首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于人类活动和全球气候变化的叠加影响,湖泊富营养化和蓝藻水华仍是未来相当长一段时间内的水生态环境问题.蓝藻水华暴发会引发湖泊生态系统的灾害和饮用水安全风险,因此湖内蓝藻水华防控必不可少.现有蓝藻水华防控长效方法主要基于营养盐控制理论、浅水湖泊稳态转换理论和生物操纵理论,技术措施包括内源营养盐控制、生态修复、生物操纵.应...  相似文献   

2.
Meteorologic-driven processes exert large and diverse impacts on lakes’ internal heating, cooling, and mixing. Thus, continued global warming and climate change will affect lakes’ thermal properties, dynamics, and ecosystem. The impact of climate change on Lake Tahoe (in the states of California and Nevada in the United States) is investigated here, as a case study of climate change effects on the physical processes occurring within a lake. In the Tahoe basin, air temperature data show upward trends and streamflow trends indicate earlier snowmelt. Precipitation in the basin is shifting from snow to rain, and the frequency of intense rainfall events is increasing. In-lake water temperature records of the past 38 years (1970–2007) show that Lake Tahoe is warming at an average rate of 0.013°C/year. The future trends of weather variables, such as air temperature, precipitation, longwave radiation, downward shortwave radiation, and wind speed are estimated from predictions of three General Circulation Models (GCMs) for the period 2001–2100. Future trends of weather variables of each GCM are found to be different to those of the other GCMs. A series of simulation years into the future (2000–2040) is established using streamflows and associated loadings, and meteorologic data sets for the period 1994–2004. Future simulation years and trends of weather variables are selected so that: (1) future simulated warming trend would be consistent with the observed warming trend (0.013°C/year); and (2) future mixing pattern frequency would closely match with the historical mixing pattern frequency. Results of 40-year simulations show that the lake continues to become warmer and more stable, and mixing is reduced. Continued warming in the Tahoe has important implications for efforts towards managing biodiversity and maintaining clarity of the lake.  相似文献   

3.
4.
福建闽江水口库区飘浮植物覆盖对水体环境的影响   总被引:18,自引:0,他引:18  
蔡雷鸣 《湖泊科学》2006,18(3):250-254
为了探索城市富营养化湖泊生态修复技术,2000年9月在南京市莫愁湖物理生态工程试验区内,开展了隔离外源污染、覆盖底泥和种植水生植物对湖泊水质平均水平和水体脉动强度影响的比较研究.试验结果表明,通过围隔隔离外源污染可在较短时间内迅速改善湖泊TN的平均水平,但难以提高湖泊生态系统的稳定性;通过覆盖底泥控制内源污染难以改善湖泊水质的平均水平,并且难以提高湖泊生态系统的稳定程度;种植水生植物不仅能够全面改善湖泊水质的平均水平,而且可以提高湖泊生态系统的稳定性.此外,富营养化湖泊中,藻类生长与湖水营养盐浓度并不存在正相关的关系.因此,对城市湖泊富营养化的防治,在控制外源污染降低营养盐浓度的同时,应恢复湖泊原有的以水生高等植物为主的生态系统.  相似文献   

5.
浅水湖泊湖沼学与太湖富营养化控制研究   总被引:2,自引:1,他引:1  
秦伯强 《湖泊科学》2020,32(5):1229-1243
自2007年无锡暴发饮用水危机事件以来,太湖经历了前所未有的高强度、大规模治理,各种治理措施累计投资已经超过千亿元.监测显示,在治理初期太湖的氮、磷浓度下降明显,水质有所好转,但最近几年关键水质指标总磷与浮游植物叶绿素α浓度出现了波动,蓝藻水华有所反弹.研究表明,太湖的外源负荷并没有减少,这与城镇用水量增加、污水排放标准偏低、面源污染削减不足有很大的关系;同时,内源负荷也因为蓝藻水华的持续而加重,浅水湖泊水深浅、扰动强的特点强化了磷的循环利用效率,加剧了内源负荷对湖泊富营养化和蓝藻水华的影响.气候变暖叠加营养盐富集的复合效应、流域风速下降以及暴雨事件频次和强度增加等气象水文条件变化,都促进了太湖蓝藻水华的暴发;蓝藻水华的时空分布特征则受湖泊水动力的决定性影响.太湖治理的曲折过程,凸显了大型浅水湖泊湖沼学研究的不断深入与发展,未来需要继续加强多学科交叉研究,特别是基于湖泊-流域系统的气象水文、生物地球化学和生物生态学的学科交叉.对于太湖生态环境的综合治理和管理,既要注重湖泊与流域相结合,更需要重视自然科学和人文科学的有机融合,才能真正达到控制太湖富营养化、维护流域水环境安全与社会经济可持续发展的目标.  相似文献   

6.
The results of hydrophysical studies of the soda Doroninskoe Lake (Uletovskii raion, Zabaikal’skii krai) are presented. Conclusions are presented regarding the character of heat and mass exchange and the causes of formation and stability of the meromictic regime of the water body. The main factors are revealed that affect the character of lake hydrological regime in winter and summer. The seasonal dynamics of the chemocline is shown to be determined by a joint effect of many external and internal factors and to be an integral indicator of physical, chemical, and biochemical processes in the lake.  相似文献   

7.
洪泽湖养殖网围拆除生态效应   总被引:2,自引:0,他引:2  
为研究湖泊网围养殖对湖泊生态系统的影响,2018年全年3次于洪泽湖养殖网围及主要出入湖河道开展调查,通过对比洪泽湖不同区域(河口、湖心、网围区、外围区和拆除区)水质及水生生物的空间分布特征,分析养殖网围拆除后湖泊生态系统的响应机制.结果表明,洪泽湖不同区域的水质及水生生物群落结构存在明显差异,其中养殖区水体总氮、总磷及悬浮颗粒物浓度明显低于河口和湖心,但浮游动植物密度及生物量则整体高于河口和湖心,且养殖区蓝藻、轮虫所占比重较高,这种分布差异很大程度上受外源输入及水动力条件影响.与之相对,养殖区内网围区、拆除区和外围区的水质及水生生物群落结构差异并不明显,表明养殖网围拆除后的短期时间内水质并未明显改善,且高藻类密度、低透明度的水体环境也不利于沉水植物的萌发生长与群丛恢复,有必要进一步采取合理有效的生态修复措施促进养殖迹地生态系统的恢复.  相似文献   

8.
在复杂湖泊水动力环境作用下,换水周期和传输时间变化直接影响着污染物的迁移和转化.本文运用数值模拟方法,定量研究了季节水情动态下鄱阳湖换水周期和示踪剂传输时间的空间分布.结果表明,不同季节下鄱阳湖换水周期均具有较高的空间异质性,贯穿整个湖区的主河道换水周期约10 d,大多湖湾区的换水周期则长达300多天.尽管不同季节下换水周期空间分布格局几乎相似,但受鄱阳湖水动力场的季节变化影响,夏、秋季的换水周期要明显大于春、冬季.基于换水周期频率分布曲线的统计表明,80%的鄱阳湖区的换水周期约30 d,其余湖区换水周期为几十天至几百天,表明鄱阳湖应该更加确切地描述为一个快速换水和慢速换水同时共存的湖泊系统.鄱阳湖示踪剂传输时间介于4~32 d,夏、秋季的传输时间(11~32 d)约为春、冬季(4~8 d)的4倍,主要与鄱阳湖季节性水情特征及示踪剂的迁移路径有关.本文所获取的换水周期和示踪剂传输时间的时空分布信息可为今后鄱阳湖水质、水环境和生态系统管理和维护等方面提供重要科学参考.  相似文献   

9.
One of the most serious problems caused by eutrophication of shallow lakes is the disappearance of submerged macrophytes and the switch to a turbid, phytoplankton-dominated state. The reduction of external nutrient loads often does not result in a change back to the macrophyte-dominated state because stabilising mechanisms that cause resilience may delay a response. Additional internal lake restoration measures may therefore be needed to decrease the concentration of total phosphorus and increase water clarity. The re-establishment of submerged macrophytes required for a long-term stability of clear water conditions, however, may still fail, or mass developments of tall-growing species may cause nuisance for recreational use. Both cases are often not taken into account when restoration measures are planned in Germany, and existing schemes to reduce eutrophication consider the topic inadequately. Here we develop a step-by-step guideline to assess the chances of submerged macrophyte re-establishment in shallow lakes. We reviewed and rated the existing literature and case studies with special regard on (1) the impact of different internal lake restoration methods on the development of submerged macrophytes, (2) methods for the assessment of natural re-establishment, (3) requirements and methods for artificial support of submerged macrophyte development and (4) management options of macrophyte species diversity and abundance in Germany. This guideline is intended to help lake managers aiming to restore shallow lakes in Germany to critically asses and predict the potential development of submerged vegetation, taking into account the complex factors and interrelations that determine their occurrence, abundance and diversity.  相似文献   

10.
郑丙辉  曹晶  王坤  储昭升  姜霞 《湖泊科学》2022,34(3):699-710
目前,我国湖泊富营养化及蓝藻水华问题十分突出,国家高度重视湖泊的生态环境保护.自“九五”以来,国家就投入太湖、巢湖、滇池“老三湖”等重污染湖泊的治理,但成本巨大,且历经近30年才初见成效.按照湖泊污染程度,湖泊治理与保护可分为“污染治理型”“防治结合型”“生态保育型”3大类.“老三湖”的治理是典型的“先污染、后治理”的模式,水质较好湖泊主要属于生态保育型湖泊,因此,“老三湖”治理模式不适用于水质较好湖泊的保护.本文系统总结了我国水质较好湖泊优先保护理念的形成和水质较好湖泊专项实施的历程.根据水质较好湖泊的特点,及其生态系统退化与修复的一般过程,提出了水质较好湖泊保护的基本思路.从热力学角度,阐明了氮磷营养盐输入湖泊生态系统中是熵增过程,也是湖泊生态系统退化的根本原因,湖泊氮磷污染负荷源头控制是关键.湖泊流域生态安全格局是确保湖泊生态系统健康的基础,从景观生态学角度,阐明了优化湖泊流域水土资源利用、优化发展模式是减轻湖泊环境压力的重要途径.在浅水湖泊生态系统,以沉水植物占优势的“清水态”和以浮游植物占优势的“浊水态”转换过程不是沿着同一条途径,存在上临界阈值和下临界阈值,水生态修复过程表现出一种迟滞的现象.从湖泊水生态系统稳态转换理论角度,阐明了湖泊生态修复工程应在湖泊生态系统发生退化转变之前实施,才能获得较高的环境效益.通过国家财政专项对81个水质较好湖泊的支持,既能促进湖泊流域经济社会发展,又能确保湖泊水环境质量变好,湖泊水生态系统逐步改善.建议加强不同类型湖泊保护模式的总结,深入对水质较好湖泊生态系统演替理论和保护技术研究,支撑国家系统开展水质较好湖泊保护.  相似文献   

11.
Recent climate change represents one of the most serious anthropogenic threats to lake ecosystems in Canada. As meteorological and hydrological conditions are altered by climate change, so too are physical, chemical and biological properties of lakes. The ability to quantify the impact of climate change on the physical properties of lakes represents an integral step in estimating future chemical and biological change. To that end, we have used the dynamic reservoir simulation model, a one‐dimensional vertical heat transfer and mixing model, to hindcast and compare lake temperature‐depth profiles against 30 years of long‐term monitoring data in Harp Lake, Ontario. These temperature profiles were used to calculate annual (June–September) thermal stability values from 1979 to 2009. Comparisons between measured and modelled lake water temperature and thermal stability over three decades showed strong correlation (r2 > 0.9). However, despite significant increases in modelled thermal stability over the 30 year record, we found no significant change in the timing of the onset, breakdown or the duration of thermal stratification. Our data suggest that increased air temperature and decreased wind are the primary drivers of enhanced stability in Harp Lake since 1979. The high‐predictive ability of the Harp Lake dynamic reservoir simulation model suggests that its use as a tool in future lake management projects is appropriate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
湖泊富营养化响应与流域优化调控决策的模型研究进展   总被引:2,自引:0,他引:2  
湖泊富营养化是全球水环境领域面临的长期挑战,富营养化响应与流域优化决策模型是制定经济和高效调控方案的关键.然而已有的模型研究综述主要集中于模型开发、案例应用、敏感性分析、不确定性分析等单一方面,而缺少针对非线性响应、生态系统长期演变等最新湖泊治理挑战的研究总结.本文对数据驱动的统计模型、因果驱动的机理模型和决策导向的优化模型进行了综述.其中,统计模型包含经典统计、贝叶斯统计和机器学习模型,常用于建立响应关系、时间序列特征分析以及预报预警;机理模型包含流域的水文与污染物输移模拟以及湖泊的水文、水动力、水质、水生态等过程的模拟,用于不同时空尺度的变化过程模拟,其中复杂机理模型的敏感性分析、参数校验、模型不确定性等需要较高的计算成本;优化模型结合机理模型形成“模拟优化”体系,在不确定性条件下衍生出随机、区间优化等多种方法,通过并行计算、简化与替代模型可一定程度上解决计算时间成本的瓶颈.本文识别了湖泊治理面临的挑战,包括:①如何定量表征外源输入的非线性叠加和湖泊氮、磷、藻变化的非均匀性?②如何提高优化调控决策和水质目标的关联与精准性?③如何揭示湖泊生态系统的长期变化轨迹与驱动因素?最后,本文针对这些挑战提出研究展望,主要包括:①基于多源数据融合与机器学习算法以提升湖泊的短期水质预测精度;②以生物量为基础的机理模型与行为驱动的个体模型的升尺度或降尺度耦合以表达多种尺度的物质交互过程;③机器学习算法与机理模型的直接耦合或数据同化以降低模拟误差;④时空尺度各异的多介质模拟模型融合以实现精准和动态的优化调控.  相似文献   

13.
《国际泥沙研究》2016,(2):110-119
Rivers play an important role in people's living and agricultural production, however, intense human activities have broken the original ecological balance, and affected structures and functions of the river ecosystem. To restore the damaged river ecosystem back to a healthy status, effective ecological restoration measures need to be implemented. The main problems that the damaged rivers face are either the locally altered hydrological processes affected by construction of hydraulic facilities, or the deterioration of water quality resulted from pollution emissions, or both. In this study, ecological restoration techniques of the rivers affected by engineering control or pollution are reviewed respec-tively. In addition, three kinds of methods, i.e. physical, chemical and biological–ecological methods are introduced in details for the rivers affected by water pollution. At present, the development of river restoration techniques shows the following trends: 1) the scale of ecological restoration is becoming larger; 2) ecological restoration measures are required to meet multiple objectives; and 3) the man-agement of water environment is changing from water quality management to aquatic ecosystem management.  相似文献   

14.
《国际泥沙研究》2020,35(2):146-156
Many of the dams built in estuaries in the last century have difficulty with water quality management.Numerous factors have affected the estuary lake water,most importantly external loadings,tidal currents,and increases in the phosphorus(P) release from sediment,so that most water quality characteristics in the estuary are highly interactive and dynamic.In the current study,water quality measurements were made in the laboratory and field,and a series of phosphorus release experiments was done to understand the behavior of P in an estuary lake.The concentrations of chemical oxygen demand(COD),chlorophyll-a(Chl-a),and total P(TP) showed an increasing trend when the pollutant loading of the influent stream water was high.The measurements showed increasing trends,which indicates the constituents are produced in the internal environment of the lake.When a large amount of freshwater flowed in from the upper watershed,density stratification was observed,which forms strongly because of the salinity of seawater.During the period of stratification,a hypoxic layer formed,which can accelerate P release.Comparing the open and dosed conditions of the release experiments,the P release rate was much higher under the closed condition than under the open condition.The maximum P release rates from the sediment collected from the five main sites of the lake were more than 2.5 times the P loading from the inflowing streams in April.Spatially,the release rate was higher mid-reservoir than down-reservoir where a halocline was evident The pollutant load discharged from the tributary watershed was deposited on the bottom mid-reservoir,whereas it was washed out downreservoir because of the density stratification and strong tide in that area.To sustainably manage water quality and decrease lake eutrophication in brackish environments formed by freshwater from streams mixing with seawater entering through sluice dikes,different measures than those applied in strictly freshwater environments are required.Considering the spatial characteristics of an estuary lake,these measures include 1) blocking settleable particles discharged from the rivers upstream,2) controlling hypoxia to avoid P release from the sediment and inhibiting algae growth mid-reservoir,and 3)decreasing stratification caused by the halocline down-reservoir.  相似文献   

15.
“十三五”时期,长江流域水环境质量改善明显,但湖泊水质和富营养化状况改善滞后.长江中游作为我国淡水湖泊集中分布区域之一,部分湖泊存在水环境质量恶化和富营养化加重问题.本文以长江中游区域国家开展监测的洪湖、斧头湖、梁子湖、大通湖、洞庭湖和鄱阳湖这6个典型湖泊为研究对象,科学评价其2016-2020年水质和富营养化时空变化特征及关键驱动因素,探讨其成因及治理对策.结果表明,“十三五”时期长江中游湖泊水质和富营养化程度存在较大差异,与2016年相比,2020年大通湖水质改善最为明显,梁子湖水质变差,总磷是影响长江中游湖泊水质类别的主要因子;洪湖富营养程度恶化最为严重,斧头湖次之,TLI(SD)对长江中游湖泊富营养化评价贡献最大.目前长江中游湖泊呈有机污染加重和叶绿素。浓度升高现象,洪湖、斧头湖和梁子湖主要与氮、磷营养盐浓度升高有关,而大通湖、洞庭湖和鄱阳湖受水文过程、流域纳污量和湖泊管理等非营养盐因素影响较大.总氮和总磷仍然是影响“十三五”时期长江中游湖泊水质和富营养化的最主要驱动力,且各湖泊总氮和总磷浓度变化均具有较强正相关性,建议开展河湖氮、磷标准衔接工作,提出河湖氮、磷标准限值或考核目...  相似文献   

16.
Combining a six-term heat balance equation and a seasonal thermocline model, a new equation to calculate non- radiative fluxes of Lake Banyoles has been determined. Mean daily measurements of global solar radiation, downward longwave radiation, wind speed, air temperature and water surface temperature were used as input data and lake temperature as the calculated output data of the model. To calibrate performance of the new equation, calculated lake temperature was compared with measured lake temperature during both the mixing and the stratified period of the lake. The new coefficients in the wind function to calculate the non-radiative fluxes at the water surface were assumed to depend on the variability of the wind speed, the air temperature of the study area and the surface temperature of the lake. In addition, the results were used to estimate the heat balance of the air–water interface of Lake Banyoles over a period of two years. The processes that have been taken into account are shortwave and longwave radiation, back-radiation emitted by the lake, sensible and latent heat and throughflow.  相似文献   

17.
The response of phytoplankton communities to changing lake environments   总被引:10,自引:0,他引:10  
In this paper, empirical relationships between the mean phytoplankton biomass and limiting nutrient availability and between the underwater extinction of light and the biomass are used to define some of the physical aspects of lake environments subject to cultural eutrophication or to corrective restoration measures. The distinctive floristic distributions of different algae among such environments are shown to be closely related to general morphological and physiological properties of the algae themselves and that species sharing similar size- and shape-adaptations also share similar ecological growth and survival strategies. From these general predictions of the responses of phytoplankton to changing lake environments, it is deduced that deep lakes are slower to respond than shallow ones but that the transition between nutrient-and light-limitation is relatively abrupt: ‘resilience’ of the system to restoration measures may be an expression of their progress towards the transition. Presented at the International Conference on Lake Restoration in Zürich, 3–4 November 1986  相似文献   

18.
Saline Lake Shira (Southern Siberia, Russia) was meromictic through the observation period 2002–2015. During the under-ice periods of 2015 and 2016, complete mixing of the water column was recorded for the first time, and hydrogen sulphide temporarily disappeared from the water column of the lake; i.e. in those years the lake turned to holomixis. In the summer of 2015, a sharp increase in chlorophyll a, organic carbon, zooplankton, and phytoflagellates was observed in the lake, which was probably due to the release of nutrients from the monimolimnion. Purple sulfur bacteria completely disappeared from the lake after the first mixing in 2015, and did not reappear despite the restoration of meromixis in 2017. Thus, it was demonstrated that purple sulfur bacteria are sensitive to the weakening of the stratification of Lake Shira. Based on the data of the seasonal monitoring of temperature and salinity profiles over the period 2002–2017, it was presumed that the main cause of deep mixing in 2015 was the weakening of the salinity gradient due to strong wind impact and early ice retreat in the spring of 2014. In addition, it was shown that in previous years a significant contribution to the maintenance of meromixis was made by an additional influx of fresh water, which caused a rise in the lake level in the period 2002–2007. Thus, we identified a relationship between the stratification regime of the lake and the change in its level, which provides valuable information both for the forecast of water quality and for reconstruction of the Holocene climate humidity in this region of Southern Siberia from the sediment cores of Lake Shira.  相似文献   

19.
太湖湖体综合治理对策的探讨   总被引:24,自引:4,他引:20  
李文朝 《湖泊科学》1996,8(4):289-296
太湖的污染治理已迫在眉睫,集水域内的污染源控制当然是根治太湖污染的首选措施。但要在短期内实现湖泊水质和生态环境的好转,单依靠外污染源控制是远远不够的,必须在湖内实施一系列行之有效的治理措施。本文从湖泊生态学方面分析了影响太湖生态系统恢复的内部障碍,主要针对蓝藻灾害、城市水源污染、局部性水质污染及生态环境恶化等关键问题,本着标本兼治、效果为先、综合治理的原则,提出了恢复沿岸带水生植被、收获控制蓝藻、  相似文献   

20.
About one third of several hundred mining lakes in Eastern Germany are highly acidified, and there is a need to restore them to neutral conditions because they constitute an environmental hazard for water resources and downstream environments. The aim of this study is to evaluate the efficiency of three different acid pit lake water remediation treatments: dilution with alkaline (river) water, limestone treatment and biological neutralization by organic carbon-driven alkalinity generation. The efficiency is evaluated for the acidic mining lake Grünewalder Lauch by adjusting input values into a geochemical model and making future projections. Current approaches, such as flooding with neutral surface water or extensive liming, are not suitable for many lakes because of a limited supply of alkaline water or high lime immobilizing potential of Fe- and Al-rich water in acidic lakes, respectively. Further treatment methods are, therefore, designed to combine water supply and biological measures with the management of water quality by the application of in-lake microbial processes. These processes are focused on the metabolic response of aquatic ecosystems to nutrient enrichment (enhancement of primary production and thereby organic carbon supply) and the microbial decomposition of organic matter and their effects on the gain or loss of alkalinity.The results and comparisons of different neutralization measures will be generalized by the application of hydrogeochemical models for alkalinity production showing
a)
the long term efficiency of the measures, depending on carbon turnover at the sediment/water interface,
b)
the development of bicarbonate buffering capacity as a consequence of biological measures,
c)
the importance of pyrite formation instead of FeS.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号