首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A method for the determination of di- and tetrachlorinated ethers (haloethers) in aqueous samples using solid-phase microextraction (SPME) combined with capillary GC has been developed. Using 100-μm polydimethylsiloxane fibers, the influence of several parameters on the SPME procedure like the exposure time of the fiber in the aqueous sample, the desorption temperature, and the salt content of the sample have been studied. Salt addition has a strong effect on the extraction efficiency of the haloethers investigated. Working with saturated salt solutions, the factor increase of the peak areas was in the range from 5 to 12. These improvements are accompanied by decreased precision and increased equilibration times. The SPME method combined with several detectors (FID, ECD, MS in SIM mode) was evaluated with respect to detection limits, linearities, and precisions. Working with salt addition and FID, detection limits of all compounds investigated were in the range of 0.3 to 1.2 μg/L. Using ECD, the LOD values (limits of detection) were only improved for the tetrachlorinated bis(propyl) ethers (<10 ng/L). Employing mass-spectrometric detection in SIM mode for all chlorinated ethers, detection limits lower than 100 ng/L could be reached. Working with saturated salt solutions, the coefficients of variation were <9% RSD. However, without salt addition, the precision is better than 2.5% RSD for all analytes. Investigations showed that the analysis of the haloethers with SPME is not influenced significantly by the matrix Elbe water. The results of two series of samples demonstrate that SPME-GC-MS allows the sensitive determination of the di- and tetrahalogenated ethers in Elbe river water.  相似文献   

2.
A newly developed technique which allows the down-hole sampling and subsequent analysis of ground water for trace organic contaminants was tested during an investigation of contaminant migration at an inactive landfill site in Burlington, Ontario, Canada. The sampling device, which is lowered down piezometers with a tube, consists of a small cylindrical cartridge of sorbent material attached to a syringe. Vacuum or pressure applied at the surface controls the movement of the plunger in the syringe. The volume of the syringe determines the volume of sample water that passes through the cartridge. The cartridge is removed from the syringe at the surface. One cartridge is used for each sampling; the syringe is reusable. The residual water in the cartridge is removed in the laboratory, and the cartridge is desorbed to a fused silica capillary column for analysis by gas chromatography (GC). The analyses discussed here were performed on a GC/mass spectrometer/data system (GC/MS/DS). Of the many organic compounds that were identified in the samples, three compounds were clearly landfill-related: 1,1,1-trichloroethane, chlorobenzene, and para-dichlorobenzene. The three compounds were found at levels substantially above blank levels in 9, 5, and 5 piezometers, respectively. The average concentrations were 14., 5.3, and 0.88μg/1 (ppb), respectively. The pooled coefficients of variation for the analyses for the three compounds were 27., 6.9, and 6.4%, respectively. The volatility of 1,1,1-trichloroethane was probably the cause of the greater variability in its analytical data. The main advantages of the technique over most conventional sampling methods include: (1) down-hole sampling in a manner which minimizes the potential for volatilization losses; (2) avoidance of passage of the sample through long sections of tubing that may contaminate the sample or cause adsorptive losses; (3) convenience of sample handling, storage, and shipping; and (4) high sensitivity.  相似文献   

3.
Forced imbibition was performed in reservoir sandstone by injecting water into a dry sample. The injection was monitored with X‐ray computed tomography and acoustic acquisition to simultaneously visualize the displacement of the fluid and quantify its presence by calculating saturation and P‐wave velocities. We observed a strong influence when changing the injection rates on the acoustic response. Upon decreasing the injection rate from 5 mL/h to 0.1 mL/h, P‐wave velocities decreased sharply: 100 m/s in 1 h. This behaviour is related to the partially saturated conditions of the sample (76% of saturation) before decreasing the injection rate. The air that is still trapped is free to move due to a decrease of pore pressure that is no longer forced by the higher injection rate. After 1 hour, P‐wave velocities started increasing with small changes in saturation. Stopping injection for 16 hrs decreased saturation by 8% and P‐wave velocities by 100 m/s. Restarting injection at 5 mL/h increased saturation to 76% while P‐wave velocities fluctuated considerably for 2 hrs until they stabilized at 2253 m/s. Through the computed tomography scans we observed a water front advancing through the sample and how its shape changed from a plane to a curve after decreasing the injection rate.  相似文献   

4.
An automated HPLC method is presented which combines on-line ion-pair extraction on small exchangeable RP-C18 precolumns (RP-IPE) with ion-pair chromatography (RP-IPC). Weakly acidic herbicides — carboxylic acids, phenols, and the N-H acidic bentazone — and strong acids, e.g. aromatic sulfonic acids, can be determined simultaneously. Performance data are given. The tetrabutylammonium ion pairs of all investigated compounds are readily transferred from the RP-C18 precolumn to the analytical column by a phosphate buffer/methanol gradient. This is also true for the chlorinated phenoxy acids which, in earlier off-line extraction experiments, could not be desorbed from the RP-C18 material by the lower polar acetone. The RP-IPC is carried out at neutral pH where weakly acidic compounds appear in their stronger UV absorbing dissociated form. Compared to conventional reversed phase chromatography using an acidified eluent, the sensitivity of UV detection is markedly enhanced, especially for the phenol herbicides and bentazone. In addition, phenols can be detected more selectively because they show a second intense absorption band in the wavelength range between 280 nm and 290 nm, where there are only little interferences with the matrix. Due to miniaturization and automation, the online combination IPE/IPC allows a large sample throughput at a lower consumption of solid phase material and organic solvents. Time consuming manual steps are totally missing. The IPE/IPC technique is well suited as a screening method for fate studies of polar micropollutants, e. g. for monitoring the efficiency of different water treatment technologies. An example for balancing an activated carbon filter is presented.  相似文献   

5.
The paper presents the ion chromatography (IC) – DIONEX DX-100 system – in the studies on the Odra River water pollution with some inorganic anions. The precision of analysis, detection and quantification limits of each anion have been presented in order to evaluate the method. Results obtained with IC are compared with those using other analytical methods: ICP-AES for SO42–, and the argentometric titration for Cl–. It has been found that the IC method can be applied in the investigation of the anion pollution of the Odra River water: concentrations of Cl–, NO3– and SO42– can be determined with sufficient accuracy, while F– concentration, on the account of common presence of carbonate anions, can only be roughly estimated. The results have been compared with maximum permitted levels (MPL) for Polish water quality classes.  相似文献   

6.
An innovative micro‐extraction of aqueous samples coupled with gas chromatography/mass spectrometry in selected ion‐monitoring mode (GC/MS‐SIM) was developed to selectively analyze for 1,4‐dioxane with low part‐per‐billion detection sensitivity. Recoveries of 1,4‐dioxane ranged from 93% to 117% for both spiked laboratory reagent water and natural groundwater matrices, the later having elevated organic carbon content (8.34 ± 0.31 mg/L as total organic carbon). We observed that freezing the aqueous sample along with the extraction solvent enhanced the extraction efficiency, minimized physical interferences, and improved sensitivity resulting in a limit of detection for 1,4‐dioxane to approximately 1.6 μg/L. This method substantially reduces the labor, time, reagents and cost, and uses instruments that are commonly found in analytical laboratories. This method requires a relatively small sample volume (200 μL), and can be considered a green analytical method as it minimizes the use of toxic solvents and the associated laboratory wastes.  相似文献   

7.
Drought detection, monitoring and indices are closely related to its definition. The specific definition chosen for a particular drought analysis will affect the procedures one uses in drought detection and monitoring. The traditional Palmer Drought Severity Index (PDSI) has been proven to be ineffective in regions of predominantly irrigated agriculture.The recently developed ALERT (Automated Local Evaluation in Real Time) system is proposed for use in monitoring the spatial and temporal variations of drought in real time. The ALERT system uses standardized instruments, radio frequencies, software and hardware. It was originally developed as a flash flood waming system by local flood control districts and the National Weather Service. However, now it has expanded to over 100 other uses in the areas of natural and man-made disaster detection and warning. The successful ALERT system indicates the need for the continued development of a national drought monitoring index that is applicable to a wide range of climate, hydrologic and water resource environments.  相似文献   

8.
Drought detection, monitoring and indices are closely related to its definition. The specific definition chosen for a particular drought analysis will affect the procedures one uses in drought detection and monitoring. The traditional Palmer Drought Severity Index (PDSI) has been proven to be ineffective in regions of predominantly irrigated agriculture.The recently developed ALERT (Automated Local Evaluation in Real Time) system is proposed for use in monitoring the spatial and temporal variations of drought in real time. The ALERT system uses standardized instruments, radio frequencies, software and hardware. It was originally developed as a flash flood waming system by local flood control districts and the National Weather Service. However, now it has expanded to over 100 other uses in the areas of natural and man-made disaster detection and warning. The successful ALERT system indicates the need for the continued development of a national drought monitoring index that is applicable to a wide range of climate, hydrologic and water resource environments.  相似文献   

9.
This work evaluates the detection sensitivity of deep subsurface pressure monitoring within an uncertain carbon dioxide sequestration system by linking the output of an analytical reduced-order model and first-order uncertainty analysis. A baseline (non-leaky) modeling run was compared against 10 different leakage scenarios, where the cap rock permeability was increased by factors of 2–100 (cap rock permeability from 10?3 to 10?1 millidarcy). The uncertainty variance outputs were used to develop percentile estimates and detection sensitivity for pressure throughout the deep subsurface as a function of space (lateral distance from the injection wells and vertical orientation within the reservoir) and time (years since injection), or P(x, z, t). Conditional probabilities were computed for combinations of x, z, and t, which were then used to generate power curves for detecting leakage scenarios. The results suggest that measurements of the absolute change in pressure within the target injection aquifer would not be able to distinguish small leakage rates (i.e., less than 50 × baseline) from baseline conditions, and that only large leakage rates (i.e., >100 × baseline) would be discriminated with sufficient statistical power (>99 %). Combining measurements, for example by taking the ratio of formation pressure in Aquifer 2/Aquifer 1, provides better statistical power for distinguishing smaller leakage rates at earlier times in the injection program. Detection sensitivity for pressure is a function of space and time. Therefore, design of an adequate monitoring network for subsurface pressure should account for this space–time variability to ensure that the monitoring system performs to the necessary design criteria, e.g., specific false-negative and false-positive rates.  相似文献   

10.
The relative precision and accuracy of sampling and analysis methods for the determination of trace concentrations of volatile organic compounds (VOCs) in ground water were compared. Samples were collected from a well containing nanogram-per-liter (ng/L) to microgram-per-liter (μg/L) levels of VOCs. A Keck helical rotor submersible pump was used to collect samples at the surface for analysis by purge and trap (P&T) and for analysis by adsorption/thermal desorption (ATD). Downhole samples were collected by passing water through an ATD cartridge. Although slight spontaneous bubble outgassing occurred when the water was brought to the surface, the relative precisions and comparabilities of the surface and downhole methods were generally found to be equivalent from a statistical point of view. A main conclusion of this study is that bringing sample water to the surface for placement in VOC vials (and subsequent analysis by P&T) can be done reliably under many circumstances. However, care must still be taken to prevent adsorption losses and cross contamination. Samples subject to strong bubble outgassing will need to be handled in a special fashion (e.g., by downhole ATD) to minimize volatilization losses. Additionally, the higher sensitivity of the ATD method allows lower detection limits than are possible with P&T. For example, several compounds present at the ng/L level could be determined with confidence by ATD, but not by P&T.  相似文献   

11.
The San Dimas Experimental Forest (SDEF) is located in southern California and is representative of the chaparral shrublands of the Southwest USA. Chaparral – including genera of Ceanothus, Adenostoma, Quercus, Salvia and Arctostaphylos – is a dense, drought-tolerant vegetation assemblage with a closed canopy 3–5 m in height. Chaparral is a fire-prone ecosystem and wildfires have burned the SDEF about every 40 years. The SDEF was established in 1933 to quantify the water cycle in a steep, semiarid landscape. Study catchments range in size from 15 to 1160 ha and measurements of stream runoff are made in a nested weir and flume arrangement to account for the very flashy flows. Apart from native chaparral vegetation, streamflow measurements in these study watersheds have also quantified the hydrologic response of vegetation type-conversion and fire. Innovations in hydrologic monitoring developed on the SDEF include a critical depth flume (the San Dimas flume) and tilted rain gages to better sample precipitation in mountainous terrain. Subsurface runoff and plant water relations have been measured in a large lysimeter complex. Water quality monitoring shows that stream water in the SDEF has very high levels of nitrate, derived from atmospheric deposition of chronic air pollution, that approach the Federal EPA standard of 10.0 mg L−1 for nitrate-N. Spreadsheets of rainfall and streamflow (from 1938 to 2015) – the San Dimas Experimental Forest hydrologic database – may be found at the right-hand side of the web page at https://www.fs.fed.us/psw/ef/san_dimas/index.shtml . Hard copy charts, tables and other records associated with the foregoing data streams are available from the USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, California, 92501 USA or at pete.wohlgemuth@usda.gov .  相似文献   

12.
The authors have recently used several innovative sampling techniques for ground water monitoring at hazardous waste sites. Two of these techniques were used for the first time on the Biscayne Aquifer Super-fund Project in Miami, Florida. This is the largest sampling program conducted so far under the U.S. Environmental Protection Agency (EPA) Superfund Program.
One sampling technique involved the use of the new ISCO Model 2600 submersible portable well sampling pump. A compressed air source forces water from the well into the pump casing and then delivers it to the surface (through a pulsating action). This pump was used in wells that could not be sampled with surface lift devices.
Another sampling technique involved the use of a Teflon manifold sampling device. The manifold is inserted into the top of the sampling bottle and a peristaltic pump creates a vacuum to draw the water sample from the well into the bottle. The major advantage of using this sampling technique for ground water monitoring at hazardous waste sites is the direct delivery of the water sample into the collection container. In this manner, the potential for contamination is reduced because, prior to delivery to the sample container, the sample contacts only the Teflon, which is well-known for its inert properties.
Quality assurance results from the Superfund project indicate that these sampling techniques are successful in reducing cross-contamination between monitoring wells. Analysis of field blanks using organic-free water in contact with these sampling devices did not show any concentration at or above the method detection limit for each priority pollutant.  相似文献   

13.
In this paper, we relate recent developments in ground water sampling techniques to the practical application of sampling for toxic contaminants in ground water. We address the choices that must be made in choosing equipment for a particular project by going through a step-by-step procedure for collecting a ground water sample from a typical monitoring well. Ground water sampling topics that are discussed include: choice of equipment for purging and sampling a well, monitoring for purged ground water indicators and quality assurance/quality control.  相似文献   

14.
Rockfall release is a rather unpredictable process. As a result, the occurrence of rockfall often threatens humans and (infra)structures. The assessment of potential drivers of rockfall activity therefore remains a major challenge, even if the relative influence of rainfall, snowmelt, or freeze–thaw cycles has long been identified in short-term monitoring projects. In the absence of longer-term assessments of rockfall triggers and possible changes thereof, our knowledge of rockfall dynamics remains still lacunary as a result of the persisting scarcity of exhaustive and precise rockfall databases. Over the last decades, several studies have employed growth disturbances (GDs) in tree-ring series to reconstruct rockfall activity. Paradoxically, these series were only rarely compared to meteorological records. In this study, we capitalize on the homogeneity of a centennial-old reforestation plot to develop two reconstructions – R1 including only growth suppressions, and R2 based on injuries – with limited biases related to decreasing sample size and changes in exposed diameters back in time. By doing so, our study also and quite clearly highlights the large potential that protection forests have in terms of yielding reliable, multidecadal rockfall reconstructions. From a methodological perspective, we find no synchronicity between R1 and R2, as well as an absence of meteorological controls on rockfall processes in R1. This observation pleads for a careful selection of GDs in future reconstructions. In terms of process dynamics, we demonstrate that summer intense rainfall events (>10 mm day−1) are the main drivers for rockfall activity at our study site. Despite the stringency of our detection procedure, correlations between rockfall activity and meteorological variables remain comparable to those reported in previous studies, as a result of the complexity and multiplicity of triggering factors. We therefore call for a more systematic coupling of tree-ring analysis with rockfall and microclimatic monitoring in future studies. © 2020 John Wiley & Sons, Ltd.  相似文献   

15.
The analysis of seismic ambient noise acquired during temporary or permanent microseismic monitoring campaigns (e.g., improved/enhanced oil recovery monitoring, surveillance of induced seismicity) is potentially well suited for time‐lapse studies based on seismic interferometry. No additional data acquisition required, ambient noise processing can be automatized to a high degree, and seismic interferometry is very sensitive to small medium changes. Thus there is an opportunity for detection and monitoring of velocity variations in a reservoir at negligible additional cost and effort. Data and results are presented from an ambient noise interferometry study applied to two wells in a producing oil field in Romania. Borehole microseismic monitoring on three component geophones was performed for four weeks, concurrent with a water‐flooding phase for improved oil recovery from a reservoir in ca. 1 km depth. Both low‐frequency (2 Hz–50 Hz) P‐ and S‐waves propagating through the vertical borehole arrays were reconstructed from ambient noise by the virtual source method. The obtained interferograms clearly indicate an origin of the ambient seismic energy from above the arrays, thus suggesting surface activities as sources. It is shown that ambient noise from time periods as short as 30 seconds is sufficient to obtain robust interferograms. Sonic log data confirm that the vertical and horizontal components comprise first arrivals of P‐wave and S‐waves, respectively. The consistency and high quality of the interferograms throughout the entire observation period further indicate that the high‐frequency part (up to 100 Hz) represents the scattered wave field. The temporal variation of apparent velocities based on first‐arrival times partly correlates with the water injection rate and occurrence of microseismic events. It is concluded that borehole ambient noise interferometry in production settings is a potentially useful method for permanent reservoir monitoring due to its high sensitivity and robustness.  相似文献   

16.
A pilot-scale nutrient injection will (NIW) (4 m by 4 m by 1 m) was installed in the Borden Aquifer lo serve as a pulsed injection source of a potassium acetate solution for the stimulation of anaerobic microbial activity. The success of the flushing procedure was evaluated by monitoring the breakthrough of the acetate solution at several multilevel piezometers installed in the wall. Although some variation in the ground water velocity was observed with depth, the wall was flushed with reasonable uniformity after about six hours of injection and withdrawal, representing about one pore volume, Calculations bused on head level data collected during the flush, and on the solute breakthrough curves, indicated that about 90% of the flow induced by the pumping and injecting was confined to the permeable wall. These results show that a permeable wall injection system is a viable method of introducing solutes uniformly to a cross section of aquifer, with minimal perturbation of the natural flow system. In addition lo its importance for the biostimulation system tested in this project the flushing of permeable walls may have applications in other semi-passive remedial systems, such as the rejuvenation of reactive barriers.  相似文献   

17.
Quantitative interpretation of time‐lapse seismic data requires knowledge of the relationship between elastic wave velocities and fluid saturation. This relationship is not unique but depends on the spatial distribution of the fluid in the pore‐space of the rock. In turn, the fluid distribution depends on the injection rate. To study this dependency, forced imbibition experiments with variable injection rates have been performed on an air‐dry limestone sample. Water was injected into a cylindrical sample and was monitored by X‐Ray Computed Tomography and ultrasonic time‐of‐flight measurements across the sample. The measurements show that the P‐wave velocity decreases well before the saturation front approaches the ultrasonic raypath. This decrease is followed by an increase as the saturation front crosses the raypath. The observed patterns of the acoustic response and water saturation as functions of the injection rate are consistent with previous observations on sandstone. The results confirm that the injection rate has significant influence on fluid distribution and the corresponding acoustic response. The complexity of the acoustic response —‐ that is not monotonic with changes in saturation, and which at the same saturation varies between hydrostatic conditions and states of dynamic fluid flow – may have implications for the interpretation of time‐lapse seismic responses.  相似文献   

18.
The corporate purpose of Wismut GmbH is to decommission its former mining holdings and to rehabilitate the landscape and the environment. Sample taking and analysing the value of contaminants are necessary steps for the remediation of waste rock piles, the recycling of contaminated areas, controlled flooding of uranium mines. Main emphasis lies on the determination of heavy metals and radionuclides of natural decay chains of U‐238 and U‐235. Yearly about 60 000…70 000 determinations of radionuclides in waters were done. Facing this high output of determinations it is a permanent task for laboratory and quality management to ask: Are the results of different methods comparable to each other? Is there a preferred analytical technology? Which matrix influences exist? and What about the analytical costs? Answers to these important questions are given in this report. Summarizing our investigations done in the last few years it is possible to say that – by using different analytical methods the results of radionuclides in water samples (surface or groundwater) are comparable, – a not negligible influence of Ra‐223, Ra‐224 and Ra‐228 may exist by using the DIN 38404 C18 method to determine Ra‐226, – a preferred method cannot be defined, – the choice of the analytical method should include analytical questions (the sample matrix, the occurrence of other disturbing radionuclides, the necessary detection limit) and economical questions (costs, other parameters to be determined).  相似文献   

19.
沉水植物作为水生态系统的重要组成成分,在水生态系统物质循环和能量流动中发挥着重要作用,其覆盖度和生物量是评价湖泊等浅水水体系统稳定性的关键参数随着高效和无损伤监测的回声探测仪在沉水植物盖度监测中的应用,其精确度算法也受到了越来越多的关注本研究以成功恢复沉水植物的浅水湖泊杭州西湖为研究对象,利用BioSonics便携型回声探测仪——MX采集沉水植物回声样本同时结合人工样方设置,采集与回声探测对应位点的沉水植物样本,验证回声探测结果的精确性通过建立回归模型分析回声探测得到的沉水植物体积百分比(PVI)与人工样方获得的对应平均鲜重关系,结果表明二者具有较好的相关性分别采用普通克里金法、反距离权重法、径向基函数法3种插值方法对同一季节的不同湖泊和同一湖泊的不同季节未采集区域沉水植物的盖度数据进行插值分析,并对插值结果进行交叉验证,以确定方法的精确度交叉验证结果表明,插值精确度反距离权重法径向基函数法普通克里金法研究结果为回声探测与插值分析方法结合在大尺度浅水水体中沉水植物监测应用提供了技术支撑.  相似文献   

20.
Determination of Organophosphorus Pesticides in Water by HPLC‐MS‐MS In the EC Water Framework Directive 2000/60/EG and in CEC 76/464/EEC there are 16 organophosphorus pesticides (insecticides and acaricides) listed which belong to so‐called priority substances. The committed quality aims of these substances frequently require maximum concentrations below 0.1 μg/L. In this paper a HPLC‐MS‐method is described. The reported limits of determination of organophosphorus pesticides are lower than the demanded limits. High analytical sensitivity is reached by solid‐phase extraction (SPE) and by injecting large volumes. For some of these substances no sample enrichment is needed and low detection limits are obtained by direct injection of the original water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号