首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Climate change and snow-cover duration in the Australian Alps   总被引:2,自引:0,他引:2  
This study uses a model of snow-cover duration, an observed climate data set for the Australian alpine area, and a set of regional climate-change scenarios to assess quantitatively how changes in climate may affect snow cover in the Australian Alps. To begin, a regional interannual climate data set of high spatial resolution is prepared for input to the snow model and the resulting simulated interannual and spatial variations in snow-cover duration are assessed and compared with observations. The model provides a reasonable simulation of the sensitivities of snow-cover duration to changes in temperature and precipitation in the Australian Alps, although its performance is poorer at sites highly marginal for snow cover. (In a separate comparison, the model also performs well for sites in the European Alps.) The input climate data are then modified in line with scenarios of regional climate change based on the results of five global climate models run in enhanced greenhouse experiments. The scenarios are for the years 2030 and 2070 and allow for uncertainty associated with projecting future emissions of greenhouse gases and with estimating the sensitivity of the global climate system to enhanced greenhouse forcing. Attention focuses on the climate changes most favourable (best-case scenario) and least favourable (worst-case scenario) for snow cover amongst the range of climate changes in the scenarios. Under the best case scenario for 2030, simulated average snow-cover duration and the frequency of years of more than 60 days cover decline at all sites considered. However, at the higher sites (e.g., more than 1700 m) the effect is not very marked. For the worst case scenario, a much more dramatic decline in snow conditions is simulated. At higher sites, simulated average snow cover duration roughly halves by 2030 and approaches zero by 2070. At lower sites (around 1400 m), near zero average values are simulated by 2030 (compared to durations of around 60 days for current climate).These simulated changes, ranging between the best and worst case, are likely to be indicative of how climate change will affect natural snow-cover duration in the Australian Alps. However, note that the model does not allow directly for changes in the frequency and intensity of snow-bearing circulation systems, nor do the climate-change scenarios allow possible changes in interannual variability (particularly that due to the El Niño-Southern Oscillation) and local topographical effects not resolved by global climate models. The simulated changes in snow cover are worthy of further consideration in terms of their implications for the ski industry and tourism, water resources and hydroelectric power, and land-use management and planning.68 Barada Crescent, Aranda ACT 2614, Australia.  相似文献   

2.
Wilhelm May 《Climatic change》2012,110(3-4):619-644
In this study, the strength of the regional changes in near-surface climate associated with a global warming of 2°C with respect to pre-industrial times is assessed, distinguishing between 26 different regions. Also, the strength of these regional climate changes is compared to the strength of the respective changes associated with a markedly stronger global warming of 4.5°C. The magnitude of the regional changes in climate is estimated by means of a normalized regional climate change index, which considers changes in the mean as well as changes in the interannual variability of both near-surface temperature and precipitation. The study is based on two sets of four ensemble simulations with the ECHAM5/MPI-OM coupled climate model, each starting from different initial conditions. In one set of simulations (1860–2200), the greenhouse gas concentrations and sulphate aerosol load have been prescribed according to observations until 2000 and according to the SRES A1B scenario after 2000. In the other set of simulations (2020–2200), the greenhouse gas concentrations and sulphate aerosol load have been prescribed in such a way that the simulated global warming does not exceed 2°C with respect to pre-industrial times. The study reveals the strongest changes in near-surface climate in the same regions for both scenarios, i.e., the Sahara, Northern Australia, Southern Australia and Amazonia. The regions with the weakest changes in near-surface climate, on the other hand, vary somewhat between the two scenarios except for Western North America and Southern South America, where both scenarios show rather weak changes. The comparison between the magnitude of the regional changes in near-surface climate for the two scenarios reveals relatively strong changes in the 2°C-stabilization scenario at high northern latitudes, i.e., Northeastern Europe, Alaska and Greenland, and in Amazonia. Relatively weak regional climate changes in this scenario, on the other hand, are found for Eastern Asia, Central America, Central South America and Southern South America. The ratios between the regional changes in the near-surface climate for the two scenarios vary considerably between different regions. This illustrates a limitation of obtaining regional changes in near-surface climate associated with a particular scenario by means of scaling the regional changes obtained from a widely used “standard” scenario with the ratio of the changes in the global mean temperature projected by these two scenarios.  相似文献   

3.
Wilhelm May 《Climate Dynamics》2008,31(2-3):283-313
In this study, concentrations of the well-mixed greenhouse gases as well as the anthropogenic sulphate aerosol load and stratospheric ozone concentrations are prescribed to the ECHAM5/MPI-OM coupled climate model so that the simulated global warming does not exceed 2°C relative to pre-industrial times. The climatic changes associated with this so-called “2°C-stabilization” scenario are assessed in further detail, considering a variety of meteorological and oceanic variables. The climatic changes associated with such a relatively weak climate forcing supplement the recently published fourth assessment report by the IPCC in that such a stabilization scenario can only be achieved by mitigation initiatives. Also, the impact of the anthropogenic sulphate aerosol load and stratospheric ozone concentrations on the simulated climatic changes is investigated. For this particular climate model, the 2°C-stabilization scenario is characterized by the following atmospheric concentrations of the well-mixed greenhouse gases: 418 ppm (CO2), 2,026 ppb (CH4), and 331 ppb (N2O), 786 ppt (CFC-11) and 486 ppt (CFC-12), respectively. These greenhouse gas concentrations correspond to those for 2020 according to the SRES A1B scenario. At the same time, the anthropogenic sulphate aerosol load and stratospheric ozone concentrations are changed to the level in 2100 (again, according to the SRES A1B scenario), with a global anthropogenic sulphur dioxide emission of 28 TgS/year leading to a global anthropogenic sulphate aerosol load of 0.23 TgS. The future changes in climate associated with the 2°C-stabilization scenario show many of the typical features of other climate change scenarios, including those associated with stronger climatic forcings. That are a pronounced warming, particularly at high latitudes accompanied by a marked reduction of the sea-ice cover, a substantial increase in precipitation in the tropics as well as at mid- and high latitudes in both hemispheres but a marked reduction in the subtropics, a significant strengthening of the meridional temperature gradient between the tropical upper troposphere and the lower stratosphere in the extratropics accompanied by a pronounced intensification of the westerly winds in the lower stratosphere, and a strengthening of the westerly winds in the Southern Hemisphere extratropics throughout the troposphere. The magnitudes of these changes, however, are somewhat weaker than for the scenarios associated with stronger global warming due to stronger climatic forcings, such as the SRES A1B scenario. Some of the climatic changes associated with the 2°C-stabilization are relatively strong with respect to the magnitude of the simulated global warming, i.e., the pronounced warming and sea-ice reduction in the Arctic region, the strengthening of the meridional temperature gradient at the northern high latitudes and the general increase in precipitation. Other climatic changes, i.e., the El Niño like warming pattern in the tropical Pacific Ocean and the corresponding changes in the distribution of precipitation in the tropics and in the Southern Oscillation, are not as markedly pronounced as for the scenarios with a stronger global warming. A higher anthropogenic sulphate aerosol load (for 2030 as compared to the level in 2100 according to the SRES A1B scenario) generally weakens the future changes in climate, particularly for precipitation. The most pronounced effects occur in the Northern Hemisphere and in the tropics, where also the main sources of anthropogenic sulphate aerosols are located.  相似文献   

4.
Fruit production systems that rely on winter chill for breaking of dormancy might be vulnerable to climatic change. We investigated decreases in the number of winter chilling hours (0–7.2°C) in four mountain oases of Oman, a marginal area for the production of fruit trees with chilling requirements. Winter chill was calculated from long-term hourly temperature records. These were generated based on the correlation of hourly temperature measurements in the oases with daylength and daily minimum and maximum temperatures recorded at a nearby weather station. Winter chill was estimated for historic temperature records between 1983 and 2008, as well as for three sets of synthetic 100-year weather records, generated to represent historic conditions, and climatic changes likely to occur within the next 30 years (temperatures elevated by 1°C and 2°C). Our analysis detected a decrease in the numbers of chilling hours in high-elevation oases by an average of 1.2–9.5 h/year between 1983 and 2008, a period during which, according to the scenario analysis, winter chill was sufficient for most important species in most years in the highest oasis. In the two climate change scenarios, pomegranates, the most important tree crop, received insufficient chilling in 13% and 75% of years, respectively. While production of most traditional fruit trees is marginal today, with trees barely fulfilling their chilling requirements, such production might become impossible in the near future. Similar developments are likely to affect other fruit production regions around the world.  相似文献   

5.
Summary Using a high resolution regional climate model we perform multiple January simulations of the impact of land cover change over western Australia. We focus on the potential of reforestation to ameliorate the projected warming over western Australia under two emission scenarios (A2, B2) for 2050 and 2100. Our simulations include the structural and physiological responses of the biosphere to changes in climate and changes in carbon dioxide. We find that reforestation has the potential to reduce the warming caused by the enhanced greenhouse effect by as much as 30% under the A2 and B2 scenarios by 2050 but the cooling effect declines to 10% by 2100 as CO2-induced warming intensifies. The cooling effect of reforestation over western Australia is caused primarily by the increase in leaf area index that leads to a corresponding increase in the latent heat flux. This cooling effect is localized and there were no simulated changes in temperature over regions remote from land cover change. We also show that the more extreme emission scenario (A2) appears to lead to a more intense response in photosynthesis by 2100. Overall, our results are not encouraging in terms of the potential to offset future warming by large scale reforestation. However, at regional scales the impact of land cover change is reasonably large relative to the impact of increasing carbon dioxide (up to 2050) suggesting that future projections of the Australian climate would benefit from the inclusion of projections of future land cover change. We suggest that this would add realism and regional detail to future projections and perhaps aid detection and attribution studies.  相似文献   

6.
J. A. Mabbutt 《Climatic change》1989,15(1-2):191-221
Tropical semi-arid climates occur between 10 and 35 deg latitude and are characterised by highly variable summer rainfall of between 300 and 750 mm in a rainy season of at least 4 months, generally adequate for rainfed cropping but with considerable drought risk. They support a mesic savanna vegetation. They have a land extent of 4.5 million km2, mainly occupied by Third World nations with rapidly increasing populations which in the main are predominantly rural and largely agricultural with low per capita incomes, consequently vulnerable to climate change. A doubling of atmospheric CO2 by the year 2030 is predicted to cause a rise in equilibrium mean temperature of 1–3 °C; however there is continuing uncertainty regarding the consequences for rainfall amount, variability and intensity, length of rainy season or the frequency of extreme rainfall events. Two scenarios are considered, with reduction and increase in rainfall respectively, involving corresponding latitudinal shifts in present climatic boundaries of about 200 km. Because of their variability, a clear signal of the greenhouse effect on these climates may be delayed, whilst regional responses may differ. Vegetational and hydrological responses under the alternative scenarios are considered. The possible consequences for rainfed and irrigated agriculture, water and energy supplies and disease and pest ecology are discussed. Lands of the semi-arid tropics are already extensively desertified, with consequent lowered productivity and heightened vulnerability to drought, and the possible impacts of greenhouse warming on desertification processes and on measures for land rehabilition to the year 2030 are reviewed. Measures to conserve the biological diversity of savanna lands in face of greenhouse warming are discussed.  相似文献   

7.
We present an analysis of climate change over Europe as simulated by a regional climate model (RCM) nested within time-slice atmospheric general circulation model (AGCM) experiments. Changes in mean and interannual variability are discussed for the 30-year period of 2071–2100 with respect to the present day period of 1961–1990 under forcing from the A2 and B2 IPCC emission scenarios. In both scenarios, the European region undergoes substantial warming in all seasons, in the range of 1–5.5°C, with the warming being 1–2°C lower in the B2 than in the A2 scenario. The spatial patterns of warming are similar in the two scenarios, with a maximum over eastern Europe in winter and over western and southern Europe in summer. The precipitation changes in the two scenarios also show similar spatial patterns. In winter, precipitation increases over most of Europe (except for the southern Mediterranean regions) due to increased storm activity and higher atmospheric water vapor loadings. In summer, a decrease in precipitation is found over most of western and southern Europe in response to a blocking-like anticyclonic circulation over the northeastern Atlantic which deflects summer storms northward. The precipitation changes in the intermediate seasons (spring and fall) are less pronounced than in winter and summer. Overall, the intensity of daily precipitation events predominantly increases, often also in regions where the mean precipitation decreases. Conversely the number of wet days decreases (leading to longer dry periods) except in the winter over western and central Europe. Cloudiness, snow cover and soil water content show predominant decreases, in many cases also in regions where precipitation increases. Interannual variability of both temperature and precipitation increases substantially in the summer and shows only small changes in the other seasons. A number of statistically significant regional trends are found throughout the scenario simulations, especially for temperature and for the A2 scenario. The results from the forcing AGCM simulations and the nested RCM simulations are generally consistent with each other at the broad scale. However, significant differences in the simulated surface climate changes are found between the two models in the summer, when local physics processes are more important. In addition, substantial fine scale detail in the RCM-produced change signal is found in response to local topographical and coastline features.  相似文献   

8.
The various bases for making Australian and New Zealand scenarios of climate change at 2010 and 2050 AD are discussed. Atmospheric greenhouse gas increases will cause historically unprecedented warming by 2050 AD, but the likely regional rainfall changes are uncertain. By 2010 AD greenhouse gas climate change should be detectable with a warming relative to the present of 0.5–1.5 °C. At 2050 AD Australian and New Zealand temperatures will be 2–3 °C higher, the frost free season will be longer and the snowline higher. Rainfall changes will be very much determined by regional airflow and storm tracks, and the state of the Southern Oscillation. In order to obtain unproved and more detailed estimates of climate at 2010 and 2050 AD existing climate models need to be improved. For Australia and New Zealand models need to focus on the south west Pacific-Australia region.  相似文献   

9.
We explore the impact of future climate change on the risk of forest and grassland fires over Australia in January using a high resolution regional climate model, driven at the boundaries by data from a transitory coupled climate model. Two future emission scenarios (relatively high and relatively low) are used for 2050 and 2100 and four realizations for each time period and each emission scenario are run. Results show a consistent increase in regional-scale fire risk over Australia driven principally by warming and reductions in relative humidity in all simulations, under all emission scenarios and at all time periods. We calculate the probability density function for the fire risk for a single point in New South Wales and show that the probability of extreme fire risk increases by around 25% compared to the present day in 2050 under both relatively low and relatively high emissions, and that this increases by a further 20% under the relatively low emission scenario by 2100. The increase in the probability of extreme fire risk increases dramatically under the high emission scenario by 2100. Our results are broadly in-line with earlier analyses despite our use of a significantly different methodology and we therefore conclude that the likelihood of a significant increase in fire risk over Australia resulting from climate change is very high. While there is already substantial investment in fire-related management in Australia, our results indicate that this investment is likely to have to increase to maintain the present fire-related losses in Australia.  相似文献   

10.
Human activities have notably affected the Earth’s climate through greenhouse gases(GHG), aerosol, and land use/land cover change(LULCC). To investigate the impact of forest changes on regional climate under different shared socioeconomic pathways(SSPs), changes in surface air temperature and precipitation over China under low and medium/high radiative forcing scenarios from 2021 to 2099 are analyzed using multimodel climate simulations from the Coupled Model Intercomparison Project Phase 6(CMIP...  相似文献   

11.
“一带一路”区域未来气候变化预估   总被引:1,自引:0,他引:1       下载免费PDF全文
利用耦合模式比较计划第5阶段(CMIP5)提供的18个全球气候模式的模拟结果,预估了3种典型浓度路径(RCP2.6、RCP4.5、RCP8.5)下“一带一路”地区平均气候和极端气候的未来变化趋势。结果表明:在温室气体持续排放情景下,“一带一路”地区年平均气温在未来将会持续上升,升温幅度随温室气体浓度的增加而加大。在高温室气体排放情景(RCP8.5)下,到21世纪末期,平均气温将普遍升高5℃以上,其中北亚地区升幅最大,南亚和东南亚地区升幅最小。对于降水的变化,预估该区域大部分地区的年降水量将增加,其中西亚和北亚增加最为明显,而且在21世纪中期,RCP2.6情景下的增幅要比RCP4.5和RCP8.5情景下的偏大,而在21世纪后期,RCP8.5情景下降水的增幅比RCP2.6和RCP4.5情景下的偏大。未来极端温度也将呈升高的趋势,增温幅度高纬度地区大于低纬度地区、高排放情景大于低排放情景。而且在高纬度区域,极端低温的增暖幅度要大于极端高温的增幅。连续干旱日数在北亚和东亚总体呈现减少趋势,而在其他地区则呈增加趋势。极端强降水在“一带一路”区域总体上将增强,增强最明显的地区位于南亚、东南亚和东亚。  相似文献   

12.
气候系统模式FGOALS-s2对南半球气候的模拟和预估   总被引:1,自引:0,他引:1  
周天军  孙丹  薛峰 《大气科学》2013,37(2):499-517
针对参加“国际耦合模式比较计划”(CMIP5)的IAP/LASG气候系统模式FGOALS-s2,评估了其对南半球气候平均态的模拟能力,在此基础上,预估了未来不同“典型浓度路径”(RCPs)情景下南半球气候的变化特征.对20世纪历史气候模拟结果的分析表明,模式能够合理再现南半球大气环流气候态分布特征,包括6~8月平均(JJA)南半球双西风急流现象,只是模拟的北支急流偏弱、南支急流偏强.未来气候预估试验中,不同RCPs情景下南半球温度变化以增暖为主要特征,陆地增温大于海洋,只有南大西洋—印度洋海盆存在局部变冷.综合四种不同情景,未来随着温室气体浓度的增加,南半球中纬度高压带将显著加强,绕极低压带将加深.降水呈现出增多的特征,12月到来年2月平均(DJF)强于JJA,海洋强于陆地,只有南印度洋和南太平洋中部局部降水减少.未来不同RCPs情景下,马斯克林高压表现出先减弱后增强的特征,而澳大利亚高压则呈现出先增强后减弱的特征.南极涛动(AAO)的变化表现为:RCP2.6和RCP4.5情景下AAO都表现为先增强后减弱,RCP6.0和RCP8.5情景下都为一致的增强趋势,这主要与四种情景中模拟的未来温度变化结构不同有关.例如在RCP6.0和RCP8.5情景下,南半球高纬高层温度增暖趋势小于中纬地区,使得经向温度梯度增大,中纬度西风加强,60°S以南位势高度减小,最终令AAO增强.  相似文献   

13.
Simulated impacts of global and regional climate change, induced by an enhanced greenhouse effect and by Amazonian deforestation, on the phenology and yield of two grain corn cultivars in Venezuela (CENIAP PB-8 and OBREGON) are reported. Three sites were selected:Turén, Barinas andYaritagua, representing two important agricultural regions in the country. The CERES-Maize model, a mechanistic process-based model, in theDecision Support System for Agrotechnology Transfer (DSSAT) was used for the crop simulations. These simulations assume non-limiting nutrients, no pest damage and no damage from excess water; therefore, the results indicate only the difference between baseline and perturbed climatic conditions, when other conditions remain the same. Four greenhouse-induced global climate change scenarios, covering different sensitivity levels, and one deforestation-induced regional climate change scenario were used. The greenhouse scenarios assume increased air temperature, increased rainfall and decreased incoming solar radiation, as derived from atmospheric GCMs for doubled CO2 conditions. The deforestation scenarios assume increased air temperature, increased incoming solar radiation and decreased rainfall, as predicted by coupled atmosphere-biosphere models for extensive deforestation of a portion of the Amazon basin. Two baseline climate years for each site were selected, one year with average precipitation and another with lower than average rainfall. Scenarios associated with the greenhouse effect cause a decrease in yield of both cultivars at all three sites, while the deforestation scenarios produce small changes. Sensitivity tests revealed the reasons for these responses. Increasing temperatures, especially daily maximum temperatures, reduce yield by reducing the duration of the phenological phases of both cultivars, as expected from CERES-Maize. The reduction of the duration of the kernel filling phase has the largest effect on yield. Increases of precipitation associated with greenhouse warming have no effects on yield, because these sites already have adequate precipitation; however, the crop model used here does not simulate potential negative effects of excess water, which could have important consequences in terms of soil erosion and nutrient leaching. Increases in solar radiation increased yields, according to the non-saturating light response of the photosynthesis rate of a C4 plant like corn, compensating for reduced yields from increased temperatures in deforestation scenarios. In the greenhouse scenarios, reduced insolation (due to increased cloud cover) and increased temperatures combine to reduce yields; a combination of temperature increase with a reduction in solar radiation produces fewer and lighter kernels.A report of thePAN-EARTH Project, Venezuela Case Study.  相似文献   

14.
The aim of this paper is to report on the development of regional climate change scenarios for Kazakhstan as the result of increasing of CO2 concentration in the global atmosphere. These scenarios are used in the assessment of climate change impacts on the agricultural, forest and water resources of Kazakhstan. Climate change scenarios for Kazakhstan to assess both long-term (2× CO2 in 2075) and short-term (2000, 2010 and 2030) impacts were prepared. The climate conditions under increasing CO2 concentration were estimated from three General Circulation Models (GCM) outputs: the model of the Canadian Climate Center Model (CCCM), the model of the Geophysical Fluid Dynamics Laboratory (GFDL) and the 1% transient version of the GFDL model (GFDL-T). The near-term climate scenarios were obtained using the probabilistic forecast model (PFM) to the year 2010 and the results of GFDL-T for years 2000 and 2030. A baseline scenario representing the current climate conditions based on observations from 1951 to 1980 was developed. The assessment of climate change in Kazakhstan based on the analysis of 100-years observations is given too. As a result of comparisons of the current climate (based on observed climate) the 1× CO2 output from GCMs showed that the GFDL model best matches the observed climate. The GFDL model suggests that the minimum increase in temperature is expected in winter, when most of the territory is expected to have temperatures 2.3–4.5 °C higher. The maximum (4.3 to 8.2 °C) is expected to be in spring. CCCM scenario estimates an extreme worming above 11 °C in spring months. GFDL-T outputs provide an intermediate scenario.  相似文献   

15.
The Paris Agreement and next steps in limiting global warming   总被引:1,自引:0,他引:1  
The Paris Climate Agreement sets out an aggressive goal of limiting global average warming to well below 2 °C. As a first step, virtually all countries have put forth greenhouse gas emission reduction pledges in the form of nationally determined contributions, or NDCs, for the 2030 timeframe. Our analysis looks beyond the NDCs to explore potential post-2030 regional emissions reduction participation and ambition. For each scenario, we examine the implications for global emissions and long-term temperature. We then evaluate the regional consequences for energy systems and ensuing costs. We conclude by reflecting on the additional global abatement costs of tightening temperature goals. Overall, this study provides a multidimensional characterization of the scale of regional effort supporting climate outcomes, details important to decision-makers as they consider mid-century emissions targets, and long-run climate objectives.  相似文献   

16.
This modeling study addresses the potential impacts of climate change and changing climate variability due to increased atmospheric CO2 concentration on soybean (Glycine max (L.) Merrill) yields in theMidwestern Great Lakes Region. Nine representative farm locations and six future climate scenarios were analyzed using the crop growth model SOYGRO. Under the future climate scenarios earlierplanting dates produced soybean yield increases of up to 120% above current levels in the central and northern areas of the study region. In the southern areas, comparatively small increases (0.1 to 20%) and small decreases (–0.1 to–25%) in yield are found. The decreases in yield occurred under the Hadley Center greenhouse gas run (HadCM2-GHG), representing a greater warming, and the doubled climate variability scenario – a more extreme and variableclimate. Optimum planting dates become later in the southern regions. CO2fertilization effects (555 ppmv) are found to be significant for soybean, increasing yields around 20% under future climate scenarios.For the study region as a whole the climate changes modeled in this research would have an overall beneficial effect, with mean soybean yield increases of 40% over current levels.  相似文献   

17.
The MIT 2D climate model is used to make probabilistic projections for changes in global mean surface temperature and for thermosteric sea level rise under a variety of forcing scenarios. The uncertainties in climate sensitivity and rate of heat uptake by the deep ocean are quantified by using the probability distributions derived from observed twentieth century temperature changes. The impact on climate change projections of using the smallest and largest estimates of twentieth century deep ocean warming is explored. The impact is large in the case of global mean thermosteric sea level rise. In the MIT reference (“business as usual”) scenario the median rise by 2100 is 27 and 43 cm in the respective cases. The impact on increases in global mean surface air temperature is more modest, 4.9 and 3.9 C in the two respective cases, because of the correlation between climate sensitivity and ocean heat uptake required by twentieth century surface and upper air temperature changes. The results are also compared with the projections made by the IPCC AR4’s multi-model ensemble for several of the SRES scenarios. The multi-model projections are more consistent with the MIT projections based on the largest estimate of ocean warming. However, the range for the rate of heat uptake by the ocean suggested by the lowest estimate of ocean warming is more consistent with the range suggested by the twentieth century changes in surface and upper air temperatures, combined with the expert prior for climate sensitivity.  相似文献   

18.
Potential effects of climate change on a semi-permanent prairie wetland   总被引:4,自引:0,他引:4  
We assessed the potential effects of a greenhouse gas-induced global climate change on the hydrology and vegetation of a semi-permanent prairie wetland using a spatially-defined, rule-based simulation model. An 11-yr simulation was run using current versus enhanced greenhouse gas climates. Projections of climatic change were from the Goddard Institute for Space Studies (GISS) general circulation model. Simulations were also run using a range of temperature (+2 and +4 °C) and precipitation change values (–20, –10, 0, +10, +20%) to determine the responsiveness of wetland vegetation and hydrology to a variety of climate scenarios.Maximum water depths were significantly less under the enhanced greenhouse gas scenario than under the current climate. The wetland dried in most years with increased temperature and changes in precipitation. Simulations also revealed a significant change in the vegetation, from a nearly balanced emergent cover to open water ratio to a completely closed basin with no open water areas. Simulations over a range of climate change scenarios showed that precipitation changes (particularly increases) had a greater impact on water levels and cover ratios when the temperature increase was moderate (+2 °C).These potential changes in wetland hydrology and vegetation could result in a dramatic decline in the quality of habitat for breeding birds, particularly waterfowl. Continued research on climate and wetland modeling is needed.  相似文献   

19.
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from ?5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from ?5 to ?30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.  相似文献   

20.
This paper presents probable effects of climate change on soil moisture availability in the Southeast Anatolia Development Project (GAP) region of Turkey. A series of hypothetical climate change scenarios and GCM-generated IPCC Business-as-Usual scenario estimates of temperature and precipitation changes were used to examine implications of climate change for seasonal changes in actual evapotranspiration, soil moisture deficit, and soil moisture surplus in 13 subregions of the GAP. Of particular importance are predicted patterns of enhancement in summer soil moisture deficit that are consistent across the region in all scenarios. Least effect of the projected warming on the soil moisture deficit enhancement is observed with the IPCC estimates. The projected temperature changes would be responsible for a great portion of the enhancement in summer deficits in the GAP region. The increase in precipitation had less effect on depletion rate of soil moisture when the temperatures increase. Particularly southern and southeastern parts of the region will suffer severe moisture shortages during summer. Winter surplus decreased in scenarios with increased temperature and decreased precipitation in most cases. Even when precipitation was not changed, total annual surplus decreased by 4 percent to 43 percent for a 2°C warming and by 8 percent to 91 percent for a 4°C warming. These hydrologic results may have significant implications for water availability in the GAP as the present project evaluations lack climate change analysis. Adaptation strategies – such as changes in crop varieties, applying more advanced dry farming methods, improved water management, developing more efficient irrigation systems, and changes in planting – will be important in limiting adverse effects and taking advantage of beneficial changes in climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号