from similar but separate parental magmas. The partition coefficients of transition and large ion lithophile elements are given for clinopyroxene, amphibole. olivine, plagioclase and titanomagnetite in basaltic liquid which crystallized under well-defined P-T conditions. The temperatures obtained from the geothermometers based upon the distribution of the major elements are in good agreement with the data from trace element geothermometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号