首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
Cold deep water in the South China Sea   总被引:1,自引:0,他引:1  
Two deep channels that cut through the Luzon Strait facilitate deep (>2000 m) water exchange between the western Pacific Ocean and the South China Sea. Our observations rule out the northern channel as a major exchange conduit. Rather, the southern channel funnels deep water from the western Pacific to the South China Sea at the rate of 1.06 ± 0.44 Sv (1 Sv = 106 m3s−1). The residence time estimated from the observed inflow from the southern channel, about 30 to 71 years, is comparable to previous estimates. The observation-based estimate of upwelling velocity at 2000 m depth is (1.10 ± 0.33) × 10−6 ms−1, which is of the same order as Ekman pumping plus upwelling induced by the geostrophic current. Historical hydrographic observations suggest that the deep inflow is primarily a mixture of the Circumpolar Deep Water and Pacific Subarctic Intermediate Water. The cold inflow through the southern channel offsets about 40% of the net surface heat gain over the South China Sea. Balancing vertical advection with vertical diffusion, the estimated mean vertical eddy diffusivity of heat is about 1.21 × 10−3 m2s−1. The cold water inflow from the southern channel maintains the shallow thermocline, which in turn could breed internal wave activities in the South China Sea.  相似文献   

2.
卡里马塔海峡水体交换的季节变化   总被引:2,自引:0,他引:2  
Four trawl-resistant bottom mounts, with acoustic Doppler current profilers(ADCPs) embedded, were deployed in the Karimata Strait from November 2008 to June 2015 as part of the South China Sea-Indonesian Seas Transport/Exchange and Impact on Seasonal Fish Migration(SITE) Program, to estimate the volume and property transport between the South China Sea and Indonesian seas via the strait. The observed current data reveal that the volume transport through the Karimata Strait exhibits significant seasonal variation. The winteraveraged(from December to February) transport is –1.99 Sv(1 Sv=1×10~6 m~3/s), while in the boreal summer(from June to August), the average transport is 0.69 Sv. Moreover, the average transport from January 2009 to December2014 is –0.74 Sv(the positive/negative value indicates northward/southward transport). May and September are the transition period. In May, the currents in the Karimata Strait turn northward, consistent with the local monsoon. In September, the southeasterly trade wind is still present over the strait, driving surface water northward, whereas the bottom flow reverses direction, possibly because of the pressure gradient across the strait from north to south.  相似文献   

3.
In order to examine the formation, distribution and synoptic scale circulation structure of North Pacific Intermediate Water (NPIW), 21 subsurface floats were deployed in the sea east of Japan. A Eulerian image of the intermediate layer (density range: 26.6–27.0σθ) circulation in the northwestern North Pacific was obtained by the combined analysis of the movements of the subsurface floats in the period from May 1998 to November 2002 and historical hydrographic observations. The intermediate flow field derived from the floats showed stronger flow speeds in general than that of geostrophic flow field calculated from historical hydrographic observations. In the intermediate layer, 8 Sv (1 Sv ≡ 106 m3s−1) Oyashio and Kuroshio waters are found flowing into the sea east of Japan. Three strong eastward flows are seen in the region from 150°E to 170°E, the first two flows are considered as the Subarctic Current and the Kuroshio Extension or the North Pacific Current. Both volume transports are estimated as 5.5 Sv. The third one flows along the Subarctic Boundary with a volume transport of 5 Sv. Water mass analysis indicates that the intermediate flow of the Subarctic Current consists of 4 Sv Oyashio water and 1.5 Sv Kuroshio water. The intermediate North Pacific Current consists of 2 Sv Oyashio water and 3.5 Sv Kuroshio water. The intermediate flow along the Subarctic Boundary contains 2 Sv Oyashio water and 3 Sv Kuroshio water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We have examined wind-induced circulation in the Sea of Okhotsk using a barotropic model that contains realistic topography with a resolution of 9.25 km. The monthly wind stress field calculated from daily European Centre for Medium-Range Weather Forecasting (ECMWF) Re-Analysis data is used as the forcing, and the integration is carried out for 20 days until the circulation attains an almost steady state. In the case of November (a representative for the winter season from October to March), southward currents of velocity 0.1–0.3 m s−1 occur along the bottom contours off the east of Sakhalin Island. The currents are mostly confined to the shelf (shallower than 200 m) and extend as far south as the Hokkaido coast. In the July case (a representative for the summer season from April to September), significant currents do not occur, even in the shallow shelves. The simulated southward current over the east Sakhalin shelf appears to correspond to the near-shore branch of the East Sakhalin Current (ESC), which was observed with the surface drifters. These seasonal variations simulated in our experiments are consistent with the observations of the ESC. Dynamically, the simulated ESC is interpreted as the arrested topographic wave (ATW), which is the coastally trapped flow driven by steady alongshore wind stress. The volume transport of the simulated ESC over the shelf reaches about 1.0 Sv (1 Sv = 106 m3s−1) in the winter season, which is determined by the integrated onshore Ekman transport in the direction from which shelf waves propagate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
A mooring observation of current velocity, temperature and bottom pressure was carried out approximately 30 km off the coast of Monbetsu, between August 7 and September 2, 2005, to investigate the characteristics of bottom boundary layer (BBL) off the Soya Warm Current (SWC). We succeeded in measuring the Ekman veering and bottom Ekman transport in the BBL. On comparing the observed current velocity with that represented by the classical theoretical equation, the observed alongshore current velocity in BBL disagreed with that represented by the classical theoretical equation, but the cross-shore one agreed well. However after applying a linear extrapolation for the alongshore current velocity to estimate the alongshore geostrophic current velocity above the bottom, we could explain the alongshore current velocity by that represented in the classical theoretical equation. Consequently, our observations strongly support one of the proposed formation mechanisms of the cold-water belt observed off the SWC, that is, the convergence of bottom Ekman transport. The volume transport of vertical pumping velocity was estimated to be (0.12–0.25) Sv. In addition, the vertical profile of average temperature in all observation periods shows that slightly warmer water lies beneath the homogenous temperature layer, in the BBL. The result is considered to imply that the down-slope advection due to bottom Ekman transport supplies the SWC water in BBL and the eddy diffusivity of order of 10−3 m2s−1 maintains the oceanic structure in the bottom mixed layer.  相似文献   

6.
Numerical experiments with a two-dimensional nonhydrostatic ocean model have been carried out to investigate the dynamical process of descending density current on a continental slope. The associated deep water formation has been also examined by tracking labeled particles. The descending flow along the continental slope occurs in the bottom Ekman layer. The net pressure gradient determining the volume transport consists of not only the pressure gradient due to density deviation but also the surface pressure gradient due to the depth-mean alongshore flow. Since these constituents have the opposite signs and strengthen each other, the oscillation with an alternation of intense up- and downslope flows appears around the shelf break. This temporal variation of the flow field causes the effective mixing on the slope between descending shelf and interior waters and forms the deep water as a mixture of them at a ratio of about 1:3. The present result is applied to the slope current around Antarctica, using velocity and density fields calculated by an ocean general circulation model. The Ekman volume transport is estimated at 0.97 Sv (1 Sv = 106 m3s–1) in the Weddell Sea, 0.35 Sv in the Ross Sea, and 1.8 Sv in total. About 70% of them is attributed to the depth-mean alongshore flow, such as the East Wind Drift and the Weddell Gyre driven by the wind. This suggests that the pressure gradient due to other factors than density deviation may play an important role in the deep and bottom water formation in the actual oceans.  相似文献   

7.
A nine-year-long record of the northeastward volume transport (NVT) in the region southeast of Okinawa Island from 1992 to 2001 was estimated by an empirical relation between the volume transport obtained from the ocean mooring data and the sea surface height anomaly difference across the observation line during 270 days from November 2000. The NVT had large variations ranging from −10.5 Sv (1 Sv ≡ 106 m3s−1) to 30.0 Sv around its mean of 4.5 Sv with a standard deviation of 5.5 Sv. This large variation was accompanied by mesoscale eddies from the east, having a pronounced period from 106 to 160 days. After removal of the eddy, NVT was found to fluctuate from 2 Sv to 12 Sv with a quasi-biennial period.  相似文献   

8.
The Ulleung Basin is one of three deep basins that are contained within the East/Japan Sea. Current meter moorings have been maintained in this basin beginning in 1996. The data from these moorings are used to investigate the mean circulation pattern, variability of deep flows, and volume transports of major water masses in the Ulleung Basin with supporting hydrographic data and help from a high-resolution numerical model. The bottom water within the Ulleung Basin, which must enter through a constricted passage from the north, is found to circulate cyclonically—a pattern that seems prevalent throughout the East Sea. A strong current of about 6 cms−1 on average flows southward over the continental slope off the Korean coast underlying the northward East Korean Warm Current as part of the mean abyssal cyclonic circulation. Volume transports of the northward East Korean Warm Current, and southward flowing East Sea Intermediate Water and East Sea Proper Water are estimated to be 1.4 Sv (1 Sv=10−6 m3 s−1), 0.8 Sv, and 3.0–4.0 Sv, respectively. Deep flow variability involves a wide range of time scales with no apparent seasonal variations, whereas the deep currents in the northern East Sea are known to be strongly seasonal.  相似文献   

9.
Hydrographic, current meter and ADCP data collected during two recent cruises in the South Indian Ocean (RRS Discovery cruise 200 in February 1993 and RRS Discovery cruise 207 in February 1994) are used to investigate the current structure within the Princess Elizabeth Trough (PET), near the Antarctic continent at 85°E, 63–66°S. This gap in topography between the Kerguelen Plateau and the Antarctic continent, with sill depth 3750 m, provides a route for the exchange of Antarctic Bottom Water between the Australian–Antarctic Basin and the Weddell–Enderby Basin. Shears derived from ADCP and hydrographic data are used to deduce the barotropic component of the velocity field, and thus the volume transports of the water masses. Both the Southern Antarctic Circumpolar Current Front (SACCF) and the Southern Boundary of the Antarctic Circumpolar Current (SB) pass through the northern PET (latitudes 63 to 64.5°S) associated with eastward transports. These are deep-reaching fronts with associated bottom velocities of several cm s-1. Antarctic Bottom water (AABW) from the Weddell–Enderby Basin is transported eastwards in the jets associated with these fronts. The transport of water with potential temperatures less than 0°C is 3 (±1) Sv. The SB is shown to meander in the PET, caused by the cyclonic gyre immediately west of the PET in Prydz Bay. The AABW therefore also meanders before continuing eastwards. In the southern PET (latitudes 64.5 to 66°S) a bottom intensified flow of AABW is observed flowing west. This AABW has most likely formed not far from the PET, along the Antarctic continental shelf and slope to the east. Current meters show that speeds in this flow have an annual scalar mean of 10 cm s-1. The transport of water with potential temperatures less than 0°C is 20 (±3) Sv. The southern PET features westward flow throughout the water column, since the shallower depths are dominated by the flow associated with the Antarctic Slope Front. Including the westward flow of bottom water, the total westward transport of the whole water column in the southern PET is 45 (±6) Sv.  相似文献   

10.
Year-long moorings were deployed across the Alaskan Stream near Samalga Pass (169°W) on two occasions, first in 2001–2002 (5 moorings) and again in 2003–2004 (3 moorings). Currents were measured throughout the water column, and temperature and salinity were measured at selected depths. Satellite altimetry and satellite-tracked drifters revealed a well defined Alaskan Stream, with the largest near-surface average speeds (>60 cm s−1) and highest eddy kinetic energy just upstream from the mooring sites. Excluding periods when large eddies disrupted the flow, transport in the Alaskan Stream ranged from 10 to 30×106 m3 s−1. The estimated mean transport in 2001–2002 was 19×106 m3 s−1, and in 2003–2004 was 21×106 m3 s−1. Large (diameter>200 km), anti-cyclonic eddies were not uncommon in the vicinity of Samalga Pass (14 times in 20 year period, 1992–2012). Although there were no such eddies observed during the period 2000–2003, one of the largest ever recorded eddies occurred in spring 2004. In addition, smaller eddies occurred on several occasions. Eddies disrupted the flow, shifting the Alaskan Stream farther off shore and were clearly evident in both the satellite imagery and the mooring data. Other energetic events, which were less evident in the satellite records, but clearly evident in the mooring measurements, also disrupted the flow. In addition to the moorings in the Alaskan Stream, pressure gauges were placed in Samalga Pass and a single mooring measuring currents was placed in the Aleutian North Slope Current (ANSC) in the Bering Sea. The alongshore, near-surface flow measured at the moorings deployed on the 1000-m isobaths in the Alaskan Stream and the ANSC were significantly correlated with the bottom pressure time series. In addition, at periods longer than 14 days, the bottom pressure measured at the mooring sites in Samalga Pass was significantly correlated with the sea surface height measured by the satellites. The eddy kinetic energies measured from the satellites and from moorings were also significantly correlated.  相似文献   

11.
用Argo温盐资料估计印度尼西亚贯穿流多年平均地转输送   总被引:1,自引:0,他引:1  
利用Argo浮标资料,估计了2003—2007年期间印度尼西亚贯穿流(ITF)出口处114.5οE断面上层(0—1000m)的地转流,并与WOA05资料进行对比。在114.5οE断面上9.5ο—18.5οS之间,依据Argo资料计算的上层(0—1000m)地转流年平均输送为4.2Sv(1 Sv = 106m3.s-1),比依据WOA05资料计算的流量大0.5Sv左右,与前人对IX1断面的估算接近。依据Argo资料计算的ITF的季节变化也与WOA05比较一致,最大输送都出现在7月份,可以达到10Sv,而冬季二者差异较大。比较了盐度资料的差异以及114.5οE断面南侧缺测对估计ITF地转流输送的影响,发现盐度资料的改善可以改进对ITF地转输送量的估计,而断面南侧的缺测对ITF年平均输送的影响较小。因此,Argo资料可以作为监测ITF输送量的一种有效手段,特别是用于年平均流量的研究。  相似文献   

12.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   

13.
A one and a half layer inviscid hydraulic model was introduced to study the dynamics of the flow that brings the bottom cold water southward into the Korea Strait. Two different channel geometries were considered; a rectangular channel and a channel with a sloping western wall, which represents the continental slope near the Korean coast. The lower layer water in the rectangular channel separates from the eastern wall when the depth of the channel,H o, becomes shallower than a critical value donwstream. Hydraulic control of the flow is possible after the flow separation, if the channel becomes shallow enough. Before hydraulic control, the width of the flow decreases asH o decreases, but the effect of the slope of the western wall is negligible. After the control, however, the width increases asH o decreases or the slope becomes weaker. If the slope becomes weak enough or the channel becomes deep enough, which is determined by upstream conditions, the lower layer is observed only over the sloping western wall. This simple model shows that the continental slope between the East Sea (Japan Sea) and the Korea Strait makes the southward flowing North Korean Cold Water bank against the Korean coast in the Korea Strait. The model also shows that the sloping bottom near the Korean coast makes the bottom cold water of the Korea Strait appear only over the continental slope away from the trough of the strait.  相似文献   

14.
The North Atlantic Deep Western Boundary Current (DWBC) was surveyed at the Blake Outer Ridge over 14 days in July and August 1992 to determine its volume transport and to investigate its bottom boundary layer (BBL). This site was chosen because previous investigations showed the DWBC to be strong and bottom-intensified on the ridge’s flanks and to have a thick BBL. The primary instrument used was the Absolute Velocity Profiler, a free-falling velocity and conductivity–temperature–depth device. In two sections across the width of the DWBC, volume transports of 17±1 Sv and 18±1 Sv were measured for all water flowing equatorward below a potential temperature of 6°C (1 Sv=1×106 m3 s-1). Transport values were derived using both absolute velocities and AVP-referenced geostrophic velocities and were the same within experimental uncertainty. Good agreement was found between our results and historical ones when both were similarly bounded and referenced. Although this was a short-term survey, the mean of a 9-day time series of absolute velocity profiles was the same as the means of year-long current-meter records at three depths in the same location. A turbulent planetary BBL was found everywhere under the current. The thickness of the bottom mixed layer (BML), where concentrations of density, nutrients, and suspended sediments were vertically uniform, was asymmetrical across the current and up to 5 times thicker than the BBL. There was no velocity shear above the BBL within the thicker BMLs, and the across-slope density gradient was very small. The extra-thick BML is perhaps maintained by a combination of processes, including turbulence, downwelling Ekman transport, a weak up-slope return flow above the BBL, and buoyant convection from the BBL into the BML. The frictional bottom stress was mostly balanced by a down-stream change in the current’s external potential energy evidenced by a drop in the velocity core of the current.  相似文献   

15.
十年间黄海大型底栖动物优势种的变化   总被引:1,自引:0,他引:1  
本文根据2000年10月、2001年3月、2003年6月、2004年1月、2011年4月和8月黄海大型底栖动物调查资料对十年间大型底栖动物优势种的变化进行研究。研究结果表明:十年间共出现优势种9种(优势度0.02),包括寡鳃齿吻沙蚕Nephtys oligobranchia、背蚓虫Notomastus latericeus、掌鳃索沙蚕Nin?e palmata,角海蛹Ophelina acuminata和蜈蚣欧努菲虫Onuphis geophiliformis等5种多毛纲动物,薄索足蛤Thyasira tokunagai和橄榄胡桃蛤Nucula tenuis等2种软体动物,浅水萨氏真蛇尾Ophiura sarsii vadicola和紫蛇尾Ophiopholis mirabilis等2种棘皮动物。其中,薄索足蛤为2000年10月、2003年6月、2004年1月和2011年4月航次黄海大型底栖动物优势种,浅水萨氏真蛇尾和掌鳃索沙蚕为2011年4月和8月航次黄海大型底栖动物优势种、角海蛹为2004年1月和2011年4月航次黄海大型底栖动物的优势种。背蚓虫则是2011年8月航次的优势种,优势度为0.0859。对2011年2个航次调查区域深度进行划分,结合底层水温度和盐度等环境因子进行指示种分析,结果表明,黄海0—30m水深区域指示种为日本角吻沙蚕Goniada japonica、寡节甘吻沙蚕Glycinde gurjanovae、美人虾Callianassa sp.和双眼钩虾Ampelisca sp.。30m水深以上区域的指示种主要是背蚓虫、奇异指纹蛤Acila mirabilis、掌鳃索沙蚕和浅水萨氏真蛇尾。指示种组成与优势种的组成较一致,表明水深、底层水温度和盐度是影响黄海大型底栖动物优势种分布的主要因素。十年间上黄海近岸水域底栖动物优势种发生了变化,小型的多毛类如背蚓虫和掌鳃索沙蚕等成为近岸海域主要的优势种。冷水团水域优势种较稳定,主要为浅水萨氏真蛇尾和薄索足蛤。  相似文献   

16.
17.
The result of two sequential oceanographic stations of 36 hours each in the area of sand ridges are presented. One station was located in the trough between two sand ridges and the other was at the crest of a sand ridge. At these stations salinity and temperature of the sea water, currents, winds, waves, and barometric pressure were measured each hour.During the observations, a cold front passed; this generated westerly winds that grew in speed from 24 to 52 km h?1. The average height of the wind generated waves grew from 1.0 to 1.5 m and their periods increased from 7 to 10 s, and the speed of the northeast directed surface current increased from 40 to 82 cm s?1. A bottom current (also directed northeast) increased from 26 to 34 cm s?1.After the cold front had passed, the wind backed to the southeast and decreased in speed from 26 to zero km h?1. The surface current in a northwest direction decreased from 29 to 8 cm s?1. A bottom current (also directed northwest) decreased from 22 to 3 cm s?1. Later, swells from the southeast appeared and their periods increased from 5 to 9 s and their heights grew from 1.0 to 1.5 m. After 3 hours, the speeds of the surface and bottom currents increased from 8 to 72 cm s?1 and 3 to 62 cm s?1 respectively.This cold front induced strong winds and storm-wave currents able to erode sediments (assuming a threshold velocity of 20 cm s?1) and transport them in a north-northeast direction.The origin and the maintenance of these sand ridges is thought to be a function of sediments eroded from troughs and piled up at ridge crests during a storm condition. Some eroded sediments are transported north of Verga lighthouse where they are deposited on a smooth bottom.  相似文献   

18.
The dynamics of phytoplankton abundance with seasonal variation in physicochemical conditions were investigated monthly at 10 stations around the Chagwi-do off the west coast of Jeju Island, Korea, including inshore, middle shore, and offshore in the marine ranching area from September 2004 to November 2005. Water temperature varied from 12.1 to 28.9°C (average 18.8°C), and salinity from 28.9 to 34.9 psu (average 33.7 psu). The chlorophyll a concentration was 0.02-2.05 μg L1 (average 0.70 μg L1), and the maximum concentration occurred in the bottom layer in April. A total of 294 phytoplankton species belonging to 10 families was identified: 182 Bacillariophyceae, 52 Dinophyceae, 9 Chlorophyceae, 12 Cryptophyceae, 6 Chrysophyceae, 4 Dictyophyceae, 13 Euglenophyceae, 6 Prymnesiophyceae, 5 Prasinophyceae, and 5 Raphidophyceae. The standing crop was 2.21-48.69x104 cells L1 (average 9.23x 104 cells L1), and the maximum occurred in the bottom layer in April. Diatoms were most abundant throughout the year, followed by dinoflagellates and phytoflagellates. A phytoplankton bloom occurred twice: once in spring, peaking in April, and once in autumn, peaking in November. The spring bloom was represented by fourChaetoceros species andSkeletonema costatum; each contributed 10–20% of the total phytoplankton abundance. The autumn bloom comprised dinoflagellates, diatoms, and phytoflagellates, of which dinoflagellates were predominant.Gymnodinium conicum, Prorocentrum micans, andP. triestinum each contributed over 10% of the total phytoplankton abundance.  相似文献   

19.
In order to estimate submarine groundwater discharge (SGD) and SGD-driven nutrient fluxes, we measured the concentrations of nutrients, 224Ra, and 226Ra in seawater, river water, and coastal groundwater of Yeongil Bay (in the southeastern coast of Korea) in August 2004 and February 2005. The bottom sediments over the shallow areas of this bay are composed mainly of coarse sands. Large excess concentrations of 224Ra, 226Ra, and Si supplied from SGD were observed in August 2004, while these excess concentrations were not apparent in February 2005. Based on the mass balance for 224Ra, 226Ra, and Si, which showed conservative mixing behavior in seawater, SGD was estimated to be approximately 6 × 106 m3 day− 1 (seepage rate = 0.2 m day− 1) in shallow areas (< 9 m water depth) in August 2004, which is much higher than the SGD level typically found in other coastal regions worldwide. During the summer period, SGD-driven nutrients in this bay contributed approximately 98%, 12%, and 76% of the total inputs for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively. Our study implies that the ecosystem in this highly permeable bed coastal zone is influenced strongly by SGD during summer, while such influences are negligible in winter.  相似文献   

20.
In July 1998, a bottom-mounted Acoustic Doppler Current Profiler was deployed at 36m depth in the centre of the Tsitsikamma National Park on the eastern Agulhas Bank, South Africa. The purpose was to investigate transport of chokka squid Loligo vulgaris reynaudii paralarvae hatched on the inshore spawning grounds (<60m) and ichthyoplankton spawned within the park. Analysis of the first 12 months of data (July 1998–June 1999) shows that surface flow was mainly eastward (alongshore), with a maximum velocity (u-component) of +115cm s?1 and an average of +24cm s?1. Generally, velocity decreased with depth, with a maximum bottom velocity (u-component) of +65cm s?1 and an average of +10cm s?1. Data from a nearby thermistor array show that the water column was usually isothermal during winter (July–September), with bottom flow in the same direction as the surface layer. In summer (December–March), vertical stratification was most intense, and surface and bottom flows differed in velocity and direction. Potential net monthly displacements calculated for three depths (5m, 23m and 31m) indicate that passive, neutrally buoyant biological material (e.g. squid paralarvae, fish eggs and larvae) would likely be transported eastwards in the surface layer for eight of the 12 months, and would generally exceed distances of 220km month–1. Displacement in the bottom layer was more evenly distributed between east and west, with net monthly (potential) transport typically 70–100km, but reaching a maximum of 200km. Wind-driven coastal upwelling, prevalent during the summer, causes the surface layer of the coastal counter-current to flow offshore for several days, resulting in potential displacement distances of 40km from the coast. These results suggest that squid paralarvae hatched on the inshore spawning grounds are not generally transported towards the 'cold ridge', a prominent semi-permanent oceanographic feature of cold, nutrient-rich upwelled water, where food is abundant, and that fish larvae, whether from the surface or bottom layer, are exported beyond the boundaries of the Tsitsikamma National Park.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号