首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processes resulting in the formation of a coarse‐grained sand beach ridge plain at Cowley Beach, north‐east Australia have been questioned by Tamura et al. (2018). These authors now acknowledge the conclusions by Nott et al. (2009) and Nott (2014) that the dominant depositional mechanisms here are waves and inundations generated during tropical cyclones. The Tamura et al. (2018) new ground penetrating radar data highlights that scarping of incipient ridges is a common feature and occurs regularly under non‐storm conditions. The upper sedimentary units deposited during storms are not scarped and demonstrate the high preservation potential and usefulness of these deposits for reconstructing long‐term records of tropical cyclones. Tamura et al. (2018) question the robustness of the methodology used by Nott & Hayne (2001), Nott (2003) and Nott et al. (2009) in estimating the magnitude of the storms responsible for these sedimentary deposits. These supposed issues though have been dealt with in detail in a series of publications over the past nearly two decades. The shortcomings of the Tamura et al. (2018) criticisms are explained in detail here.  相似文献   

2.
Atom probe microscopy (APM) is a relatively new in situ tool for measuring isotope fractions from nanoscale volumes (< 0.01 μm3). We calculate the theoretical detectable difference of an isotope ratio measurement result from APM using counting statistics of a hypothetical data set to be ± 4δ or 0.4% (2s). However, challenges associated with APM measurements (e.g., peak ranging, hydride formation and isobaric interferences), result in larger uncertainties if not properly accounted for. We evaluate these factors for Re‐Os isotope ratio measurements by comparing APM and negative thermal ionisation mass spectrometry (N‐TIMS) measurement results of pure Os, pure Re, and two synthetic Re‐Os‐bearing alloys from Schwander et al. (2015, Meteoritics and Planetary Science, 50, 893) [the original metal alloy (HSE) and alloys produced by heating HSE within silicate liquid (SYN)]. From this, we propose a current best practice for APM Re‐Os isotope ratio measurements. Using this refined approach, mean APM and N‐TIMS 187Os/189Os measurement results agree within 0.05% and 2s (pure Os), 0.6–2% and 2s (SYN) and 5–10% (HSE). The good agreement of N‐TIMS and APM 187Os/189Os measurements confirms that APM can extract robust isotope ratios. Therefore, this approach permits nanoscale isotope measurements of Os‐bearing alloys using the Re‐Os geochronometer that could not be measured by conventional measurement principles.  相似文献   

3.
Tamura et al. (2018) refined our understanding of formative processes that have resulted in a series of coarse‐sand beach ridges at Cowley Beach in north‐eastern Australia. Nott (2018) claimed that there are several shortcomings in the findings Tamura et al. (2018) presented. However, his criticism mostly derived from his misunderstanding of the data and discussion presented in Tamura et al. (2018), which thus should be clarified here. This reply also reiterates how his method for estimating the magnitude of past tropical cyclones from beach ridges is inconsistent with our observations of beach morphology and beach‐ridge formative processes.  相似文献   

4.
This paper is intended to be a constructive discussion of Fiket et al. (2017, Geostandards and Geoanalytical Research , 41 , 123–135), who dealt with the determination of major, trace and rare earth elements in several sediment and soil certified reference materials. In the present author's view, the paper by Fiket et al. (2017) suffers from a lack of reference to several publications in which somewhat similar results had already been reported. The present contribution therefore provides a comparison of previously published results with those of Fiket et al. for the CRMs soil NCS DC 77302 (GBW 07410), stream sediment NCS DC 73309 (GBW 07311), marine sediments MESS‐3 and NCS DC 75301 (GBW 07314) and estuarine sediment IAEA‐405. It is argued that this fuller consideration (a) allows critical evaluation of the quality of the results presented by Fiket et al. and (b) highlights the advantages of their work. Finally, attention is drawn to the (possible or real) problems that can arise during simultaneous determination of multiple trace elements.  相似文献   

5.
Errors in Phelps et al. ( 2014 ) arise from: (i) inclusion of the East Texas Basin and basin‐flank formations in a regional stratigraphic transect purported to represent the San Marcos Arch (axis of the Comanche Platform, central and south Texas); and (ii) revision of Edwards Group strata (Person Formation) that ignores well‐documented studies in the subsurface and adjacent outcrops in the Balcones fault zone and Edwards Plateau. Consequently, the Upper Albian Composite Sequence 104–101 of Phelps et al. ( 2014 ) should be revised from one cycle to three and the upper boundary of the Albian Supersequence should be elevated to 99·6 Ma.  相似文献   

6.
Six tourmaline samples were investigated as potential reference materials (RMs) for boron isotope measurement by secondary ion mass spectrometry (SIMS). The tourmaline samples are chemically homogeneous and cover a compositional range of tourmaline supergroup minerals (primarily Fe, Mg and Li end‐members). Additionally, they have homogeneous boron delta values with intermediate precision values during SIMS analyses of less than 0.6‰ (2s). These samples were compared with four established tourmaline RMs, that is, schorl IAEA‐B‐4 and three Harvard tourmalines (schorl HS#112566, dravite HS#108796 and elbaite HS#98144). They were re‐evaluated for their major element and boron delta values using the same measurement procedure as the new tourmaline samples investigated. A discrepancy of about 1.5‰ in δ11B was found between the previously published reference values for established RMs and the values determined in this study. Significant instrumental mass fractionation (IMF) of up to 8‰ in δ11B was observed for schorl–dravite–elbaite solid solutions during SIMS analysis. Using the new reference values determined in this study, the IMF of the ten tourmaline samples can be modelled by a linear combination of the chemical parameters FeO + MnO, SiO2 and F. The new tourmaline RMs, together with the four established RMs, extend the boron isotope analysis of tourmaline towards the Mg‐ and Al‐rich compositional range. Consequently, the in situ boron isotope ratio of many natural tourmalines can now be determined with an uncertainty of less than 0.8‰ (2s).  相似文献   

7.
Properly combining highly siderophile element (HSE: Re, Pd, Pt, Ru, Ir, Os) abundance data, obtained by isotope dilution, with corresponding 187Os/188Os and 186Os/188Os measurements of rocks requires efficient digestion of finely‐ground powders and complete spike‐sample equilibration. Yet, because of the nature of commonly used methods for separating Os from a rock matrix, hydrofluoric acid (HF) is typically not used in such digestions. Consequently, some silicates are not completely dissolved, and HSE residing within these silicates may not be fully accessed. Consistent with this, some recent studies of basaltic reference materials (RMs) have concluded that an HF‐desilicification procedure is required to fully access the HSE (Ishikawa et al. (2014) Chemical Geology, 384, 27–46; Li et al. (2015) Geostandards and Geoanalytical Research, 39, 17–30). Highly siderophile element abundance and Os isotope studies of intraplate basalts typically target samples with a range of MgO contents (< 8 to > 18% m/m, or as mass fractions, < 8 to > 18 g per 100 g), in contrast to the lower MgO mass fractions (< 10 g per 100 g) of basalt and diabase RMs (i.e., BIR‐1, BHVO‐2, TDB‐1). To investigate the effect of HF‐desilicification on intraplate basalts, experiments were performed on finely ground Azores basalts (8.1–17 g per 100 g MgO) using a ‘standard acid digestion’ (2:1 mixture of concentrated HNO3 and HCl), and a standard acid digestion, followed by HF‐desilicification. No systematic trends in HSE abundances were observed between data obtained by standard acid digestion and HF‐desilicification. Desilicification procedures using HF do not improve liberation of the HSE from Azores basalts, or some RMs (e.g., WPR‐1). We conclude that HF‐desilicification procedures are useful for obtaining total HSE contents of some young lavas, but this type of procedure is not recommended for studies where Re‐Pt‐Os chronological information is desired. The collateral effect of a standard acid digestion to liberate Os, followed by HF‐desilicification to obtain Re and Pt abundances in samples, is that the measured Re/Os and Pt/Os may not correspond with measured 187Os/188Os or 186Os/188Os.  相似文献   

8.
ABSTRACT The origin of the volcanism in south‐eastern Australia is poorly understood. Matsumoto and collaborators found near solar neon isotope values in measurements obtained by step heating apatites in ultramafic xenoliths from Bullenmerri (SE Australia), and proposed that these values result from the presence of a primitive plume. However, the results of simple diffusion models indicate that the neon isotopic signature observed by Matsumoto et al. can be generated by mass fractionation during step heating. If such mass fractionation does occur during step heating, then neither neon nor helium isotopes require the presence of primitive mantle, and the rare gas observations are consistent with the involvement of MORB‐source mantle in the generation of south‐eastern Australian volcanics. These results show that both the acquisition and the interpretation of step heating data should be carefully controlled and that a mineral crushing technique may yield more reliable analyses.  相似文献   

9.
The Lamont‐Doherty Earth Observatory radiogenic isotope group has been systematically measuring Sr‐Nd‐Pb‐Hf isotopes of USGS reference material BCR‐2 (Columbia River Basalt 2), as a chemical processing and instrumental quality control monitor for isotopic measurements. BCR‐2 is now a widely used geochemical inter‐laboratory reference material (RM), with its predecessor BCR‐1 no longer available. Recognising that precise and accurate data on RMs is important for ensuring analytical quality and for comparing data between different laboratories, we present a compilation of multiple digestions and analyses made on BCR‐2 during the first author's dissertation research. The best estimates of Sr, Nd and Hf isotope ratios and measurement reproducibilities, after filtering at the 2s level for outliers, were 87Sr/86Sr = 0.705000 ± 11 (2s, 16 ppm, n = 21, sixteen digestions, one outlier), 143Nd/144Nd = 0.512637 ± 13 (2s, 25 ppm, n = 27, thirteen digestions, one outlier) and 176Hf/177Hf = 0.282866 ± 11 (2s, 39 ppm, n = 25, thirteen digestions, no outliers). Mean Nd and Hf values were within error of those reported by Weis et al. (2006, 2007) in their studies of RMs; mean Sr values were just outside the 2s uncertainty range of both laboratories. Moreover, a survey of published Sr‐Nd‐Hf data shows that our results fall within the range of reported values, but with a smaller variability. Our Pb isotope results on acid leached BCR‐2 aliquots (n = 26, twelve digestions, two outliers) were 206Pb/204Pb = 18.8029 ± 10 (2s, 55 ppm), 207Pb/204Pb = 15.6239 ± 8 (2s, 52 ppm), 208Pb/204Pb = 38.8287 ± 25 (2s, 63 ppm). We confirm that unleached BCR‐2 powder is contaminated with Pb, and that sufficient leaching prior to digestion is required to achieve accurate values for the uncontaminated Pb isotopic compositions.  相似文献   

10.
ABSTRACT

The origin of the Oligocene turbidites from the Cerro Pelón area in south Gulf Mexico proposed by Ortega-Flores et al. (2018) is in disagree with the interpretations made by Molina-Garza et al. (2019), which main criticism is based on U-Pb ages of detrital zircons from the matrix of a conglomerate unit, which they refer to as ‘Nanchital Conglomerate’, as well as on the presence of limestone, gabbros, and mafic protolith-derived clasts. Molina-Garza et al. (2019) basically interpret the Nanchital Conglomerate as Miocene in age, which was sourced mainly from metamorphic complexes including their sedimentary covers located to the west and south of the Cerro Pelón area. For some reason, Molina-Garza et al. (2019) suppose that the Nanchital Conglomerate should have the same provenance sources that the Oligocene turbidites from Cerro Pelón area, reported by Ortega-Flores et al. (2018). Based on the foregoing, we strongly disagree with Molina-Garza et al. (2019) considering that, from the beginning, they intend to compare two units of different age. Additionally, the scarce data reported from both the matrix and the clasts of the Nanchital Conglomerate are not determinant for interpreting the provenance of this conglomeratic unit and subsequently, to consider the same rock sources from the Oligocene through Miocene time.  相似文献   

11.
Chalcopyrite is an important sulfide mineral in many types of ore deposits, but matrix‐matched chalcopyrite reference materials for microanalysis are lacking. A new natural chalcopyrite‐bearing specimen (HTS4‐6) was analysed in this study to investigate its potential as a reference material for microbeam sulfur isotope ratio measurement. Detailed textural examination and major element determination showed that the HTS4‐6 chalcopyrite grains have no growth rim or zoning. A total of 607 sulfur isotope ratio spot measurements with secondary ion mass spectrometry (SIMS) conducted on the cruciform sections, and over 120 randomly selected grains yielded highly consistent sulfur isotope ratio. The intermediate measurement precision for four measurement sessions of the 34S/32S measurement results was better than 0.39‰ (2s). Randomly selected chalcopyrite grains of HTS4‐6 were further analysed by LA‐MC‐ICP‐MS, which gave a mean δ34S value of +0.58 ± 0.38‰ (2s, n = 95). The maximum variance (expressed as intermediate precision from SIMS and LA‐MC‐ICP‐MS measurements) is not worse than 0.39‰ (the SIMS value), indicating that HTS4‐6 chalcopyrite is a potential reference material for in situ microbeam sulfur isotope measurements. The mean δ34S value determined by gas source isotope ratio mass spectrometry (GS‐IRMS) is +0.63 ± 0.16‰ (2s, n = 23), consistent with that derived by LA‐MC‐ICP‐MS, and can represent the recommended value for this potential reference material.  相似文献   

12.
Isotopic reference materials are essential to enable reliable and comparable isotope data. In the case of boron only a very limited number of such materials is available, thus preventing adequate quality control of measurement results and validation of analytical procedures. To address this situation a unique set of two boron isotope reference materials (ERM‐AE102a and ‐AE104a) and three offset δ11B reference materials (ERM‐AE120, ‐AE121 and ‐AE122) were produced and certified. The present article describes the production and certification procedure in detail. The isotopic composition of all the materials was adjusted by mixing boron parent solutions enriched in 10B or 11B with a boron parent solution having a natural isotopic composition under full gravimetric control. All parent solutions were analysed for their boron concentration as well as their boron isotopic composition by thermal ionisation mass spectrometry (TIMS) using isotope dilution as the calibration technique. For all five reference materials the isotopic composition obtained on the basis of the gravimetric data agreed very well with the isotopic composition obtained from different TIMS techniques. Stability and homogeneity studies that were performed showed no significant influence on the isotopic composition or on the related uncertainties. The three reference materials ERM‐AE120, ERM‐AE121 and ERM‐AE122 are the first reference materials with natural δ11B values not equal to 0‰. The certified δ11B values are ?20.2‰ for ERM‐AE120, 19.9‰ for ERM‐AE121 and 39.7‰ for ERM‐AE122, each with an expanded uncertainty (k = 2) of 0.6‰. These materials were produced to cover about three‐quarters of the known natural boron isotope variation. The 10B enriched isotope reference materials ERM‐AE102a and ERM‐AE104a were produced for industrial applications utilising 10B for neutron shielding purposes. The certified 10B isotope abundances are 0.29995 for ERM‐AE102a and 0.31488 for ERM‐AE104a with expanded uncertainties (k = 2) of 0.00027 and 0.00028, respectively. Together with the formerly certified ERM‐AE101 and ERM‐AE103 a unique set of four isotope reference materials and three offset δ11B reference materials for boron isotope determination are now available from European Reference Materials.  相似文献   

13.
With increasing use of bismuth in industry, a better understanding of its environmental behaviour is required, including an improved knowledge of its background concentration range in (non‐saline) freshwaters. However, the poor analytical sensitivity of previous methods may lead to inaccurate measurement results for Bi3+ in environmental samples. In this work, cobalt ion‐assisted photochemical vapour generation (PVG) was developed for the detection of trace Bi with inductively coupled plasma‐mass spectrometry (ICP‐MS) measurement. The volatile species of Bi was found to be (CH3)3Bi generated under UV irradiation in the presence of formic acid, acetic acid and Co2+. The major parameters potentially influencing the detection of Bi were investigated. Under optimised conditions, the limit of detection (3s, n = 11) of the proposed method was 0.3 ng l?1. The analytical sensitivity was enhanced about 70‐fold for Bi3+ compared with that using classic pneumatic nebulisation of ICP‐MS. Furthermore, the proposed method showed better analytical sensitivity and anti‐interference ability towards co‐existing ions compared with ferric ion‐assisted PVG systems. The accuracy of the proposed method was evaluated by analysis of environmental water samples and certified reference materials with satisfactory results.  相似文献   

14.
We have developed a technique for the accurate and precise determination of 34S/32S isotope ratios (δ34S) in sulfur-bearing minerals using solution and laser ablation multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We have examined and determined rigorous corrections for analytical difficulties such as instrumental mass bias, unresolved isobaric interferences, blanks, and laser ablation- and matrix-induced isotopic fractionation. Use of high resolution sector-field mass spectrometry removes major isobaric interferences from O2+. Standard-sample bracketing is used to correct for the instrumental mass bias of unknown samples. Background on sulfur masses arising from memory effects and residual oxygen-tailing are typically minor (< 0.2‰, within analytical error), and are mathematically removed by on-peak zero subtraction and by bracketing of samples with standards determined at the same signal intensity (within 20%). Matrix effects are significant (up to 0.7‰) for matrix compositions relevant to many natural sulfur-bearing minerals. For solution analysis, sulfur isotope compositions are best determined using purified (matrix-clean) sulfur standards and sample solutions using the chemical purification protocol we present. For in situ analysis, where the complex matrix cannot be removed prior to analysis, appropriately matrix-matching standards and samples removes matrix artifacts and yields sulfur isotope ratios consistent with conventional techniques using matrix-clean analytes. Our method enables solid samples to be calibrated against aqueous standards; a consideration that is important when certified, isotopically-homogeneous and appropriately matrix-matched solid standards do not exist. Further, bulk and in situ analyses can be performed interchangeably in a single analytical session because the instrumental setup is identical for both. We validated the robustness of our analytical method through multiple isotope analyses of a range of reference materials and have compared these with isotope ratios determined using independent techniques. Long-term reproducibility of S isotope compositions is typically 0.20‰ and 0.45‰ (2σ) for solution and laser analysis, respectively. Our method affords the opportunity to make accurate and relatively precise S isotope measurement for a wide range of sulfur-bearing materials, and is particularly appropriate for geologic samples with complex matrix and for which high-resolution in situ analysis is critical.  相似文献   

15.
We report an approach for the accurate and reproducible measurement of boron isotope ratios in natural waters using an MC‐ICP‐MS (Neptune) after wet chemistry sample purification. The sample matrix can induce a drastic shift in the isotopic ratio by changing the mass bias. It is shown that, if no purification is carried out, the direct measurement of a seawater diluted one hundred times will induce an offset of ?7‰ in the isotopic ratio, and that, for the same concentration, the greater the atomic mass of the matrix element, the greater the bias induced. Whatever the sample, it is thus necessary to remove the matrix. We propose a method adapted to water samples allowing purification of 100 ng of boron with a direct recovery of boron in 2 ml of 3% v/v HNO3, which was our working solution. Boron from the International Atomic Energy Agency IAEA‐B1 seawater reference material and from the two groundwater reference materials IAEA‐B2 and IAEA‐B3, was chemically purified, as well as boron from the certified reference material NIST SRM 951 as a test. The reproducibility of the whole procedure (wet chemistry and MC‐ICP‐MS measurement) was ± 0.4‰ (2s). Accuracy was verified by comparison with positive‐TIMS values and with recommended values. Seawater, being homogeneous for boron isotope ratios, is presently the only natural water material that is commonly analysed for testing accuracy worldwide. We propose that the three IAEA natural waters could be used as reference samples for boron isotopes, allowing a better knowledge of their isotopic ratios, thus contributing to the certification of methods and improving the quality of the boron isotopic ratio measurements for all laboratories.  相似文献   

16.
Sulfur isotope measurements in three sulfide (two pyrite and one pyrrhotite) samples on two epoxy mounts showed that the mount‐to‐mount variation of raw δ34S values was negligible when secondary ion mass spectrometry (SIMS) analytical settings remained stable. In consequence, an off‐mount calibration procedure for SIMS sulfur isotope analysis was applied in this study. YP136 is a pyrrhotite sample collected from northern Finland. Examination of thin sections with a polarising microscope, backscattered electron image analyses and wavelength dispersive spectrometry mapping showed that the sample grains display no internal growth or other zoning. A total of 318 sulfur isotope (spot) measurements conducted on more than 100 randomly selected grains yielded highly consistent sulfur isotope ratios. The repeatability of all the analytical results of 34S/32S was 0.3‰ (2s,= 318), which is the same as that of the well‐characterised pyrite reference materials PPP‐1 and UWPy‐1. Its δ34S value determined by gas mass spectrometry was 1.5 ± 0.1‰ (2s,= 11), which agrees with the SIMS data (1.5 ± 0.3‰, 2s) calibrated by pyrrhotite reference material Po‐10. Therefore, YP136 pyrrhotite is considered a candidate reference material for in situ sulfur isotope determination.  相似文献   

17.
The amphiboles from Kakanui and Arenal are two natural minerals that have been used worldwide as microanalytical reference materials, but their compositions and crystal structures are still poorly constrained. In this paper, we report new data on H2O and trace element mass fractions and single-crystal structural refinement of these two amphiboles. H2O mass fractions of the Kakanui and Arenal amphiboles determined via Karl-Fischer titration are 0.92 ± 0.18 (2s) and 1.56 ± 0.22% m/m (2s), respectively; these values estimated based on crystal-structure refinement are 0.86 and 1.46% m/m, respectively. Trace element mass fractions measured via LA-ICP-MS in two laboratories are in good agreement, and spots from five fragments for both Kakanui and Arenal amphiboles are generally consistent within reproducibility precision (2s). Our measurements indicate a better homogeneity for the amphiboles from Kakanui than that from Arenal. According to the latest scheme for amphibole classification and nomenclature (Hawthorne et al. 2012), the sample from Arenal is a (partially dehydrogenated) pargasite, and that from Kakanui is a kaersutite. The significant amount of oxo-component and that CTi4+ content is strongly ordered at the M(1) site for both amphiboles indicate crystallisation under high fO2 conditions.  相似文献   

18.
Coastal lagoons and beach ridges are genetically independent, though non‐continuous, sedimentary archives. We here combine the results from two recently published studies in order to produce an 8000‐year‐long record of Holocene relative sea‐level changes on the island of Samsø, southern Kattegat, Denmark. The reconstruction of the initial mid‐Holocene sea‐level rise is based on the sedimentary infill from topography‐confined coastal lagoons (Sander et al., Boreas, 2015b). Sea‐level index points over the mid‐ to late Holocene period of sea‐level stability and fall are retrieved from the internal structures of a wide beach‐ridge system (Hede et al., The Holocene, 2015). Data from sediment coring, georadar and absolute dating are thus combined in an inter‐disciplinary approach that is highly reproducible in micro‐tidal environments characterised by high sediment supply. We show here that the commonly proximate occurrence of coastal lagoons and beach ridges allows us to produce seamless time series of relative sea‐level changes from field sites in SW Scandinavia and in similar coastal environments.  相似文献   

19.
Fused glass prepared without the addition of a flux is generally more homogeneous than a pressed powder pellet and thus ideal for analysis of bulk samples by LA‐ICP‐MS. In this work, a new glass‐making method using a boron nitride crucible was developed to prepare homogenous glass samples from silicate rock powder. The apparatus consisted of a small boron nitride vessel with net volume of about 34 mm3 and two molybdenum strips. Applying the summed metal oxide normalisation technique, both major and trace element contents in the fused glass were measured by LA‐ICP‐MS. Analyses of five geochemical reference materials (spanning the compositional range basalt–andesite–rhyolite) indicated that the measured SiO2, Al2O3 and P2O5 contents matched the preferred values to within 5%, and the other major elements generally matched the preferred values to within 8%. Except for the transition metals, the measured trace element contents generally matched the preferred values to within 10%. Compared with the iridium heater method developed by Stoll et al. (2008), element volatilisation during high‐temperature melting was effectively suppressed in our method, but metal segregation caused by reduction of BN may cause loss of Cr, Ni and Cu. Although analysis with a large spot size has the advantage of improving counting statistics, matrix effects induced by mass loading of the ICP may hamper the accurate determination of some elements.  相似文献   

20.
Using a Rayleigh distillation fractionation model, we calculate that the maximum isotope fractionation potentially achievable is less than 5% during the early stages of gas release from a sample. Our calculation corrects the erroneous conclusions of Gautheron and Moreira (2003), who re‐interpreted the plume‐like neon isotopic compositions found in metasomatic apatite from a south‐eastern Australian xenolith (Matsumoto et al., 1997) to be the result of Rayleigh‐type isotope fractionation of originally MORB‐type neon during stepheating gas extraction. We stress that the modelling of neon isotopic fractionation by Gautheron and Moreira (2003) is incorrect, and that the finding of a plume‐like neon isotopic composition in the apatite by Matsumoto et al. (1997) remains a quite valid and robust conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号