首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative interpretation of time‐lapse seismic data requires knowledge of the relationship between elastic wave velocities and fluid saturation. This relationship is not unique but depends on the spatial distribution of the fluid in the pore‐space of the rock. In turn, the fluid distribution depends on the injection rate. To study this dependency, forced imbibition experiments with variable injection rates have been performed on an air‐dry limestone sample. Water was injected into a cylindrical sample and was monitored by X‐Ray Computed Tomography and ultrasonic time‐of‐flight measurements across the sample. The measurements show that the P‐wave velocity decreases well before the saturation front approaches the ultrasonic raypath. This decrease is followed by an increase as the saturation front crosses the raypath. The observed patterns of the acoustic response and water saturation as functions of the injection rate are consistent with previous observations on sandstone. The results confirm that the injection rate has significant influence on fluid distribution and the corresponding acoustic response. The complexity of the acoustic response —‐ that is not monotonic with changes in saturation, and which at the same saturation varies between hydrostatic conditions and states of dynamic fluid flow – may have implications for the interpretation of time‐lapse seismic responses.  相似文献   

2.
A recently developed laboratory method allows for simultaneous imaging of fluid distribution and measurements of acoustic‐wave velocities during flooding experiments. Using a specially developed acoustic sample holder that combines high pressure capacity with good transparency for X‐rays, it becomes possible to investigate relationships between velocity and fluid saturation at reservoir stress levels. High‐resolution 3D images can be constructed from thin slices of cross‐sectional computer‐tomography scans (CT scans) covering the entire rock‐core volume, and from imaging the distribution of fluid at different saturation levels. The X‐ray imaging clearly adds a new dimension to rock‐physics measurements; it can be used in the explanation of variations in measured velocities from core‐scale heterogeneities. Computer tomography gives a detailed visualization of density regimes in reservoir rocks within a core. This allows an examination of the interior of core samples, revealing inhomogeneities, porosity and fluid distribution. This mapping will not only lead to an explanation of acoustic‐velocity measurements; it may also contribute to an increased understanding of the fluid‐flow process and gas/liquid mixing mechanisms in rock. Immiscible and miscible flow in core plugs can be mapped simultaneously with acoustic measurements. The effects of core heterogeneity and experimentally introduced effects can be separated, to clarify the validity of measured velocity relationships.  相似文献   

3.
A series of time‐lapse seismic cross‐well and single‐well experiments were conducted in a diatomite reservoir to monitor the injection of CO2 into a hydrofracture zone, based on P‐ and S‐wave data. A high‐frequency piezo‐electric P‐wave source and an orbital‐vibrator S‐wave source were used to generate waves that were recorded by hydrophones as well as 3‐component geophones. During the first phase the set of seismic experiments was conducted after the injection of water into the hydrofractured zone. The set of seismic experiments was repeated after a time period of seven months during which CO2 was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geological structure in the diatomic reservoir to the detectability of CO2 within the hydrofracture. Furthermore, it was intended to determine which experiment (cross‐well or single‐well) is best suited to resolve these features. During the pre‐injection experiment, the P‐wave velocities exhibited relatively low values between 1700 and 1900 m/s, which decreased to 1600–1800 m/s during the post‐injection phase (?5%). The analysis of the pre‐injection S‐wave data revealed slow S‐wave velocities between 600 and 800 m/s, while the post‐injection data revealed velocities between 500 and 700 m/s (?6%). These velocity estimates produced high Poisson's ratios between 0.36 and 0.46 for this highly porous (~50%) material. Differencing post‐ and pre‐injection data revealed an increase in Poisson's ratio of up to 5%. Both velocity and Poisson's ratio estimates indicate the dissolution of CO2 in the liquid phase of the reservoir accompanied by an increase in pore pressure. The single‐well data supported the findings of the cross‐well experiments. P‐ and S‐wave velocities as well as Poisson's ratios were comparable to the estimates of the cross‐well data. The cross‐well experiment did not detect the presence of the hydrofracture but appeared to be sensitive to overall changes in the reservoir and possibly the presence of a fault. In contrast, the single‐well reflection data revealed an arrival that could indicate the presence of the hydrofracture between the source and receiver wells, while it did not detect the presence of the fault, possibly due to out‐of‐plane reflections.  相似文献   

4.
Scanning and transmission electron microscopy, synchrotron X‐ray diffraction, microtomography and ultrasonic velocity measurements were used to characterize microstructures and anisotropy of three deeply buried Qusaiba shales from the Rub’al‐Khali basin, Saudi Arabia. Kaolinite, illite‐smectite, illite‐mica and chlorite show strong preferred orientation with (001) pole figure maxima perpendicular to the bedding plane ranging from 2.4–6.8 multiples of a random distribution (m.r.d.). Quartz, feldspars and pyrite crystals have a random orientation distribution. Elastic properties of the polyphase aggregate are calculated by averaging the single crystal elastic properties over the orientation distribution, assuming a nonporous material. The average calculated bulk P‐wave velocities are 6.2 km/s (maximum) and 5.5 km/s (minimum), resulting in a P‐wave anisotropy of 12%. The calculated velocities are compared with those determined from ultrasonic velocity measurements on a similar sample. In the ultrasonic experiment, which measures the effects of the shale matrix as well as the effects of porosity, velocities are smaller (P‐wave maximum 5.3 km/s and minimum 4.1 km/s). The difference between calculated and measured velocities is attributed to the effects of anisotropic pore structure and to microfractures present in the sample, which have not been taken into account in the matrix averaging.  相似文献   

5.
The effect of sub‐core scale heterogeneity on fluid distribution pattern, and the electrical and acoustic properties of a typical reservoir rock was studied by performing drainage and imbibition flooding tests with CO2 and brine in a laboratory. Moderately layered Rothbach sandstone was used as a test specimen. Two core samples were drilled; one perpendicular and the other parallel to the layering to allow injection of fluids along and normal to the bedding plane. During the test 3D images of fluid distribution and saturation levels were mapped by an industrial X‐ray CT‐scanner together with simultaneous measurement of electrical resistivity, ultrasonic velocities as well as amplitudes. The results showed how the layering and the flooding direction influenced the fluid distribution pattern and the saturation level of the fluids. For a given fluid saturation level, the measured changes in the acoustic and electrical parameters were affected by both the fluid distribution pattern and the layering orientation relative to the measurement direction. The P‐wave amplitude and the electrical resistivity were more sensitive to small changes in the fluid distribution patterns than the P‐wave velocity. The change in amplitude was the most affected by the orientation of the layering and the resulting fluid distribution patterns. In some instances the change due to the fluid distribution pattern was higher than the variation caused by the change in CO2 saturation. As a result the Gassmann relation based on ‘uniform' or ‘patchy' saturation pattern was not suitable to predict the P‐wave velocity variation. Overall, the results demonstrate the importance of core‐imaging to improve our understanding of fluid distribution patterns and the associated effects on measured rock‐physics properties.  相似文献   

6.
To provide a guide for future deep (<1.5 km) seismic mineral exploration and to better understand the nature of reflections imaged by surface reflection seismic data in two mining camps and a carbonatite complex of Sweden, more than 50 rock and ore samples were collected and measured for their seismic velocities. The samples are geographically from the northern and central parts of Sweden, ranging from metallic ore deposits, meta‐volcanic and meta‐intrusive rocks to deformed and metamorphosed rocks. First, ultrasonic measurements of P‐ and S‐wave velocities at both atmospheric and elevated pressures, using 0.5 MHz P‐ and S‐wave transducers were conducted. The ultrasonic measurements suggest that most of the measured velocities show positive correlation with the density of the samples with an exception of a massive sulphide ore sample that shows significant low P‐ and S‐wave velocities. The low P‐ and S‐wave velocities are attributed to the mineral texture of the sample and partly lower pyrite content in comparison with a similar type sample obtained from Norway, which shows significantly higher P‐ and S‐wave velocities. Later, an iron ore sample from the central part of Sweden was measured using a low‐frequency (0.1–50 Hz) apparatus to provide comparison with the ultrasonic velocity measurements. The low‐frequency measurements indicate that the iron ore sample has minimal dispersion and attenuation. The iron ore sample shows the highest acoustic impedance among our samples suggesting that these deposits are favourable targets for seismic methods. This is further demonstrated by a real seismic section acquired over an iron ore mine in the central part of Sweden. Finally, a laser‐interferometer device was used to analyse elastic anisotropy of five rock samples taken from a major deformation zone in order to provide insights into the nature of reflections observed from the deformation zone. Up to 10% velocity‐anisotropy is estimated and demonstrated to be present for the samples taken from the deformation zone using the laser‐interferometery measurements. However, the origin of the reflections from the major deformation zone is attributed to a combination of anisotropy and amphibolite lenses within the deformation zone.  相似文献   

7.
The effect of clay distribution on the elastic properties of sandstones   总被引:1,自引:0,他引:1  
The shape and location of clay within sandstones have a large impact on the P‐wave and S‐wave velocities of the rock. They also have a large effect on reservoir properties and the interpretation of those properties from seismic data and well logs. Numerical models of different distributions of clay – structural, laminar and dispersed clay – can lead to an understanding of these effects. Clay which is located between quartz grains, structural clay, will reduce the P‐wave and S‐wave velocities of the rock. If the clay particles become aligned or form layers, the velocities perpendicular to the alignment will be reduced further. S‐wave velocities decrease more rapidly than P‐wave velocities with increasing clay content, and therefore Poisson's ratios will increase as the velocities decrease. These effects are more pronounced for compacted sandstones. Small amounts of clay that are located in the pore space will have little effect on the P‐wave velocity due to the competing influence of the density effect and pore‐fluid stiffening. The S‐wave velocity will decrease due to the density effect and thus the Poisson's ratio will increase. When there is sufficient clay to bridge the gaps between the quartz grains, P‐wave and S‐wave velocities rise rapidly and the Poisson's ratios decrease. These effects are more pronounced for under‐compacted sandstones. These general results are only slightly modified when the intrinsic anisotropy of the clay material is taken into account. Numerical models indicate that there is a strong, nearly linear relationship between P‐wave and S‐wave velocity which is almost independent of clay distribution. S‐wave velocities can be predicted reasonably accurately from P‐wave velocities based on empirical relationships. However, this does not provide any connection between the elastic and petrophysical properties of the rocks. Numerical modelling offers this connection but requires the inclusion of clay distribution and anisotropy to provide a model that is consistent with both the elastic and petrophysical properties. If clay distribution is ignored, predicting porosities from P‐wave or S‐wave data, for example, can result in large errors. Estimation of the clay distribution from P‐wave and S‐wave velocities requires good estimates of the porosity and clay volume and verification from petrographic analyses of core or cuttings. For a real data example, numerical models of the elastic properties suggest the predominance of dispersed clay in a fluvial sand from matching P‐wave and S‐wave velocity well log data using log‐based estimates of the clay volume and porosity. This is consistent with an interpretation of other log data.  相似文献   

8.
AVO investigations of shallow marine sediments   总被引:2,自引:0,他引:2  
Amplitude‐variation‐with‐offset (AVO) analysis is based on the Zoeppritz equations, which enable the computation of reflection and transmission coefficients as a function of offset or angle of incidence. High‐frequency (up to 700 Hz) AVO studies, presented here, have been used to determine the physical properties of sediments in a shallow marine environment (20 m water depth). The properties that can be constrained are P‐ and S‐wave velocities, bulk density and acoustic attenuation. The use of higher frequencies requires special analysis including careful geometry and source and receiver directivity corrections. In the past, marine sediments have been modelled as elastic materials. However, viscoelastic models which include absorption are more realistic. At angles of incidence greater than 40°, AVO functions derived from viscoelastic models differ from those with purely elastic properties in the absence of a critical angle of incidence. The influence of S‐wave velocity on the reflection coefficient is small (especially for low S‐wave velocities encountered at the sea‐floor). Thus, it is difficult to extract the S‐wave parameter from AVO trends. On the other hand, P‐wave velocity and density show a considerably stronger effect. Attenuation (described by the quality factor Q) influences the reflection coefficient but could not be determined uniquely from the AVO functions. In order to measure the reflection coefficient in a seismogram, the amplitudes of the direct wave and the sea‐floor reflection in a common‐midpoint (CMP) gather are determined and corrected for spherical divergence as well as source and streamer directivity. At CMP locations showing the different AVO characteristics of a mud and a boulder clay, the sediment physical properties are determined by using a sequential‐quadratic‐programming (SQP) inversion technique. The inverted sediment physical properties for the mud are: P‐wave velocity α=1450±25 m/s, S‐wave velocity β=90±35 m/s, density ρ=1220±45 kg/m3, quality factor for P‐wave QP=15±200, quality factor for S‐wave QS=10±30. The inverted sediment physical properties for the boulder clay are: α=1620±45 m/s,β=360±200 m/s,ρ=1380±85 kg/m3,QP=790±660,QS=25±10.  相似文献   

9.
— A set of experiments on four samples of Oshima Granite at 15, 40 and 60 MPa confining pressure have been performed in order to investigate the damage behavior of granite submitted to deviatoric stress. In addition an experiment on one sample of Toki Granite at 40 MPa confining pressure was performed, in order to compare and elucidate the structural effects. Using acoustic emission data, strain measurements and elastic wave velocities allow to define consistently a damage domain in the stress space. In this domain, microcracking develops. The microcracking process is, in a first stage, homogeneous and, close to failure, localized. Elastic wave velocities decrease in the damage domain and elastic anisotropy develops. Using Kachanov's model (1993), elastic wave velocities have been inverted to derive the full second-order crack density tensor and characterize the fluid saturation state from the fourth-order crack density tensor. Crack density is strongly anisotropic and the total crack density close to failure slightly above one. The results indicate that the rock is saturated in agreement with the experimental conditions. The model is thus shown to be very appropriate to infer from elastic wave velocities a complete quantitative characterization of the damaged rock.  相似文献   

10.
目的:通过改变造影剂注射速率的方式,进行多排螺旋CT直接法下腔静脉成像并对图像质量的优劣对比,寻找造影剂速率的最佳注射方案。方法:采用Siemens公司的64排螺旋CT,对临床疑诊疾为下腔静脉疾病的患者30例行直接法多排螺旋CT下腔静脉扫描,随机分为5组,在相同造影剂浓度(1:4)、液体量(单侧液体量200 m L)、延迟扫描时间(30 s)及不结扎下肢浅静脉等同一条件下,每组造影剂注射速率分别采用2.5,3.0,3.5,4.0和4.5 m L/s,比较各组图像质量优劣。结果:所有患者均顺利完成检查,秩和检验各组间图像质量不完全相同(χ2=21.254,P<0.001),3.5~4.0 m L/s造影剂注射速率的图像质量主要为良及以上,达到临床诊断要求,为最佳流速范围。两组间行χ2检验,χ2=1.588,P>0.05,两组间图像质量总体分布无显著差异。结论:下腔静脉多排螺旋CT直接法成像切实可行,在相同造影剂浓度(1:4)、液体量(单侧液体量200 m L)、延迟扫描时间(30 s)、不结扎下肢浅静脉等条件下,最佳造影剂注射速率3.5~4.0 m L/s。   相似文献   

11.
随着城市化的发展,城市地球物理日益成为地球物理研究的重要方向,地震成像是构建城市地下空间三维/四维图像的重要手段,但面临观测成本高的困难.近年来国际上新发展的分布式光纤声波传感器作为高密度地震观测系统已经在地震层析成像方面得到了应用,在提高成像分辨率的同时,又降低了观测成本.本研究使用国产分布式光纤声波传感器开展了观测实验,利用480m埋地光缆记录了13h背景噪声,计算得到噪声互相关函数,获得了高频Rayleigh面波信号.采用多道面波分析方法提取相速度频散曲线,其结果与传统检波器记录和主动源结果较为一致.采用遗传算法反演得到了研究区内二维S波速度剖面,获得了下方沉积物横向变化特征.通过本次实验,初步验证了国产设备开展地震背景噪声成像研究、构建地下浅层结构模型的可行性.  相似文献   

12.
We obtain the wave velocities and quality factors of gas‐hydrate‐bearing sediments as a function of pore pressure, temperature, frequency and partial saturation. The model is based on a Biot‐type three‐phase theory that considers the existence of two solids (grains and gas hydrate) and a fluid mixture. Attenuation is described with the constant‐Q model and viscodynamic functions to model the high‐frequency behaviour. We apply a uniform gas/water mixing law that satisfies Wood's and Voigt's averages at low and high frequencies, respectively. The acoustic model is calibrated to agree with the patchy‐saturation theory at high frequencies (White's model). Pressure effects are accounted by using an effective stress law for the dry‐rock moduli and permeabilities. The dry‐rock moduli of the sediment are calibrated with data from the Cascadia margin. Moreover, we calculate the depth of the bottom simulating reflector (BSR) below the sea floor as a function of sea‐floor depth, geothermal gradient below the sea floor, and temperature at the sea floor.  相似文献   

13.
The acquisition of reliable discharge estimates is crucial in hydrological studies. This study demonstrates a promising acoustic method for measuring streamflow at high sampling rate for a long period using the fluvial acoustic tomography system (FATS). The FATS recently emerged as an innovative technique for continuous measurements of streamflow. In contrast to the traditional point/transect measurements of discharge, the FATS enables the depth‐averaged and range‐averaged flow velocity along the ray path to be measured in a fraction of a second. The field test was conducted in a shallow gravel‐bed river (0.9 m deep under low‐flow conditions, 115 m wide) for 1 month. The parameters (stream direction and bottom elevation) required for calculating the streamflow were deduced by a nonlinear regression to the discharge data from the well‐established rating curve. The cross‐sectional average velocities were automatically calculated from the acoustic data, which were collected on both riverbanks every 30 s. The FATS was connected to the internet so that the real‐time flow data could be obtained. The FATS captured discharge variations at a cut‐off frequency of approximately 70 day?1. The stream exhibited temporal discharge changes at multiple time scales ranging from a few tens of minutes to days. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Equipment for simulation in laboratory conditions of hydrate-containing artificial samples and measuring their acoustic properties (wave velocities, absorption and attenuation) at different temperature and pressures is designed and constructed. The plant consists of a high-pressure chamber (up to 45 MPa), a measuring system intended for the excitation and reception of acoustic waves, systems for temperature and pressure control (axial and lateral) and for gas/liquid delivery into the sample. The measurements are performed on cylindrical samples with a 30-mm diameter and height of 10–50 mm. A set of successful test experiments was performed, including measurements of acoustic velocities of consolidated (plexiglas, sandstone, and frozen sand) and unconsolidated (dry and wet quartz sand) samples and formation of methane-hydrate bearing samples.  相似文献   

15.
Elastic full waveform inversion of seismic reflection data represents a data‐driven form of analysis leading to quantification of sub‐surface parameters in depth. In previous studies attention has been given to P‐wave data recorded in the marine environment, using either acoustic or elastic inversion schemes. In this paper we exploit both P‐waves and mode‐converted S‐waves in the marine environment in the inversion for both P‐ and S‐wave velocities by using wide‐angle, multi‐component, ocean‐bottom cable seismic data. An elastic waveform inversion scheme operating in the time domain was used, allowing accurate modelling of the full wavefield, including the elastic amplitude variation with offset response of reflected arrivals and mode‐converted events. A series of one‐ and two‐dimensional synthetic examples are presented, demonstrating the ability to invert for and thereby to quantify both P‐ and S‐wave velocities for different velocity models. In particular, for more realistic low velocity models, including a typically soft seabed, an effective strategy for inversion is proposed to exploit both P‐ and mode‐converted PS‐waves. Whilst P‐wave events are exploited for inversion for P‐wave velocity, examples show the contribution of both P‐ and PS‐waves to the successful recovery of S‐wave velocity.  相似文献   

16.
We estimate the concentration of gas hydrate and free gas at an area located to the north of the Knipovich Ridge (western Svalbard margin). The method is based on P-wave velocities computed by reflection tomography applied to multicomponent ocean-bottom seismometer data. The tomographic velocity field is fitted to theoretical velocities obtained from a poro-elastic model based on a Biot-type approach (the interaction between the rock frame, gas hydrate and fluid is modelled from first physical principles). We obtain average hydrate concentrations of 7% and maximum free-gas saturations of 0.4% and 9%, depending on the saturation model.  相似文献   

17.
A 54‐story steel, perimeter‐frame building in downtown Los Angeles, California, is identified by a wave method using records of the Northridge earthquake of 1994 (ML = 6.4, R = 32 km). The building is represented as a layered shear beam and a torsional shaft, characterized by the corresponding velocities of vertically propagating waves through the structure. The previously introduced waveform inversion algorithm is applied, which fits in the least squares sense pulses in low‐pass filtered impulse response functions computed at different stories. This paper demonstrates that layered shear beam and torsional shaft models are valid for this building, within bands that include the first five modes of vibration for each of the North–South (NS), East–West (EW), and torsional responses (0–1.7 Hz for NS and EW, and 0–3.5 Hz for the torsional response). The observed pulse travel time from ground floor to penthouse level is τ ≈1.5 s for NS and EW and τ ≈ 0.9 s for the torsional responses. The identified equivalent uniform shear beam wave velocities are βeq ≈ 140 m/s for NS and EW responses, and 260 m/s for torsion, and the apparent Q ≈ 25 for the NS and torsional, and ≈14 for the EW response. Across the layers, the wave velocity varied 90–170 m/s for the NS, 80–180 m/s for the EW, and 170–350 m/s for the torsional responses. The identification method is intended for use in structural health monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Surface waves are often used to estimate a near‐surface shear‐velocity profile. The inverse problem is solved for the locally one‐dimensional problem of a set of homogeneous horizontal elastic layers. The result is a set of shear velocities, one for each layer. To obtain a P‐wave velocity profile, the P‐guided waves should be included in the inversion scheme. As an alternative to a multi‐layered model, we consider a simple smooth acoustic constant‐density velocity model, which has a negative constant vertical depth gradient of the squared P‐wave slowness and is bounded by a free surface at the top and a homogeneous half‐space at the bottom. The exact solution involves Airy functions and provides an analytical expression for the dispersion equation. If the ratio is sufficiently small, the dispersion curves can be picked from the seismic data and inverted for the continuous P‐wave velocity profile. The potential advantages of our model are its low computational cost and the fact that the result can serve as a smooth starting model for full‐waveform inversion. For the latter, a smooth initial model is often preferred over a rough one. We test the inversion approach on synthetic elastic data computed for a single‐layer P‐wave model and on field data, both with a small ratio. We find that a single‐layer model can recover either the shallow or deeper part of the profile but not both, when compared with the result of a multi‐layer inversion that we use as a reference. An extension of our analytic model to two layers above a homogeneous half‐space, each with a constant vertical gradient of the squared P‐wave slowness and connected in a continuous manner, improves the fit of the picked dispersion curves. The resulting profile resembles a smooth approximation of the multi‐layered one but contains, of course, less detail. As it turns out, our method does not degrade as gracefully as, for instance, diving‐wave tomography, and we can only hope to fit a subset of the dispersion curves. Therefore, the applicability of the method is limited to cases where the ratio is small and the profile is sufficiently simple. A further extension of the two‐layer model to more layers, each with a constant depth gradient of the squared slowness, might improve the fit of the modal structure but at an increased cost.  相似文献   

19.
Elastic rock properties can be estimated from prestack seismic data using amplitude variation with offset analysis. P‐wave, S‐wave and density ‘reflectivities’, or contrasts, can be inverted from angle‐band stacks. The ‘reflectivities’ are then inverted to absolute acoustic impedance, shear impedance and density. These rock properties can be used to map reservoir parameters through all stages of field development and production. When P‐wave contrast is small, or gas clouds obscure reservoir zones, multicomponent ocean‐bottom recording of converted‐waves (P to S or Ps) data provides reliable mapping of reservoir boundaries. Angle‐band stacks of multicomponent P‐wave (Pz) and Ps data can also be inverted jointly. In this paper Aki‐Richards equations are used without simplifications to invert angle‐band stacks to ‘reflectivities’. This enables the use of reflection seismic data beyond 30° of incident angles compared to the conventional amplitude variation with offset analysis. It, in turn, provides better shear impedance and density estimates. An important input to amplitude variation with offset analysis is the Vs/Vp ratio. Conventional methods use a constant or a time‐varying Vs/Vp model. Here, a time‐ and space‐varying model is used during the computation of the ‘reflectivities’. The Vs/Vp model is generated using well log data and picked horizons. For multicomponent data applications, the latter model can also be generated from processing Vs/Vp models and available well data. Reservoir rock properties such as λρ, μρ, Poisson's ratio and bulk modulus can be computed from acoustic impedance, shear impedance and density for pore fill and lithology identification. λ and μ are the Lamé constants and ρ is density. These estimations can also be used for a more efficient log property mapping. Vp/Vs ratio or Poisson's ratio, λρ and weighted stacks, such as the one computed from λρ and λ/μ, are good gas/oil and oil/water contact indicators, i.e., pore fill indicators, while μρ mainly indicates lithology. μρ is also affected by pressure changes. Results from a multicomponent data set are used to illustrate mapping of gas, oil and water saturation and lithology in a Tertiary sand/shale setting. Whilst initial log crossplot analysis suggested that pore fill discrimination may be possible, the inversion was not successful in revealing fluid effects. However, rock properties computed from acoustic impedance, shear impedance and density estimates provided good lithology indicators; pore fill identification was less successful. Neural network analysis using computed rock properties provided good indication of sand/shale distribution away from the existing wells and complemented the results depicted from individual rock property inversions.  相似文献   

20.
岩石弹性波速度和饱和度、孔隙流体分布的关系   总被引:23,自引:4,他引:23       下载免费PDF全文
在实验室对6种砂岩进行了连续的进水和失水实验. 测 量了两个过程的纵波速度VP、横波速度VS进水和失水速率随饱和度SW的 变化;分析了低饱和度时流体对岩石弹性性质的影响. 实验表明,进水和失水过程显示不同 的纵、横波速度与饱和度关系,速度不仅与饱和度有关,还与不同饱和阶段的孔隙流体分布 有关,而且也是水和岩石骨架之间的物理及化学作用所致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号