首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2016年7月31日至8月1日,新疆伊犁河谷发生了一次极端强降水事件,多站突破降水极值。利用NCEP/NCAR 1°×1°和2.5°×2.5°再分析资料、中国地面卫星雷达三源融合逐小时降水产品、新疆地区常规观测资料、基于地基GPS观测的大气可降水量资料及基于拉格朗日方法的HYSPLIT轨迹模式结果,通过对水汽输送流函数、势函数、水汽输送轨迹和暴雨区水汽收支计算,结合伊犁河谷GPS观测分析,揭示了此次强降水期间的大尺度水汽输送、辐合特征及伊犁河谷局地水汽变化特点。结果表明:(1)强降水期间大西洋及红海均对伊犁河谷的水汽供应具有贡献,河谷处于水汽通量辐合区,向西开口的地形辐合和抬升为局地暴雨的发生提供有利的动力辐合条件。低纬度印度夏季风环流和中纬度大西洋向东输送的气流共同构成伊犁河谷极端降水天气的水汽输送通道,其中印度夏季风西南水汽输送主要集中在对流层低层,对流层中层水汽的输送以大西洋向东气流和低槽自身水汽输送为主。(2)HYSPLIT模拟结果表明暴雨区3000 m中纬度偏西路径的水汽输送最为强盛,偏南路径水汽源于阿拉伯海,对流层底层偏西、偏东路径和中层偏北路径水汽通过垂直运动补充对流层低层的水汽;5000 m水汽输送轨迹以偏西路径和低槽自身携带的水汽为主。(3)降水期间水汽集中在对流层低层,通过垂直输送项向高层输送;强降水时段暴雨区对流层低层南边界水汽流入量迅速增强,中高层水汽流入主要集中在西边界。(4)降水前槽前西南气流造成伊犁河谷测站GPS-PWV明显跃升,强降水时段受印度西南季风影响,测站PWV快速增高并维持,局地GPS-PWV的增加与大尺度水汽输送辐合增强有关。  相似文献   

2.
针对2018年入汛以来四川地区首场区域性暴雨天气过程(“18·05·21”过程),利用西南区域中尺度业务模式(SWCWARMS)的预报结果,通过对比分析两个不同起报时次对此次强降水天气过程的预报结果,发现:随着预报时次的临近,其降雨的预报效果越好;在临近降水发生过程前以观测资料和再分析资料启动模式,对大气状态的刻画比用模式运行结果更为真实,一方面可以通过改善大气的温湿结构来改变层结状态,影响其稳定度,另一方面通过改善其环流场,增强低层的气旋性辐合和水汽的输送,从动力角度影响整个降水过程。采用更为真实的初始场启动模式以后,能更加准确地模拟出降水前后时段能量/水汽的积累和释放的热力过程,以及涡度、散度和垂直上升运动等动力因子共同协调发展过程,因此对预报效果有正反馈。   相似文献   

3.
利用常规气象观测资料、FY-2E卫星云图及加密自动站降水资料,对2016年8月8-9日哈密地区北部一次暴雨过程及预报服务偏差进行了分析。结果表明:高空低槽和中低层切变是此次暴雨过程的主要影响系统,中低层的西南急流和偏东急流为暴雨提供了充足的水汽条件,低层辐合高层辐散的环流配置、垂直上升运动的加强促使低层水汽迅速向上输送为暴雨提供了动力条件;同时从技术和非技术方面对预报服务偏差进行了分析。  相似文献   

4.
基于WRF模式的暴雨天气过程的数值模拟及诊断分析   总被引:2,自引:0,他引:2  
利用新一代中尺度数值预报模式WRF2.2和1°×1°的NCEP气象再分析资料,对2009年9月17日发生在江苏南部地区覆盖沪宁高速公路的一次大暴雨天气过程进行了数值模拟。经AWMS(the automatic weather monitoring system)实测数据验证,此次天气过程的模拟效果较为理想。对模式输出的物理量进行诊断分析后发现:长江中下游地区的β中尺度低涡的发展、移动对暴雨过程中降水的加强和维持起着重要的作用;水汽辐合带在500hPa以下非常显著,在暴雨区形成了深厚的高湿环境,为暴雨的产生、加强和维系提供了重要的水汽条件;暴雨区内前期及降水过程中都存在较为强烈的垂直运动,且涡度场与散度场在垂直结构配置上一致,使得大气层结不稳定能量释放,形成了旺盛的对流天气;对流层中上层大气为中性层结,低层为位势不稳定,所以整层大气有对流发展,有利于暴雨的形成。  相似文献   

5.
《气象研究与应用》2016,(河南汛)
利用常规气象观测资料、土壤相对湿度监测资料以及数值模式预报产品对2014年汛期的久旱转雨过程进行了分析和检验。结果表明:环流调整是久旱转雨过程的必要条件;500h Pa高空槽东移配合中低层切变线和低空急流东伸加强及地面倒槽发展形成了此次天气过程;低空急流发展为此次暴雨提供充沛的水汽,暴雨落区与水汽通量和水汽通量散度以及垂直速度大值区位置相吻合,另外850~700h Pa大于64℃是此次暴雨预报的指标之一。对T639和ECMWF模式产品检验分析表明,两个模式都对稳定性降水预报有优势,ECMWF-THIN模式对降水预报有48小时提前量。  相似文献   

6.
利用常规观测资料、自动站、数值预报及潍坊713雷达资料,对2010年5月30日潍坊强对流天气过程进行了诊断分析。结果表明:这次强对流天气的主要影响系统是高空冷涡、低层切变线。存在上干冷,下暖湿结构,有较强的对流不稳定层结;对流层低层切变线是造成这次强对流天气的触发机制,地面风场上出现了"对头风"的强风向辐合中心;对流不稳定区的风垂直切变大,有较强的垂直上升运动。  相似文献   

7.
利用WRF模式对2010年8月21日发生在雅安地区的一次暴雨过程进行了数值模拟。对比分析模拟和实况发现,WRF模式较好的模拟了此次降水过程的时空分布,人而利用模式输出的高时空分辨率模拟资料对此次暴雨进行诊断分析。结果表明,青藏高原地形的阻挡作用使副热带高压西南缘的暖湿气流持续向四川盆地输送,在雅安地区上空700 hPa形成气旋性环流中心;主要降水时段内强降水中心从低层到高层均出现了强烈的上升运动,以及暴雨中心上空维持着高层辐散、低层辐合,高空为负涡度、低空为正涡度,且随暴雨过程发展对流层正涡度的加强作用为暴雨的生成和维持提供了有利的动力条件;对流层中低层接近饱和的空气、强烈的水汽输送以及水汽通量散度高低层的配置,为本次暴雨提供了充足的水汽条件;对流层低层大气存在明显的不稳定层结,中层为中性层结,这种对流性不稳定的维持为暴雨天气的发生提供了热力条件,有利于强降水过程的形成。  相似文献   

8.
东北冷涡背景下浙江省两次强降水过程的对比分析   总被引:3,自引:0,他引:3  
受东北冷涡西南部冷空气南下影响,2009年6月初浙江省连续发生了两次不同特点的强降水过程。利用常规气象观测资料、自动站资料、NCEP再分析资料及卫星TBB资料,对这两次东北冷涡背景下的强降水天气过程的大尺度环流背景和动力、热力及水汽输送条件进行对比分析。结果表明:同在东北冷涡天气背景下,由于中低层温度场配置不同、上下游系统强弱不同,导致浙江省发生的天气现象不同。6月2日降水是一次连续的区域性暴雨过程,雨带呈带状分布,以层状云降水为主,其低层为大范围的辐合,高层辐散,且低层辐合强于高层辐散;低空存在西南急流,为暴雨提供了重要的水汽和动力条件,大气层结比较稳定。6月5日强降水是一次强对流天气过程,降水分布不均匀,强度大,历时短,高、低空没有大范围的辐合辐散区,也没有低空西南急流,前期水汽条件较差,降水过程以热力作用为主;大气层结不稳定触发了强对流天气的发生,出现局地暴雨。两类暴雨的预报着眼点分别为:第1类区域性暴雨的预报重点为高层辐散、低层辐合结构和低空西南急流;第2类局地性暴雨的预报重点为大气的不稳定度与东北冷涡后部冷空气的干侵入。  相似文献   

9.
对2014年8月24日和9月1日上海地区两次强对流灾害天气过程的环流背景、动力条件及水汽条件、不稳定层结、多普勒雷达观测等方面进行了对比分析,研究两次强对流过程的成因,并对强对流天气进行了预报预警。结果表明:上海地区8·24过程和9·01过程均发生在副热带高压边缘,均有明显的低空急流输送,两次强对流过程预报的开始时间均较实况偏早。8·24过程为槽前型强对流过程,冷锋前飑线和中尺度阵风锋造成强雷电天气。9·01过程为低涡东移型强对流过程,造成了暴雨天气。槽前型强对流过程高层为强辐散,低层为强辐合,有利于强雷暴的产生;低涡东移型强对流过程湿层深厚,降水时间长有利于产生暴雨。垂直风切变趋势预报对雷暴维持和加强具有较好的指示作用。槽前型强对流过程伴随强垂直切变配合,产生区域性强雷暴;低涡东移型强对流过程垂直切变较弱,产生区域性对流暴雨。槽前型对流系统影响时间短,需重点分析地面中小尺度低压辐合区的发展,低涡东移型强对流过程的降水起始时间与暖区对流性降水有关。  相似文献   

10.
用GPS水汽监测资料分析一次强对流性降水过程   总被引:1,自引:1,他引:0  
张振东  魏鸣  王皓 《气象科学》2013,33(5):492-499
用江苏省地基GPS水汽监测系统得到的大气可降水量(PWV)资料,对江苏地区2009年夏季一次强对流性天气产生的降水过程进行了综合分析,分析了各时段GPS-PWV的变化特征和水汽的输送特点,并利用WRF中尺度数值模式对此次过程进行了数值模拟。结果表明:GPS-PWV对于空中水汽变化具有很高的敏感性,能及时地反映大气中水汽的时空变化。通过对数值模式结果进行分析后,发现强盛的水汽输入及辐合上升、中高层弱冷空气的侵入活动、低层西南气流加强、对流不稳定层加剧等多种因素的共同作用是造成此次中小尺度对流性降水的主要原因。GPS-PWV提供的精确水汽变化结合数值模式所模拟出的动力、热力条件对于强对流性暴雨预报和降水区域判定具有较好的参照意义。  相似文献   

11.
青藏高原东侧陡峭地形对一次强降水天气过程的影响   总被引:31,自引:19,他引:12  
李川  陈静  何光碧 《高原气象》2006,25(3):442-450
利用高分辨率中尺度模式分析资料,研究了青藏高原东侧陡峭地形对一次暴雨天气发生发展的影响。结果显示,青藏高原地形对大气环流的动力阻挡作用形成了本次暴雨过程的水汽输送通道,青藏高原东侧陡峭地形结构造成了四川西北部和黄河上游的强水汽辐合中心,并使低层高能舌和能量锋区位于海拔较低的四川盆地,在四川盆地对流层低层建立起位势不稳定层结。青藏高原东侧陡峭地形结构引起了低层偏东气流强烈的垂直上升运动,最强的垂直上升运动出现在东西风垂直切变与陡峭地形交汇处,激发不稳定能量释放,促使强对流猛烈发展,暴雨过程中高原东侧还有一个中尺度涡旋的发生发展相伴。青藏高原东侧暴雨区最显著的热力特征是高温高湿区域仅出现在对流层低层,最显著的动力特征是强涡度柱也仅出现在对流层低层。  相似文献   

12.
2018年7月31日哈密市出现了一次极端大暴雨天气过程,持续强降雨造成了重大人员伤亡和财产损失。利用NCEP再分析资料、地面常规气象观测资料、区域加密自动站降水资料和FY-2G红外云图TBB资料,对此次极端大暴雨进行诊断分析。结果表明:极端大暴雨发生在有利的大尺度环流背景下,南亚高压双体型建立,东部中心强且位置偏北,西太平洋副热带高压较常年明显偏西偏北;高低空急流在暴雨区上空垂直方向形成耦合形势,加强了暴雨区上升运动的维持和水汽的垂直输送;850~200 hPa强盛的偏南暖湿气流为暴雨提供了充足的水汽和动力条件;低层高温高湿,强风速辐合及特殊地形抬升触发对流不稳定产生,为极端大暴雨提供热力和不稳定能量条件;强降水发生在对流云团边缘TBB等值线密集的梯度最大区域,越接近TBB中心梯度最大处,雨强也越大。数值预报产品具有一定的预报能力,但对于降水落区及量级预报偏弱。  相似文献   

13.
利用常规天气资料、雷达资料和数值预报产品,应用天气分析和诊断分析方法,对2013年6月9日至10日南宁市出现暴雨天气过程进行分析,结果表明,此次过程是由阶梯槽东移加深合并,槽后西北气流引导低涡、切变线、地面冷空气南下,大量暖湿气流在桂中附近辐合抬升凝结造成的;辐合线和中小尺度涡旋是此次暴雨的直接原因,地面冷空气对暴雨起增幅作用.低层的偏南大风为此次过程提供了大量的水汽和不稳定能量,底层辐合,高层辐散及强烈的上升运动加强了水汽的抬升凝结.雷达资料的应用为暴雨和强对流天气的预报等都有着重要意义.  相似文献   

14.
本文利用高分辨率中尺度数值预报模式WRF和两组再分析资料,在研究不同模式初值对华南暖区暴雨预报质量差异明显的基础上,利用合成初值方法进行了模式初值对暖区暴雨预报的敏感性数值试验研究,讨论了模式初始场关键物理量对暖区暴雨预报质量的影响,重点开展了模式初值湿度场质量对华南暖区暴雨降水预报的敏感性分析。结果表明:模式初始场质量的较小差异,可显著影响本次华南暖区暴雨预报的降水强度、降水落区以及降水发生时间等的质量。初始水汽场对暖区暴雨预报影响最大,也最为敏感,是准确预报对流单体的发生发展以及地面强降水的基础。风场和温度场对暖区暴雨预报的影响相对较小。对流层低层较强的风速辐合是本次暖区暴雨强对流单体触发、生成和加强发展以至产生暖区强降水的物理基础。  相似文献   

15.
河北盛夏2次大暴雨过程对比分析   总被引:1,自引:0,他引:1  
利用常规天气资料、NCEP再分析资料、地面区域站和多普勒天气雷达资料对比分析了2012年7月21~22日罕见特大暴雨和2011年7月24日大暴雨的天气形势、水汽条件、动力条件以及中尺度影响系统。分析发现:这2次暴雨过程都是低槽冷锋类暴雨过程,中尺度影响系统也基本相同,降水效率相当,但降水极值和暴雨范围相差很大;充足的水汽输送、强的动力条件和高降水效率是2012年7月21~22日极端降水的原因之一,河北中部长达6 h列车效应是这次极端降水的关键原因;低层θse锋区和切变线南侧急流的有利配置是造成河北中部列车效应的关键原因,是低槽冷锋类暴雨强降水持续时间和能否出现极端降水的预报着眼点之一;锋面前侧的地面中尺度辐合线是主要中尺度影响系统,强降水落区沿地面中尺度辐合线分布,根据地面中尺度辐合线的演变预报暴雨的落区比依据低层低涡东南象限预报暴雨落区更精确。  相似文献   

16.
利用气象观测资料、NCEP/NCAR 1°×1°再分析资料以及GDAS资料,对2021年10月2-7日山西持续性强降水天气过程进行分析。结果表明:稳定的乌拉尔山低槽后部冷空气扩散,中纬度短波槽东移,与副热带高压外围西南暖湿气流持续交汇,同时高低空急流耦合形成强烈上升运动,低层切变线和地面辐合线稳定维持,及低层水汽不断输送并形成辐合,为持续性强降水的发生发展提供有利动力和水汽条件。此次强降水过程分为对流性降水和稳定性降水2个阶段,2阶段水汽输送通道的源地、路径、高度均有明显差异,但水汽输送贡献率均以对流层中低层山西南侧的水汽输送占主导地位。降水开始前,对流层中上层存在对称不稳定,大气可降水量明显跃增;对流性降水阶段,干空气不断入侵,对流不稳定快速建立与释放,对流层中低层水汽辐合区与强上升气流配合,导致山西出现强对流天气。地形的阻挡、抬升及地形收缩作用,对局地极端强降水具有增幅作用。  相似文献   

17.
利用气象观测资料、NCEP/NCAR 1°×1°再分析资料以及GDAS资料,对2021年10月2-7日山西持续性强降水天气过程进行分析。结果表明:稳定的乌拉尔山低槽后部冷空气扩散,中纬度短波槽东移,与副热带高压外围西南暖湿气流持续交汇,同时高低空急流耦合形成强烈上升运动,低层切变线和地面辐合线稳定维持,及低层水汽不断输送并形成辐合,为持续性强降水的发生发展提供有利动力和水汽条件。此次强降水过程分为对流性降水和稳定性降水2个阶段,2阶段水汽输送通道的源地、路径、高度均有明显差异,但水汽输送贡献率均以对流层中低层山西南侧的水汽输送占主导地位。降水开始前,对流层中上层存在对称不稳定,大气可降水量明显跃增;对流性降水阶段,干空气不断入侵,对流不稳定快速建立与释放,对流层中低层水汽辐合区与强上升气流配合,导致山西出现强对流天气。地形的阻挡、抬升及地形收缩作用,对局地极端强降水具有增幅作用。  相似文献   

18.
针对2010年7月31日夜间山西西南部一次业务模式出现较大预报偏差的西太平洋副热带高压(下称副高)边缘突发性暴雨天气过程,利用常规和降水加密观测资料、FY-2E卫星TBB数据以及中尺度模式WRF高分辨率数值模拟结果,诊断分析了暴雨的发生发展、锋生及锋生过程中的水汽演变特征。结果表明:此次突发性暴雨是由高空槽后干冷空气推动副高边缘暖湿气流所导致的一次锋生型强降水,β中尺度对流系统(meso-βcircular convective system,MβCCS)是造成暴雨的直接影响系统,低层β中尺度涡旋的形成和发展为MβCCS的维持提供了有利的水汽辐合条件,地面冷锋及其附近中尺度辐合线是对流触发因子。锋生诊断表明,低层辐合、中层辐散的垂直结构导致对流层低层水平锋生、中层水平锋消,而低层强烈的上升运动使得强不稳定层结高度升高,从而引起对流层中层强垂直锋生发展,垂直锋生与水平锋生同时产生,且垂直锋生较水平锋生大一个量级,中低层强锋生和次级环流圈的出现与强降水的发生时间和位置对应较好,比较而言,倾斜项对总锋生贡献最大,辐合项贡献最小。中低层锋生的加强有利于低层水汽的辐合抬升,锋生过程中深厚的水汽饱和层的出现以及水汽含量向高空的凸起,对局地强降水的预报有明显的指示意义。另外,高空冷空气的强度、移动路径以及MβCCS的发展对判断此类强降水的发生和暴雨落区具有重要作用。  相似文献   

19.
为了研究甘肃东南部相同气候背景条件下极端暴雨天气的成因,提高极端暴雨强度和落区预报的准确率,利用NCEP再分析、自动气象站降水、常规观测资料及卫星云图资料,对2013年8月7日和2017年8月7日发生在甘肃东南部两次极端暴雨进行对比分析。结果表明:两次极端暴雨天气过程都伴随着短时强降水等强对流性天气,具有降水量大、雨强强、灾害重的特点,其中冷空气的强度对暴雨落区、空间分布以及影响系统移动以及对流强度产生重要影响。在强冷空气和高空低槽、低层切变线影响下,暴雨区偏南,强降水区域小,持续时间短,不稳定条件更好,对流强度更强;在弱冷空气和高原槽、低层低涡、低空急流作用下,暴雨区偏北,强降水范围大,持续时间长,大气湿层厚度大,低层水汽辐合强度、涡度以及垂直速度更强,降水效率更高,但对流强度相对较弱。卫星云图上,在强冷空气的影响下对流发展旺盛,形成强中尺度对流云团,对流云团呈带状;在弱冷空气作用下对流云团尺度小,发展范围小,有暖云降水特征,降水效率高。  相似文献   

20.
玉溪一次强对流天气的中尺度特征分析   总被引:1,自引:0,他引:1  
利用常规探空资料、NCEP/NCAR再分析资料、地面自动站加密观测资料及T639数值模式资料对2013年6月9-10日发生在玉溪的一次强对流天气进行了诊断分析。结果表明,此次强对流天气是高空槽后西北气流引导冷空气南下并与西南暖湿气流在云南中北部交汇引发的,对流层低层切变线和地面中尺度辐合线、气旋式辐合中心等是此次强对流天气的直接影响系统。其水汽主要源于孟加拉湾,水汽在低层集中和输送并在云南等地上空辐合,为此次强对流天气的发生提供了有利的水汽条件。中尺度强对流云带与地面中尺度辐合系统及对流有效位能(CAPE)不连续带有较好的对应关系,中尺度强对流云带发生、发展的位置和走向与前期地面辐合线基本一致,对流单体在CAPE不连续带大值区一侧容易加强和发展。综合分析地面流场和高分辨CAPE的分布,对强对流天气的短时临近预报有一定指示意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号