首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Presented in this paper are Sm-Nd isotope and major, trace and rare-earth element analyses of bimodal volcanic rocks of the Shilu Group and other stratigraphic units in northwestern Hainan Is-land ,South China. It is shown that there are some N-MORB-type basalts(spilites) in the western part of the bimodal volcanic belt, in addition to some E-MORB-type and initial rift-type tholeiites (IRT) in th emiddle and eastern parts.Sm-Nd model ages of these basalts range from 545 Ma to 460Ma .The other extremes of the bimodal volcanics are porphyritic quartz rhyolites, which are characteristic of crustal material source.Sm-Nd model ages of the rhyolites range from 1562 Ma to 1371 Ma .The bimodal volcanic rocks are almost distributed in fifts or faulted depressions,as well as in the Upper Paleozoic rift of Hainan Island.Tholeiites of the Shilu Group can be compared with Cenozoic basalts in the middle and south-ern parts of the Red Sea Rift Belt in petrology, elemental geochemistry and Sm-Nd isotope geology. Shilu iron ores are closely associated with N-MORB-type basalts located in the western bimodal vol-canic belt.It is very interesting to note that the Shilu Fe-Co-Cu deposit can also be compared with Atlantis II Deep in the Red Sea Rift Belt.Therefore ,the present authors believe that the Shilu depos-it is a kind of hydrothermal deposit related to ocean volcanic belt ,where the geotectonic setting be-longs to initial extensional rifts in the oceanic crust.On the other hand, the largest Fe-Co-Cu ore de-posit in China used to be influenced by Hercynian granites after mineralization ,as is clearly observed on both εNd(T)-1/Nd and εNd(T)-^147Sm/^144Nd diagrams.  相似文献   

2.
The X-drilling cores of the North Yellow Sea basin reveal two sets of Mesozoic clastic rocks, which are the dark rocks in lower part and the red rocks in upper part, respectively. There are two layers of volcanic rocks at the bottom and the upper part of the dark rock unit. The volcanic rocks at the bottom part are trachytic dacite while rocks at the upper part are clastic dacite. The zircon grains from the upper and lower units of volcanic rocks are euhedral-subhedral columnar crystals and show oscillatory zoning on cathodoluminescence images. 22 tests of zircons in the trachytic dacite from the bottom part yield an age of 141-151 Ma, with weighted mean 206Pb/238U age of 145±2 Ma. Whereas 18 tests of zircons from the sample at the upper part give 206Pb/238U ages around 139-149 Ma with weighted mean 206Pb/238U age of 141±2 Ma, which implies that the X well volcanic rocks belong to Late Jurassic-Early Cretaceous. Comparing with the age and geochemical characteristics of the Mesozoic igneous rocks in Shandong peninsula, we suggest that the igneous rocks from both the North Yellow Sea basin and Jiaolai basin were formed under same dynamic setting, i.e., the subduction related volcano arc and back-arc extension. ©, 2015, Science Press. All right reserved.  相似文献   

3.
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not L  相似文献   

4.
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not L  相似文献   

5.
The eastern Pontides orogenic belt provides a window into continental arc magmatism in the Alpine-Himalayan belt.The late Mesozoic-Cenozoic geodynamic evolution of this belt remains controversial.Here we focus on the nature of the transition from the adakitic to non-adakitic magmatism in the Kale area of Gumushane region in NE Turkey where this transition is best preserved.The adakitic lithologies comprise porphyries and hyaloclastites.The porphyries are represented by biotite-rich andesites,hornblende-rich andesite and dacite.The hayaloclastites represent the final stage of adakitic activity and they were generated by eruption/intrusion of adakitic andesitic magma into soft carbonate mud.The non-adakitic lithologies include basaltic-andesitic volcanic and associated pyroclastic rocks. Both rock groups are cutting by basaltic dikes representing the final stage of the Cenozoic magmatism in the study area.We report zircon U-Pb ages of 48.71±0.74 Ma for the adakitic rocks,and 44.68±0.84 Ma for the non-adakitic type,suggesting that there is no significant time gap during the transition from adakitic to non-adakitic magmatism.We evaluate the origin,magma processes and tectonic setting of the magmatism in the southern part of the eastern Pontides orogenic belt.Our results have important bearing on the late Mesozoic-Cenozoic geodynamic evolution of the eastern Mediterranean region.  相似文献   

6.
青藏高原北部新生代火山岩的成因机制   总被引:24,自引:0,他引:24  
赖绍聪 《岩石学报》1999,15(1):98-104
Based on the electron probe analyses result of the minerals and the bulk rock composition of the Cenozoic volcanic rocks from Yumen and Hoh Xil lithodistricts on the Qinghai-Tibet Plateau, the forming conditions including temperature and pressure of those rocks are studied.According to the thermodynamics calculation result of the mineral-melt equilibrium,the depth of the asthenosphere superface (about 75~130km) for the northern part of the Qinghai-Tibet Plateau during Cenozoic era is suggested. Finally, this paper indicates that the Cenozoic volcanic rocks in the northern part of the Qinghai-Tibet Plateau mainly consist of shoshonite series.Their forming temperature is 630~1039℃ and forming pressure is between 2.3~4.0 GPa and formed in the intracontinental orogenic belt,where the primary magma was originated from a particular enriched upmantle and accreted crust-mantle belt or directly originated from asthenosphere superface by partial melting of pyrolite.  相似文献   

7.
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing‘anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not Late Jurassic or Late Jurassic-Early Cretaceous. Combining the characteristics of the volcanic rocks and, in a large area, hiatus in the strata of the Late Jurassic or Late Jurassic-early Early Cretaceous between the formations mentioned above and the underlying sequences, we can make the conclusion that, in the Late Jurassic-early Early Cretaceous, the eastern China region was of high relief or plateau, where widespread post-orogenic volcanic series of the Early Cretaceous obviously became younger from inland in the west to continental margin in the east. This is not the result of an oceanward accretion of the subduction belt between the Paleo-Pacific ocean plate and the Asian continent, but rather reflects the extension feature, i.e. after the closure of the Paleo-Pacific ocean, the Paleo-Pacific ancient continent collided with the Asian continent and reached the peak of orogenesis, and then the compression waned and resulted in the retreating of the post-orogenic extension from outer orogenic zone to inner part (or collision zone). The determination of the eruption age of the volcanics of the Zhangjiakou Formation definitely constrains the switch period, which began in the Indosinian and finished in the Yanshanian, that is, 140-135 Ma. The switch is concretely the change from the approximate E-W Paleo-Asian tectonic system to the NE to NNE Pacific system, and the period is also the apex of a continent-continent collision and orogenesis of subduction, being consumed and eventually disappearing of the Paleo-Pacific ancient continent, and all the processes commenced in the Indosinian. While the following post-orogenic large-scale eruption in the Early Cretaceous marks the final completeness of the Paleo-Pacific structure dynamics system.  相似文献   

8.
《地学前缘(英文版)》2020,11(4):1271-1287
The northern Xinjiang region is one of the most significant iron metallogenic provinces in China.Iron deposits are found mainly within three regions:the Altay,western Tianshan,and eastern Tianshan orogenic belts.Previous studies have elaborated on the genesis of Fe deposits in the Altay orogenic belt and western Tianshan.However,the geological characteristics and mineralization history of iron deposits in the eastern Tianshan are still poorly understood.In this paper I describe the geological characteristics of iron deposits in the eastern Tianshan,and discuss their genetic types as well as metallogenic-tectonic settings,Iron deposits are preferentially distributed in central and southern parts of the eastern Tianshan.The known iron deposits in the eastern Tianshan show characteristics of magmatic Fe-Ti-V(e.g.,Weiya and Niumaoquan),sedimentary-metamorphic type(e.g.,Tianhu),and iron skarn(e.g.,Hongyuntan).In addition to the abovementioned iron deposits,many iron deposits in the eastern Tianshan are hosted in submarine volcanic rocks with well-developed skarn mineral assemblages.Their geological characteristics and magnetite compositions suggest that they may belong to distal skarns.SIMS zircon U-Pb analyses suggest that the Fe-Ti oxide ores from Niumaoquan and Weiya deposits were formed at 307.7±1.3 Ma and 242.7±1.9 Ma,respectively.Combined with available isotopic age data,the timing of Fe mineralization in the eastern Tianshan can be divided into four broad intervals:Early Ordovician-Early Silurian(476-438 Ma),Carboniferous(335-303 Ma),Early Permian(295-282 Ma),and Triassic(ca.243 Ma).Each of these episodes corresponds to a period of subduction,post-collision,and intraplate tectonics during the Paleozoic and Mesozoic time.  相似文献   

9.
The formation conditions and distribution regularities of oil-gas pools in volcanic rocks in western Huimin Depression have been studied in terms of geolgic,sesmic and well logging information,This paper discusses the types and lithofacies,development and distribution of Tertiary volcanic rocks in the area.The results demonstrate that volcanic activity occurred mainly during the period from the Sha-4 stage to the Guantao episode,i.e.,before the oil-generating period(before the end of the Guantao episode and the Minghuazhen episode).The activity did not destroy oil and gas formation and accumulation,but was favourable for the concentration of organic matter and its conversion to hydrocarbons;besides,volcanic rocks can serve as reservoir rocks and cap rocks,playing a role very similar to that of a syndepositional anticline,The volcanic rocks are distributed near the margins of the oil-generating depression;there are many secondary interstices in the rocks,which are connected with each other.These are the leading conditions for the formation of oil-generating period and their self-sealing or good combination with other cap rocks are important factors for forming volcanic rock-hosted oil and gas pools.The oil-gas pools associated with volcanic rocks in western Huimin are mainly distributed around the deep oil-generating depression,in the central up lift or the high structural levels on the margins of the depression.In particular,the sites where several faults cross are usually locatons where hith-yielding oil-gas pools in volcanic rocks are concentrated.  相似文献   

10.
U–Pb analysis of zircons from igneous rocks in the Elashan Mountain, easternmost segment of the East Kunlun Orogen yielded 252–232 Ma. Geochemically, these rocks are mainly high in SiO_2, K_2O and K_2O+Na_2O contents, low in P_2O_5 and TiO_2 contents, depleted in Ba, Sr, P, Ti and enriched in U, Hf, Zr, showing features of I–type granite. The zircon εHf(t) values of the Early Triassic Jiamuge'er rhyolite porphyry(252±3 Ma) are positive(+1.6 to +12.1), suggesting a juvenile crustal source mixing with little old crustal component, and the zircon εHf(t) values of the Middle Triassic Manzhang'gang granodiorite(244±3 Ma) and Dehailong diorite(237±3 Ma) are predominately negative(-8.4 to +1.0), indicating an older crustal source. In comparison, the zircon εHf(t) values of the Late Triassic syenogranites from Suigen'ergang(234±2Ma), Ge'ermugang(233±2 Ma) and Yue'ergen(232±3 Ma) plutons vary from-3.8 to +5.0, suggesting a crust-mantle mixing source. From Early–Middle Triassic(252–237 Ma) to Late Triassic(234–232 Ma), the geochemical characteristics of these rocks show the change from a subduction–collision setting to a post-collision or within-plate setting. By comparing of these new age data with 77 zircon U–Pb ages of igneous rocks of the eastern part of East Kunlun orogen from published literatures, we conclude that the igneous rocks of Elashan Mountain and these of the eastern part of East Kunlun Orogen belong to one magmatic belt. All these data indicate that the Triassic magmatic events of the eastern part of East Kunlun Orogen can be divided into three stages: 252–238 Ma, 238–226 Ma and 226–212 Ma. Statistically, the average εHf(t) values of the threestage igneous rocks show a tendency, from the old to young, from-0.75±0.25 to lower-2.65±0.52 and then to-1.22±0.25, respectively, which reveal the change of their sources. These characteristics can be explained as a crust-mantle mixing source generated in a subductional stage, mainly crust source in a syn–collisional stage and a crust-mantle mixing source(lower crust with mantle-derived underplating magma) in a post-collisional stage. The identification of these three magmatic events in the Elashan Mountain, including all the eastern part of East Kunlun Orogen, provides new evidence for better understanding of the tectonic evolution of the northward subduction and closure of the Paleo-Tethyan(252–238 Ma), the collision of the Songpan–Ganzi block with the southern margin of Qaidam block(238–226 Ma), and the post–collisional setting(226–212 Ma) during the Early Mesozoic period.  相似文献   

11.
青海可可西里地区新生代火山岩的岩石特征与时代   总被引:31,自引:1,他引:31  
可可西里地区的新生代火山岩属于藏北火山岩带的东段。火山岩主要以熔岩台地、桌状山的形式产出,熔岩厚约40—100m。除少量的高钾流纹岩、粗面岩和粗面英安岩外,在数量和分布上以普遍含二辉石斑晶的安粗岩占优势。岩石以富碱(尤其富钾)和富LREE为特征。火山活动发生在中新世,根据K/Ar定年结果划分为早、中、晚三期。本区火山岩的特征与西藏境内的同时代岩石完全可以对比。火山活动与高原新生代以来的岩石圈演化有密切的关系  相似文献   

12.
华北东部橄榄岩岩石化学特征及其岩石圈地幔演化意义   总被引:10,自引:3,他引:7  
华北东部古生代以来火山岩中捕虏体橄榄岩和苏鲁早中生代构造侵位橄榄岩的岩石化学结果表明: 古生代金伯利岩侵位时仍然存在的难熔、漂浮克拉通地幔在中、新生代时其大部被新生饱满的岩石圈地幔物质取代置换.在100 Ma前(但不早于178 Ma), 新生软流圈物质就已开始沿古老岩石圈内的地幔薄弱带和岩石圈深断裂带对克拉通地幔进行侵蚀、交代和混合作用, 引起岩石圈大幅减薄.这一减薄存在时间、空间的不均匀性, 但在老第三纪达最大.新第三纪以来, 上涌的软流圈物质由于温度下降回落(岩石圈小幅增厚)并转化为新生岩石圈地幔, 实现地幔置换过程.分析的苏鲁造山带橄榄岩是早中生代构造侵位改造过的古老岩石圈地幔物质.   相似文献   

13.
Physicochemical processes involved in Cenozoic volcanism in eastern China   总被引:1,自引:0,他引:1  
Eastern China is a Cenozoic composite volcanic rock province, where volcanic rocks of the tholeiite series, calc-alkali series, Hy-norm-bearing olivine basalt series, Na-alkali series and K-alkali series coexist. Eastern China is separated into the northern and southern volcanic rock regions by the Changzhou-Yueyang old deep fault. Magma generation and magmatic activities in the northern region were controlled by the mantle uplift and old deep faults. These old deep faults were revived and some of them were changed into a multiple rift system due to back-arc expansion. The Bohai Sea depression is situated at the intersection of the Lujiang-Tancheng-Shenyang-Mishan and Zhangjiakou-Tianjin uplift belts of the upper mantle. Eogene (71.5-28.5 Ma) tholeiites largely occur in the central part of the mantle uplift; the well developed Neogene (23.8-2.6 Ma) alkali olivine basalts are distributed in the outer lane of the former and the Quaternary (1.48 Ma-recent) peralkali volcanic rocks are far away from them. In the southern region magma generation and magmatic activities were controlled mainly by plate subduction and three sets of old deep faults. Studies of incompatible elements and REE show that the degree of enrichment of incompatible elements and LREE increases with decreasing age, increasing source depth and decreasing degree of partial melting of the upper mantle. This presumably is an indication of a rapid uplifting and then waning magmatic hearth with gradually decreasing temperature, accompanied with down-cutting of the lithospheric faults. We call such a process “a reverse process of magma generation”. And the opposite process of the magmatic evolution of the East African rift in Kenya can be called “a positive process of magma generation”.  相似文献   

14.
对大兴安岭北段中生代火山岩新的岩石化学、微量元素、构造等方面的分析表明,该地区中生代火山岩形成于明显的挤压环境.再结合区域构造、区域岩浆作用、稳定同位素、古地磁特征等的分析,得出以下认识:该区中生代火山岩来源较深,具幔源特征;岩浆总体形成在挤压的环境中,是"减压"-"剪切"作用的产物,而不是裂谷环境中的产物,从而使得岩浆在演化过程中混入了大量的壳源物质  相似文献   

15.
Presented in this paper are Sm-Nd isotope and major, trace and rare-earth element analyses of bimodal volcanic rocks of the Shilu Group and other stratigraphic units in northwestern Hainan Island, South China. It is shown that there are some N-MORB-type basalts (spilites) in the western part of the bimodal volcanic belt, in addition to some E-MORB-type and initial rift-type tholeiites (IRT) in the middle and eastern parts. Sm-Nd model ages of these basalts range from 545 Ma to 460 Ma. The other extremes of the bimodal volcanics are porphyritic quartz rhyolites. which are characteristic of crustal material source. Sm-Nd model ages of the rhyolites range from 1562 Ma to 1371 Ma. The bimodal volcanic rocks are almost distributed in rifts or faulted depressions, as well as in the Upper Paleozoic rift of Hainan Island. Tholeiites of the Shilu Group can be compared with Cenozoic basalts in the middle and southern parts of the Red Sea Rift Belt in petrology, elemental geochemistry and Sm-Nd isotope geology. Shilu iron ores are closely associated with N-MORB-type basalts located in the western bimodal volcanic belt. It is very interesting to note that the Shilu Fe-Co-Cu deposit can also be compared with Atlantis II Deep in the Red Sea Rift Belt. Therefore, the present authors believe that the Shilu deposit is a kind of hydrothermal deposit related to ocean volcanic belt, where the geotectonic setting belongs to initial extensional rifts in the oceanic crust. On the other hand, the largest Fe-Co-Cu ore deposit in China used to be influenced by Hercynian granites after mineralization, as is clearly observed on both ε Nd (T)-1/Nd and ε Nd (T)-147Sm/144Nd diagrams. This project was jointly funded by the National Natural Science Foundation of China and Research School of Earth Sciences. Australian National University, Australia.  相似文献   

16.
TWO TYPES OF XENOLITH—MANTLE XENOLITH AND CRUSTAL XENOLITH FOUND IN THE CENOZOIC VOLCANIC ROCKS FROM HOH XIL, NORTHERN TIBET PLATEAU1 YangJingsui,XuZhiqin ,BaiWenji,etal.CenozoicvolcanismontheQinghai Tibetplateauanditsgenesis[J].ContinentalGeodynamics ,1997(2 ) :1~ 11. 2 XuZhiqin ,JiangMei,etal.Mantlediapirandinwardintracontinentalsubduction :AdiscussiononthemechanismofupliftoftheQinghai TibetPlateau[A].MacfarlaneA ,Sorkabi,RB ,…  相似文献   

17.
青藏高原东部贡觉盆地新生代火山岩的K-Ar稀释法年龄   总被引:4,自引:0,他引:4  
通过新生代高钾钙碱性中、酸性火山岩的年代学研究来了解青藏高原的隆升特征,首次报道了藏东贡觉盆地新生代7个火山岩样品的K-Ar定年结果.全岩和黑云母的表面年龄均在40.8~46.2Ma间(平均值为44.2Ma).样品中放射成因Ar与K构成了一条相关性良好的、几乎通过原点的线性等时线,表明它们有相同的成因和相近的形成时代。而且样品中可能既无过剩Ar,也无放射成因Ar的丢失,代表着真实的成岩年龄(始新世中期).火山活动发生在印度—欧亚板块碰撞(50 Ma左右)后形成的构造环境中。受陆内水平剪切—走滑断裂带控制.结合前人对藏东地区岩浆活动的年代学研究成果.表明青藏高原东缘新生代岩浆活动具多期性.这种多期性可能反映着青藏高原阶段性隆升的壳—幔相互作用。  相似文献   

18.
林子宗群火山岩是在青藏高原南部广泛发育的新生代火山岩,形成于新特斯洋闭合向印度-亚洲大陆碰撞过渡的背景下,其底部典中组火山岩的年龄对限定印度-亚洲大陆的碰撞时限具有重要意义.然而林子宗群火山岩的研究主要集中在拉萨地块东部林周盆地及其附近,其中部和西部的火山岩研究较少,系统的年代学研究则更少.对拉萨地块中段查孜地区的一条林子宗群典中组火山岩剖面进行了系统的锆石U-Pb年代学研究,获得了火山岩锆石U-Pb年龄分别为70.7±1.4 Ma、69.9±1.5 Ma、68.3±1.2 Ma.结合前人资料,对拉萨地块林子宗群火山岩年代学进行了区域对比,结果显示其底部火山岩的年龄沿东西走向存在一定的差别,中段年龄略早于东段和西段,表明印度-亚洲大陆碰撞中段略早于东部和西部.   相似文献   

19.
西秦岭地处青藏高原东北缘,是古亚洲构造域、特提斯构造域和滨太平洋构造域的交接转换带,也是分野中国大陆东、西部地理与地质构造的关键部位。该区广泛分布了大量中生代火山岩。由于该区基础地质研究程度很低,特别是缺少可靠的年代学和地球化学资料,对该区中生代火山岩的成因及地球动力学背景一直存在争议,影响了人们对西秦岭大地构造属性及发展演化历史的全面认识。文中提供了甘肃西秦岭夏河县麻当乡红墙村中生代玄武岩的岩相学、地球化学和同位素年代学研究资料和数据,对火山岩的成因与动力学条件进行了初步讨论。红墙玄武岩中分离出的锆石LA-ICP-MS U-Pb定年结果表明,该玄武岩形成于(104.8±0.99)Ma(MSWD=0.63),与野外观察结果一致,证明红墙玄武岩是早白垩世火山作用产物。岩相学和地球化学的观察和研究显示,该套岩石以出现斜长石斑晶、基质中出现大量斜长石微晶或微斑晶为特征,岩石具有较高的SiO2、Al2O3、Na2O和较低的CaO,属于钠质碱性玄武岩,而不同于该研究区东部礼县—宕昌一带新生代超钾质火山岩。红墙玄武岩在地球化学方面具有富集轻稀土和部分高场强元素(如Nb、Ta、Zr、Hf、Ti等),亏损大离子亲石元素(Rb、K等),正的εNd(t)=5.9~7.5和低的87Sr/86Sr(t)=0.703 3~0.705 6以及206Pb/204Pb(t)=17.707~18.319、207Pb/204Pb(t)=15.398~15.626和208Pb/204Pb(t)=37.266~38.454等特征。所有这些特征一致表明,红墙早白垩世玄武岩具有与大陆OIB相似的地球化学特征,其源区可能具有DMM和PREMA端员混合的特点,推测其主要来自亏损的软流圈地幔。结合对火山岩产出大地构造背景的综合分析及与礼县—宕昌新生代超钾质火山岩的对比,提出红墙早白垩世钠质碱性玄武岩是大陆裂谷岩浆作用的产物,其成因和动力学背景与自中生代以来南北构造带的裂谷性质及其发展演化有关。西秦岭东、西两段新生代与早白垩世火山岩在岩相学、全岩化学以及岩石系列和类型方面的差异,可能与不同时期软流圈地幔源区的演化、岩浆起源深度和部分熔融程度等有关。  相似文献   

20.
In northern Qinghai-Tibet plateau there are developed Cenozoic volcanic rocks. They constitute a trachybasalt-shoshonite-latite-trachydacite assemblage. According to the forming ages, three Cenozoic volcanic rock lithozones can be distinguished in the northern part of the plateau. Cenozoic volcanic rocks and muscovite/two-mica granites forming the three belts in pairs represent the northern and southern margins of the plateau in different periods. In fact, the tectonic setting of the northern part of the Qinghai-Tibet plateau is significantly different from that of the southern part—Himalayas. The southern part has experienced subduction and continent-continent collision. There are developed the Cenozoic S-type granites (muscovite/ two-mica granites) there. But the northern part is characterized by Cenozoic basaltic magmatism which obviously comes from the upper mantle. Slight doming of the upper mantle is recognized underneath the northern part of the plateau, which is the result of resistance of the Tarim plate to the north direction-sense movement of the Tibetan plate. And at the same time, the uplift machanism shows that the formation of the Qinghai-Tibet plateau involved three orogenic stages (35−23 Ma, 23−10 Ma and <2 Ma) of uplift in the vertical direction and extension in the horizontal direction with the Gangdise-Qiangtang orogenic belt as its core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号